Supporting Information

Facile regeneration of oxidized porous carbon nitride rods from the de-aromatization of the heptazine network in bulk $g-C_3N_4$

Qingqing Zhang,^a Yuhe Chen,^a Chengxiao Zhao,^b Xiaofei Yang^{b*} and Zupeng Chen^{*a}

^a Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.

^b College of Science, Nanjing Forestry University, Nanjing 210037, China. *Corresponding authors: xiaofei.yang@njfu.edu.cn; czp@njfu.edu.cn.

Contents

Fig. S1 SEM images of BCN and DMO-x
Fig. S2 Normalized XRD patterns and FT-IR spectra of BCN and DMO- <i>x</i> 2
Fig. S3 UV–visible absorption spectra of PCNR, BCN and DMO-6h
Fig. S4 Solid-state NMR spectra of DMO-6h
Fig. S5 Comparison of the XRD patterns and FT-IR spectra of DMO-6h with melamine,
cyanuric acid, and their supramolecular complex (CM complex)5
Fig. S6 SEM image and the corresponding linear elemental mappings of PCNR
Fig. S7 The first-order kinetic plots of rhodamine B degradation in the presence of BCN and
PCNR
Fig. S8 Reusability of the PCNR in photocatalytic degradation of rhodamine B under the
irradiation of 50 W white LED array
Table S1 Structural properties and photocatalytic performance of BCN and PCNR.
Table S2 Composition of BCN, PCNR, and DMO with different hydrothermal treatment
times (determined by elemental analysis)10

Fig. S1 SEM images of the de-aromatized melem-containing oligomers (DMO) by hydrothermal treatment of BCN at 473 K for 6-36 h (DMO-x, x denotes the hydrothermal time). BCN was used as a reference.

Fig. S2 (a) Normalized XRD patterns and (b) FT-IR spectra of the de-aromatized melemcontaining oligomers by hydrothermal treatment of BCN at 473 K for 6-36 h (DMO-*x*, *x* denotes the hydrothermal time). The stretching of the surface groups of $-NH_x$ (3000-3500 cm⁻¹), -C=O (1734 cm⁻¹), and C-OH (1084 cm⁻¹) were highlighted. BCN was used as a reference.

Fig. S3 UV–visible absorption spectra of PCNR, BCN and DMO-6h.

Fig. S4 Solid-state ¹³C NMR spectrum of DMO-6h carried out at 100.6 MHz and 298 K.

Fig. S5 Comparison of the (a) XRD patterns and (b) FT-IR spectra of DMO-6h with melamine, cyanuric acid, and their supramolecular complex (CM complex), which were embedded in KBr pellet.

Fig. S6 SEM image and the corresponding linear elemental mappings of PCNR.

Fig. S7 First-order kinetic plots of rhodamine B degradation in the presence of BCN and PCNR, under the irradiation of (a) white LED array and (b) blue light (465 nm) as the light source.

Fig. S8 Reusability of the PCNR in photocatalytic degradation of rhodamine B under the irradiation of 50 W white LED array.

Sample	Band gap ^{a)} [eV]	$\frac{S_{\rm BET}{}^{\rm b)}}{[\rm m^2~g^{-1}]}$	d _{Pore} ^{c)} [nm]	$\frac{V_{\text{Pore}}^{d)}}{[\text{cm}^3 \text{ g}^{-1}]}$	$\frac{k_{\rm White}^{\rm e)}}{[\times 10^{-3}{\rm min}^{-1}]}$	$\frac{k_{\rm Blue}^{\rm f)}}{[\times 10^{-3}{\rm min}^{-1}]}$
BCN	2.78	9.5	2.8	0.01	3.68	4.47
PCNR	2.74	47.3	3.2	0.12	34.0	28.7

Table S1 Structural properties and photocatalytic performance of BCN and PCNR.

a) Determined by Tauc plots; b) BET method; c) Average pore diameter from the pore size distribution; d) Volume of N₂ adsorbed at $p/p_0 = 0.98$; e,f) The reaction rate calculated of rhodamine B degradation *via* first-order kinetic model under the irradiation of 50 W (e) white LED array and (f) blue light (465 nm) as the light source.

-	1	1		1	1	1
Sample	N [wt.%]	C [wt.%]	H [wt.%]	O [wt.%]	C/N ^{a)}	Formula
BCN	60.37	34.70	2.04	2.88	0.57 (0.67)	C ₆ N ₉ H ₄ O _{0.4}
PCNR	53.58	32.74	2.32	11.36	0.61 (0.71)	C ₆ N _{8.4} H ₅ O _{1.6}
DMO-6h	48.53	28.25	3.63	19.59	0.58 (0.68)	C ₆ N ₉ H ₉ O ₃
DMO-12h	49.30	28.93	3.53	18.24	0.59 (0.68)	C ₆ N ₉ H ₉ O ₃
DMO-18h	50.77	29.60	3.48	16.14	0.58 (0.68)	C ₆ N ₉ H ₉ O _{2.5}
DMO-24h	51.08	29.27	3.34	16.31	0.57 (0.67)	C ₆ N ₉ H ₈ O _{2.5}

 Table S2 Composition of BCN, PCNR, and DMO with different hydrothermal treatment

 times (determined by elemental analysis).

a) Weight ratio (in parentheses, the corresponding molar ratio).