Fe incorporation-induced electronic modification of Co-tannic acid complex nanoflowers for high-performance water oxidation

Guangyao Zhou,^{‡a,b} Yaru Ma,^{‡b,c} Chengjun Gu,^b Jun Yang,^d Huan Pang,^e Jing Li,^{*a} Lin Xu,^{*b} and Yawen Tang^{*b}

- ^a College of Science, Jinling Institute of Technology, Nanjing 210023, PR China Email: lijing@jit.edu.cn
- ^b Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, PR China

Email: xulin001@njnu.edu.cn; tangyawen@njnu.edu.cn

^c Shandong Academy of Pharmaceutical Sciences, Jinan 250101, PR China

- ^d State Key Laboratory of Multiphase Complex Systems and Center of Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China; Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211100, PR China
- ^e School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, PR China
- ‡ Guangyao Zhou and Yaru Ma contributed equally to this work.

Experimental section

1. Reagents and chemicals

Tannic acid (TA), NaOH, Co(NO₃)₂·6H₂O and Fe(NO₃)₃·9H₂O were supplied by Aladdin Chemistry Co., Ltd (Shanghai, China). Commercial RuO₂ was purchased from Johnson Matthey Chemicals Ltd (Shanghai, China). All reagents were of analytical reagent grade and used without further purification.

2. Synthesis of $Fe_{0.15}Co_{0.85}$ -TA

In a typical synthesis, 8.5 g of tannic acid was firstly dispersed into NaOH solution under constant stirring to obtain 0.02 mol L⁻¹ sodium tannate solution. Subsequently, 4.2 mmol of Co(NO₃)₂·6H₂O and 1.4 mmol of Fe(NO₃)₃·9H₂O were added into 35 mL of the above sodium tannate solution with vigorous stirring for 30 min. Afterwards, the resultant solution was transferred into a 50 mL stainless Teflon-lined autoclave and heated at 120 °C for 6 h. Finally, the Fe_{0.15}Co_{0.85}-TA sample was obtained by centrifugation, washed with water and absolute ethanol for several times and dried at 40 °C for 12 h. For comparison, Fe_{0.1}Co_{0.9}-TA, Fe_{0.24}Co_{0.76}-TA, Fe-TA and Co-TA samples were also synthesized under the identical synthetic procedure except varying the Co/Fe feeding mole ratios of 4/1, 3/1, 2/1,1/0, and 0/1, respectively.

3. Physicochemical characterizations

The morphology and structure of samples were examined by transmission electron microscopy (TEM, JEOL JEM-2100F, 200 kV) and scanning electron microscopy (SEM, Hitachi S-4800). The crystallinity of the products was analyzed by X-ray diffraction (XRD) patterns on a Model D/max-rC X-ray diffractometer with a Cu K α

radiation source ($\lambda = 1.5406$ Å). The surface chemistry state of samples was identified by X-ray photoelectron spectroscopy (XPS) using a Thermo VG Scientific ESCALAB 250 spectrometer with an Al K α radiator. The BET specific surface area was measured at 77 K on a Micromeritics ASAP 2050 system. Raman spectrum was recorded on a Raman spectrometer (LabRAMHR800, $\lambda = 514$ nm). FT-IR spectroscopy was carried out with a Nicolet 520 SXFTIR spectrometer. The electron spin resonance (ESR) test were conducted using an ECS 106 ESR spectrometer (Bruker, Rheinstetten, Germany) with an X-band resonator (ER 4103TM). All ICP measurements were carried out on an IRIS Intrepid instrument (Thermo Fisher, USA).

4. Electrochemical measurement

All electrochemical tests were performed on a CHI 760E electrochemical workstation in 1.0 M KOH solution using a standard three-electrode system with a glassy carbon electrode (GCE) as working electrode, a graphite rod as counter electrode, and a saturated calomel reference electrode (SCE) as the reference electrode. For the preparation of the working electrode, 5 mg of the as-synthesized Fe_xCo_{1-x} -TA family catalysts were dispersed into 1 mL of ethanol solution (the volume ratio of ethanol to water is 1:3) for at least 30 min under ultrasonication to form a catalyst ink. Then, 8 µL of the obtained ink was dropped on the surface of polished GCE and then dried at 40 °C. Subsequently, 4 µL of Nafion (5 wt.%, Sigma-Aldrich) was dropped on the surface of catalysts modified GCE and then dried before electrochemical test. Linear sweep voltammetry (LSV) were carried out with a scan rate of 5 mV s⁻¹ and manually *iR*-corrected. The electrochemical double-layer capacitances (*C*_{dl}) were determined by

a series of CV tests obtained in the non-Faradaic region (1.02 - 1.12 V) at different scan rates (20 - 100 mV s⁻¹). The stability measurements were investigated by the chronoamperometry test performed at a constant potential of 1.5 V and the continuous CV scanning 2000 cycles at a scan rate of 0.1 V s⁻¹. In this work, all potentials were calibrated to reversible hydrogen electrode (RHE). The equation of potential conversion from SCE to RHE was described as follows: $E_{RHE} = E_{SCE} + 0.0591 \text{ pH} + 0.242$.

Figure S1 The molecule structure of tannic acid (TA).

Figure S2 TEM images of $Fe_{0.15}Co_{0.85}$ -TA intermediates collected at different reaction time: (a) before hydrothermal reaction, (b) 2 h and (c) 6 h.

Figure S3 SEM images of different contrastive samples. (a) $Fe_{0.1}Co_{0.9}$ -TA, (b) $Fe_{0.24}Co_{0.76}$ -TA, (c) Co-TA and (d) Fe-TA.

Figure S4 CV curves of the synthesized $Fe_xCo_{(1-x)}$ -TA catalysts in the non-Faradaic region (1.02 – 1.12 V) obtained at different scanning rates. (a) $Fe_{0.1}Co_{0.9}$ -TA, (b) $Fe_{0.15}Co_{0.85}$ -TA, (c) $Fe_{0.24}Co_{0.76}$ -TA, (d) Co-TA and (e) Fe-TA.

Figure S5 TEM image of the $Fe_{0.15}Co_{0.85}$ -TA after OER test.

Feed mole ratios (Co/Fe)	Co (at. %) in $Fe_xCo_{(1-x)}$ -TA	Fe (at. %) in $Fe_xCo_{(1-x)}$ -TA
4/1	0.90	0.10
3/1	0.85	0.15
2/1	0.74	0.26

Table S1 Determinations of the content of Fe and Co in $Fe_xCo_{(1-x)}$ -TA by ICP-OES.

Catalysts	Overpotential at	Tafel slope	References
	$10 \text{ mA cm}^{-2} (\text{mV})$	$(mV dec^{-1})$	
Fe _{0.15} Co _{0.85} -TA	272	53.9	This work
nanoflowers			
NPMC/CoFe	310	50.6	J. Power Sources, 2019, 441, 227177.
Co ₃ O ₄ -CNTs	370	87	Appl. Surf. Sci., 2019, 497, 143818.
CoFe@NiFe-200/NF	190	45.71	Appl. Catal. B: Environ., 2019, 253, 131.
IrClx-Co(OH) ₂ /CNTs	230	71.64	Appl. Catal. B: Environ., 2020, 279, 119398.
N-NiCoPx/NCF	298	60	Chem. Eng. J., 2020, 402, 126257.
	210	29	
Fe-CoNI-OH	210	28	Chem. Eng. J., 2021, 403, 126304.
CourFearP	240	55	ACS Appl. Mater. Interfaces, 2020, 12, 46578
C00.81 C0.21	240	55	ACS Appl. Maler. Interfaces, 2020, 12, 4 0576.
(Fe.Co)SPPc-900-sp	353	53	ACS Sustainable Chem. Eng., 2020, 8, 13147.
Fe-Co ₃ O ₄	262	43	Adv. Mater., 2020, 32, 2002235.
Ni-Co-P/GDY	290	72.7	ChemCatChem 2019, 11, 5407.
Co@LCO-NFs	270	43	J. Mater. Chem. A, 2020, 8, 19946.
CoFe@NC-700	470	135.7	Mater. Res. Express, 2020, 7, 085002.
	210		G
Co/N-CNTs	310	66	Small, 2020, 16, 2002427.
Co S	200	70	I Maton Cham 4 2018 6 7502
0958	288	19	J. Maler. Chem. A,2018, 6, 7392.
CoS2 HNSs	290	57	Nanoscale 2018 10 4816
2002 11100	_> •	27	
Fe-SAs/Fe ₃ C-Fe@NC	340	43	Small, 2020, 16, 1906057.
$C_{2} \otimes C_{2} \otimes A$ (N C	200	88	Cham Commun 2018 54 12746

Table S2 Comparison of OER performance of $Fe_{0.15}Co_{0.85}$ -TA nanoflowers with some previously reported Co-based catalysts in 1.0 M KOH solution.