Supplementary Material for

Solution- and gas-phase behavior of decavanadate: implications for mass spectrometric analysis of redox-active polyoxometalates

Daniel Favre,¹ Cedric E. Bobst,¹ Stephen J. Eyles,² Debbie C. Crans³ and Igor A. Kaltashov^{1,*}

Departments of Chemistry¹ and Biochemistry and Molecular Biology, ² University of Massachusetts-Amherst, Amherst, MA and Departments of Chemistry, Colorado State University, Ft. Collins, CO³

Table of contents

Figure S1. Positive ion ESI mass spectrum of a 1 mM aqueous solution of $(NH_4)_6V_{10}O_{28}$. The zoomed view (inset) shows variation in the extent of partial reduction of V10 species.

Figure S2. (**a-e**) Zoomed view of **Figure 1** containing 200-400 m/z (**a**), 400-600 m/z (**b**), 600-800 m/z (**c**), 800-1000 m/z (**d**), and 1000-1200 m/z (**e**).

Figure S3. Negative ion ESI mass spectra of a 0.1 mM aqueous solutions of $K_4Na_2V_{10}O_{28}$ and $Na_6V_{10}O_{28}$. The zoomed views (inset) shows variation in the extent of partial reduction of V10 species.

Figure S4. Mass spectra of fragment ions produced by collisional activation of $H_4V_{10}O_{28}^{2-}$ (a 10-m/z unit mass selection window centered on the most abundant isotopolog).

Table S1. Table of m/z values, abundance values, and molecular formulas of assigned peaks labeled in Figure 1.

Table S2. Table of m/z values, abundance values, and molecular formulas of assigned peaks labeled in Figure 3.

Figure S1. Positive ion ESI mass spectrum of a 1 mM aqueous solution of $(NH_4)_6V_{10}O_{28}$. The zoomed view (inset) shows variation in the extent of partial reduction of V10 species.

Figure S2. (**a-e**) Zoomed view of **Figure 1** containing 200-400 m/z (**a**), 400-600 m/z (**b**), 600-800 m/z (**c**), 800-1000 m/z (**d**), and 1000-1200 m/z (**e**).

Figure S3. Negative ion ESI mass spectra of a 0.1 mM aqueous solutions of $K_4Na_2V_{10}O_{28}$ and $Na_6V_{10}O_{28}$. The zoomed views (inset) shows variation in the extent of partial reduction of V10 species.

Figure S4. Mass spectra of fragment ions produced by collisional activation of $H_4V_{10}O_{28}^{2-}$ (a 10-m/z unit mass selection window centered on the most abundant isotopolog).

m/z	Abundance	Assignment
280.79181	463657760	V ₆ O ₁₆ ²⁻
380.72834	348287360	HV ₄ O ₁₁
402.71042	86153448	NaV ₄ O ₁₁
454.65697	41454484	$V_{10}O_{25}^{2-}$
462.65415	2507207936	V ₁₀ O ₂₆ ²⁻
480.66477	2819456768	$H_4V_{10}O_{28}^{2-}$
491.65596	460635648	$NaH_{3}V_{10}O_{28}^{2-}$
909.31335	15266076	V ₁₀ O ₂₅
926.31722	55977468	HV ₁₀ O ₂₆ -
948.29856	43151184	NaV ₁₀ O ₂₆
961.3389	54973988	$H_5^{50}V_1^{51}V_9^{16}O_{28}^{-1}$
962.33733	2149368832	$H_5^{51}V_{10}^{16}O_{28}^{-1}$
963.34409	336441952	$H_6^{51}V^{(V)}9^{51}V^{(IV)}1^{16}O_{28}^{-1}$
964.3425	143054736	$H_5{}^{51}V_{10}{}^{16}O_{27}{}^{18}O_{1}{}^{-}/H_7{}^{51}V^{(V)}{}_8{}^{51}V^{(IV)}{}_2{}^{16}O_{28}{}^{-}$
965.3452	18526682	$H_6^{51}V^{(V)}9^{51}V^{(IV)}1^{16}O_{27}^{18}O_{1}^{-1}$
984.32005	1326984192	NaH ₄ V ₁₀ O ₂₈ ⁻
1000.29332	436956064	KH ₄ V ₁₀ O ₂₈ -
1006.29836	443729952	Na ₂ H ₃ V ₁₀ O ₂₈
1022.27253	269013696	NaKH ₃ V ₁₀ O ₂₈

Table S1. Table of m/z values, abundance values, and molecular formulas of assigned peaks labeled in Figure 1.

Table S2. Table of m/z values, abundance values, and molecular formulas of assigned peaks labeled in Figure 3.

MSMS NaH ₄ V ₁₀ O ₂₈ ⁻		
m/z	Abundance	Assignment
932.29868	24559972	NaV ₁₀ O ₂₅
948.29585	2927228672	NaV ₁₀ O ₂₆
984.31444	7289208	NaH ₄ V ₁₀ O ₂₈ ⁻
MSMS H5V10O28-		
m/z	I	Assignment
909.31073	634640256	V ₁₀ O ₂₅
926.31386	5410646528	HV ₁₀ O ₂₆ ⁻
962.33469	138024608	$H_5V_{10}O_{28}^{-1}$
MSMS H4V100282-		
m/z	I	Assignment
454.65651	119309936	V ₁₀ O ₂₅ ²⁻
462.65375	10193562624	V ₁₀ O ₂₆ ²⁻
480.66433	126364768	$H_4V_{10}O_{28}^{2-}$