Electronic Supplementary Information

Coordination framework materials fabricated by the self-assembly of Sn(IV) porphyrins with Ag(I) ions for the photocatalytic degradation of organic dyes in wastewater

Nirmal Kumar Shee, Hwa Jin Jo and Hee-Joon Kim*

Department of Applied Chemistry, Kumoh National Institute of Technology 61 Daehak-ro, Gumi 39177, Republic of Korea List of contents:

 Table S1. Crystallographic data and structure refinements for 1 and 2.

 Table S2. Selected bond lengths [Å] and angles [°] for 1.

Table S3. Selected bond lengths [Å] and angles [°] for 2.

Fig. S1 UV-vis absorption spectra of Sn(OH)₂TPyP and Sn(INA)₂TPyP in chloroform.

Fig. S2 Fluorescence spectra of Sn(OH)₂TPyP and Sn(INA)₂TPyP (excited at 560 nm) in chloroform.

Fig. S3 FT-IR spectra of 1 and 2.

Fig. S4 TGA curves of 1 and 2.

Fig. S5 Powder X-ray diffraction (PXRD) patterns of 1 and 2.

Fig. S6 Adsorption and desorption isotherms of N₂ for 1 and 2 at 77 K.

Fig. S7 Time-dependent absorption spectra of MB in the presence of **2** under visible light irradiation.

Fig. S8 Kinetics for the photocatalytic degradation of MB under visible light irradiation by photocatalysts **1** and **2**.

Fig. S9 Time-dependent absorption spectra of AM in the presence of **2** under visible light irradiation.

Fig. S10 Kinetics for the photocatalytic degradation of AM under visible light irradiation by photocatalysts **1** and **2**.

Fig. S11 Time-dependent absorption spectra of BCG in the presence of **2** under visible light irradiation.

Fig. S12 Kinetics for the photocatalytic degradation of BCG under visible light irradiation by photocatalysts **1** and **2**.

Fig. S13 Catalytic cycles (up to 10 cycles) for photo-catalyst 2 for the degradation of AM dye.

Fig. S14 Powder X-ray diffraction (PXRD) patterns of **1** and **2** after use for photocatalytic degradation of AM dye.

Fig. S15 FE-SEM images of photocatalyst 1 and 2 after the degradation of AM dye.

Fig. S16 Concentration effect of AM dye on the photo-degradation by **2** (5 mg) within 90 min of visible light irradiation.

Fig. S17 Effect of temperature on the degradation of AM dye by 2.

Fig. S18 pH Effect of AM dye solution on the photo-degradation of by 2.

Fig. S19 Effect of various scavengers on the degradation of AM dye in the presence of **2** under visible light irradiation.

Fig. S20 ESI-MS spectrum (negative ion mode) of the reaction mixture of AM in the presence of **2** after 60 min of visible light irradiation.

	1	2
Empirical formula	$C_{40}H_{24}Ag_2N_8O_2Sn$	$C_{58}H_{38}Ag_2F_6N_{12}O_{10}S_2Sn$
Formula weight	983.1	1575.55
Crystal size (mm ³)	$0.20\times0.15\times0.15$	0.2 imes 0.3 imes 0.5
<i>T</i> (K)	173 (2)	223(2)
Crystal system, Space group	Orthorhombic, Pmna	Monoclinic, C2/c
Cell dimensions		
<i>a</i> (Å)	19.8288 (15)	17.616(3)
<i>b</i> (Å)	17.6770 (14)	24.301 (4)
<i>c</i> (Å)	8.5182 (7)	19.874 (4)
α (deg)	90.00	90.00
β (deg)	90.00	108.578 (3)
γ (deg)	90.00	90.00
$V(Å^3)$	2985.7 (4)	8064 (3)
$Z, D_{\rm c} ({\rm g}{\rm cm}^{-3})$	2, 1.088	4, 1.298
μ (mm ⁻¹)	1.11	0.91
<i>F</i> (000)	1096	3120
θ range (°)	1.15 to 28.29	2.05 to 28.29
reflections collected	17461	23423
independent reflections (Rint)	3710 (0.0635)	9377 (0.041)
absorption correction	None	None
data / restraints / parameters	3710 / 0 / 123	9377 / 3 / 410
GOF on F ²	0.9239	1.2774
$R1$, ^{<i>a</i>} $wR2^{b}$ [$I > 2\sigma(I)$]	0.066, 0.1892	0.091, 0.2826
$R1$, ^{<i>a</i>} $wR2^{b}$ (all data)	0.1233, 0.2111	0.1261, 0.3422
Largest peak/hole (e Å ⁻³)	1.4586/ -1.6532	8.1412/-7.7329

Table 31. Crystanographic data and structure remember z in z and z

 ${}^{a}R1 = \Sigma \|F_{o}\| - \|F_{c}\|/\Sigma \|F_{o}\| \cdot {}^{b}wR2 = [\Sigma[w(F_{o}{}^{2} - F_{c}{}^{2})^{2}]/\Sigma[w(F_{o}{}^{2})^{2}]]^{1/2}.$

Table S2. Selected bond lengths [Å] and angles [°] for 1.

Sn1-O1 Ag2-N2	2.069(7) 2.052(14)	Sn1-N1 Ag3-N3	2.074(4) 2.166(6)
O1-Sn1-O1 O1-Sn1-N1 O1-Sn1-N1 O1-Sn1-N1 O1-Sn1-N1 N1-Sn1-N1 N1-Sn1-N1 N3-Ag3-N3 C5-N1-Sn1	180.0(4) 91.3(2) 91.3(2) 91.3(2) 180.0(8) 91.3(2) 89.7(2) 90.3(2) 180.0(5) 125.5(4)	O1-Sn1-N1 O1-Sn1-N1 N1-Sn1-N1 O1-Sn1-N1 O1-Sn1-N1 O1-Sn1-N1 N1-Sn1-N1 N2-Ag2-N2 C2-N1-Sn1 C9-N3-Ag3	88.7(2) 88.7(2) 90.3(2) 88.7(2) 89.7(2) 88.7(2) 180.0(1) 180.0(10) 125.8(3) 119.5(4)
C13-N2-Ag2	122(2)	C12-N2-Ag2	127.0(16)

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, y, z; (iii) x, -y+1, -z+1; (iv) -x+1, -y+2, -z; (v) -x, -y+1, -z+1.

Sn1-O1 Sn1-N1 Ag1-N4 Ag2-N5	2.066(5) 2.087(5) 2.373(9) 2.443(9)	Sn1-N2 Ag1-N6 Ag2-N3	2.081(5) 2.198(6) 2.216(6)		
O1-Sn1-O1 O1-Sn1-N2 N2-Sn1-N2 O1-Sn1-N1 N2-Sn1-N1 O1-Sn1-N1 N2-Sn1-N1 N6-Ag1-N6 N3-Ag2-N3 C23-O1-Sn1 C4-N1-Sn1 C11-N2-Sn1 C8-N3-Ag2 C22-N5-Ag2 C26-N6-Ag1	178.9(3) $86.1(2)$ $89.6(3)$ $94.2(2)$ $90.3(2)$ $85.0(2)$ $179.7(2)$ $149.7(4)$ $165.0(3)$ $129.2(5)$ $125.2(4)$ $125.2(4)$ $118.1(5)$ $121.3(5)$ $124.2(5)$	O1-Sn1-N2 O1-Sn1-N1 N2-Sn1-N1 O1-Sn1-N1 N2-Sn1-N1 N1-Sn1-N1 N6-Ag1-N4 N3-Ag2-N5 C1-N1-Sn1 C14-N2-Sn1 C9-N3-Ag2 C18-N4-Ag1 C27-N6-Ag1	$\begin{array}{c} 94.7(2)\\ 94.7(2)\\ 85.0(2)\\ 179.7(2)\\ 94.2(2)\\ 90.3(2)\\ 89.8(3)\\ 105.16(18)\\ 97.48(16)\\ 126.2(4)\\ 125.8(4)\\ 124.5(6)\\ 121.9(5)\\ 118.2(6) \end{array}$		
Symmetry codes: (i) $-x+2$, y , $-z+3/2$; (ii) $-x+2$, y , $-z+1/2$; (iii) $-x+2$, $-y$, $-z+1$; (iv) $x+1/2$, $y+1/2$, z ; (v) $x-1/2$, $y-1/2$, z .					

Fig. S2 Fluorescence spectra of $Sn(OH)_2TPyP$ and $Sn(INA)_2TPyP$ (excited at 560 nm) in chloroform.

Fig. S3 FT-IR spectra of 1 and 2.

Fig. S4 TGA curves of 1 and 2.

Fig. S5 Powder X-ray diffraction (PXRD) patterns of 1 and 2.

Fig. S6 Adsorption and desorption isotherms of N_2 for 1 and 2 at 77 K.

Fig. S7 Time-dependent absorption spectra of MB in the presence of **2** under visible light irradiation.

Fig. S8 Kinetics for the photocatalytic degradation of MB under visible light irradiation by photocatalysts **1** and **2**.

Fig. S9 Time-dependent absorption spectra of AM in the presence of **2** under visible light irradiation.

Fig. S10 Kinetics-for the photocatalytic degradation of AM under visible light irradiation by photocatalysts **1** and **2**.

Fig. S11 Time-dependent absorption spectra of BCG in the presence of **2** under visible light irradiation.

Fig. S12 Kinetics for the photocatalytic degradation of BCG under visible light irradiation by photocatalysts **1** and **2**.

Fig. S13 Catalytic cycles (up to 10 cycles) for photo-catalyst 2 for the degradation of AM dye.

Fig. S14 Powder X-ray diffraction (PXRD) patterns of **1** and **2** after use for photocatalytic degradation of AM dye.

Fig. S15 FE-SEM images of photocatalyst 1 and 2 after the degradation of AM dye.

Fig. S16 Concentration effect of AM dye on the photo-degradation by **2** (5 mg) within 90 min of visible light irradiation.

Fig. S17 Effect of temperature on the degradation of AM dye by 2.

Fig. S18 pH Effect of AM dye solution on the photo-degradation of by 2.

Fig. S19 Effect of various scavengers on the degradation of AM dye in the presence of **2** under visible light irradiation.

Fig. S20 ESI-MS spectrum (negative ion mode) of the reaction mixture of AM in the presence of **2** after 60 min of visible light irradiation.