Reagent	Manufacturer	Content (wt.%)
Tetraethylorthosilicate	Tianjin Kermel Chemical Reagents	\geq 98.0
(TEOS)	Company	
Tetrapropylammonium	Shanghai Bangcheng Chemical Reagents	25
hydroxide (TPAOH) solution	Company	
$Al(NO_3)_3 \cdot 9H_2O$	Beijing Chemical Reagents Company	\geq 99.0
Tetramethylguanidine	Sass Chemical Reagents Company	98
(TMG)		
Tetramethylurea (TMU)	Beijing Bailingwei Technology Co., Ltd.	98
NaOH	Tianjin Kaixin Chemical Industry Co., Ltd.	≥96.0
NH ₄ NO ₃	Shanghai Chemical Reagents Factory	\geq 99.0
Methanol	Tianjin Kermel Chemical Reagents	≥99.5
	Company	

Table S1. The source of reagents in this work ^a

^a All of the reagents were used without purification.

Fig. S1 Thickness distributions of the O(0.3)-36 and T(0.3)-12. Note: the data came from the statistics of 100 particles.

Fig. S2 NH_3 -TPD profiles (a) and Py-FTIR spectra (b) of the samples synthesized with and without TMG addition.

Fig. S3 SEM image of the ZSM-5 zeolite synthesized using TMU as additive.

Fig. S4 XRD patterns and SEM images of the as-synthesized Ts(x)-12 samples.