Electronic Supplementary Information for

A Microporous **shp**-Topology Metal–Organic Framework with an Unprecedented High-Nuclearity Co₁₀-Cluster for Iodine Capture and Histidine Detection

Kun Wu,^a Yong-Liang Huang,^b Ji Zheng,^a Dong Luo,^a Mo Xie,^a Yan Yan Li,^a Weigang Lu*^a and Dan Li*^a

^aCollege of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China E-mail: weiganglu@jnu.edu.cn; danli@jnu.edu.cn ^bDepartment of Chemistry, Shantou University Medical College, Shantou 515041, P. R. China

Contents

Section 1. Synthesis of JNU-201 and JNU-202

Section 2. Structural analysis

Section 3. Crystallographic data

Section 4. General characterizations

Section 5. Iodine adsorption

Section 6. Histidine detection

Section 1. Synthesis of JNU-201 and JNU-202

Synthesis of JNU-201

A mixture of Co(NO₃)₂·6H₂O (14.8 mg, 0.051 mmol), H₄BTTB (13.6 mg, 0.024 mmol), N,Ndimethylformamide (DMF, 2.0 mL), EtOH (1.0 mL), H₂O (1.0 mL), CF₃COOH (4 μ L) and 4 mg imidazole was placed in a 10 mL glass vial and heated at 90 °C for 72 h. After it was cooled to room temperature at a rate of 5 °C h⁻¹, the pink block crystals were collected.

Synthesis of JNU-202

A mixture of Co(NO₃)₂·6H₂O (14.8 mg, 0.051 mmol), H₄BTTB (13.6 mg, 0.024 mmol), N,Ndimethylformamide (DMF, 2.0 mL), EtOH (1.0 mL), H₂O (1.0 mL) and CF₃COOH (20 μ L) was placed in a 10 mL glass vial and heated at 90 °C for 72 h. After it was cooled to room temperature at a rate of 5 °C h⁻¹, the purple needle crystals were collected.

Section 2. Structural analysis

Fig. S1. The coordination mode between two adjacent clusters in JNU-200 before solvent exchange.

Analyzing the spatial position of the distribution of 10 Co atoms in the Co-O cluster, as shown in the Fig. S2b and S2c[†], there are six Co atoms as the six vertices of the hexagon, the included angle formed by every three adjacent Co atoms is 119.64°, and the Co-Co distances of two adjacent Co atoms are 3.388 Å and 3.272 Å, respectively. In addition, the remaining four Co atoms are symmetrically distributed on the vertical line of the hexagon. The Co-Co distances of the four cobalt

atoms on the vertical line are 2.913 Å, 2.490 Å, and 2.913 Å, respectively.

Fig. S2. (a) The coordination environment of $[Co_{10}(\mu_4-O)_3(CO_2)_{12}]$ SBUs. (b), (c) The relative position of Co atoms in a cobalt cluster. (d) Topological net for **JNU-200**. (e), (f) Ball-and-stick model of the **JNU-200** along *a* and *c* directions. (sky blue for Co, red for O, gray for C and blue for N, H atoms are not represented for the sake of clarity, yellow spheres highlight the triangular channels of **JNU-200**.

Fig. S3. Three different coordination modes of Co atom and organic ligand BTTB^{4–}. The BTTB^{4–} linker is distorted with dihedral angles between the phenyl plane and the pyrazinyl plane (40.67°, 40.67°, 56.85°, and 56.85°; sky blue for Co, red for O, gray for C and blue for N, H atoms are not represented for the sake of clarity.)

Fig. S4. Crystal structures of **JNU-200** in viewed along [001] direction in the space-filling model. (colour code: Co, turquoise; C, gray; N, blue; and O, red).

Fig. S5. Detailed inside view integrated with the Connolly surface (1D triangular channels (side length : 6.0 Å), Color coding: H, white; C, gray; N, light blue; O, red; Co, blue).

Single-crystal X-ray diffraction analysis shows that JNU-201 ((Me₂NH₂)₄ [Co₇(μ_2 -O)₂ (BTTB)₄ (H₂O)₂ (DMF)₄] (H₂O)₄ (DMF)₁₀) crystallizes in the monoclinic crystal system with a space group of *I*2/m. The 8-connected Co₃(μ_2 -O)₂(H₂O)₂ SBUs and Co₂(μ_2 -O)(H₂O)₃ are extended by the 4-connected tetracarboxylate linkers into a 2D framework (Fig. S6). Single-crystal X-ray diffraction analysis shows that JNU-202 (Me₂NH₂)₄ [Co₄(μ_2 -O)₂ (BTTB)₂ H₂O (HCO₂)₂(DMF)₂] (DMF)₄ (H₂O)₄ crystallizes in the monoclinic crystal system with a space group of *P*2/c. The 4-connected Co₂(H₂O)₂EtOH SBUs are extended by the 4-connected tetracarboxylate linkers into a 3D framework (Fig. S7). Both JNU-201 and JNU-202 are constructed with low-nuclearity Co clusters. Therefore, the formation of high-nuclearity Co clusters could be hinged upon the pH of the reaction. It has been reported that pH is one of the factors affecting the formation of high-nuclearity clusters,¹ however, not in MOFs. The phase purity of bulk samples of JNU-201 and JNU-202 were confirmed

by comparison of their observed and simulated PXRD patterns (Fig. S8).

Fig. S6. (a) and (b) The Secondary building unit of **JNU-201**. (c) The configuration of the ligand in **JNU-201**. (d) Ball-and-stick model for **JNU-201** along *a* direction. (e) Two-dimensional layers stacking in **JNU-201**. The BTTB^{4–} linker is distorted with dihedral angles between the phenyl plane and the pyrazinyl plane (44.44°, 45.48°, 51.32°, and 65.56°; sky blue for Co, red for O, gray for C and blue for N, H atoms are not represented for the sake of clarity.)

Fig. S7. (a) The Secondary building unit of **JNU-202**. (b)The configuration of the ligand in **JNU-202**. (c) Ball-and-stick model for **JNU-202** along *a* direction; The BTTB^{4–} linker is distorted with dihedral angles between the phenyl plane and the pyrazinyl plane (34.66° , 34.66° , 52.07° , and 52.20°); (d) Topological net of **JNU-202** with **pts** topology. (sky blue for Co, red for O, gray for C, and blue for N, H atoms are not represented for the sake of clarity.)

Fig. S8. PXRD patterns of JNU-200, JNU-201, and JNU-202.

Determination of the Crystal Structures

Single-crystal X-ray diffraction data of JNU-200 (as-synthesized), JNU-200 (ethanol exchanged), JNU-200', JNU-200". JNU-200 and JNU-200 were collected *via* an Oxford Cryo stream system on a XtaLAB PRO MM007-DW diffractometer system equipped with a RA-Micro7HF-MR-DW(Cu/Mo) X-ray generator and Pilatus3R-200K-A detector (Rigaku, Japan, Cu K α , λ = 1.54178 Å) at 100(2) K. The numerical absorption corrections were applied using the program of ABSCOR. The structures were solved using direct methods, which yielded the positions of all non-hydrogen atoms, and they were refined anisotropically. Hydrogen atoms were placed in calculated positions with fixed isotropic thermal parameters and included in the structure factor calculations in the final stage of full-matrix least-squares refinement. All calculations were performed using the SHELXTL system of computer programs. The unit cell volume included a large region of disordered solvent which could not be modelled as discrete atomic sites. The treatment for the guest molecules in the cavities of all crystals involves the use of the SQUEEZE program of PLATON. Crystal data and structure refinement parameters are summarized in Tables S1. Topology information for the JNU-200 was calculated by TOPOS 4.0.35.

Section 3. Crystallographic data

MOF	JNU-200 (as-	JNU-200 (ethanol	J-200 (ethanol JNU-200 '		
	synthesized)	exchanged)			
CCDC	2059809	2059810	59810 2059811		
number					
Empirical	C34.63H25.94C02.67	C32.15H22C02.64N2O C96H60C010I7.13		C96H66C09I3N6O3	
formula	$N_{2.88}O_{12}$	12.13	N ₆ O ₃₃	6	
Formula	831.86	786.00	3320.16	2790.56	
weight					
Crystal	hexagonal	hexagonal	hexagonal	hexagonal	
system	—	—			
Space group	<i>P</i> 62c	P62c	<i>P</i> 62c	<i>P</i> 62c	
a/ Å	15.20740(10)	15.0599(2)	15.3340(3)	15.1495(4)	
b/ Å	15.20740(10)	15.0599(2)	15.3340(3)	15.1495(4)	
c/ Å	32.4801(3)	32.6709(5)	32.2756(8)	32.4868(7)	
V/ Å ³	6505.16(10)	6417.1(2)	6573.8(2)	6457.1(3)	
α/°	90	90	90	90	
β/°	90	90	90	90	
γ/°	120	120	120	120	
Z	6	6	2	2	
$D_{\rm C}$ /g cm $^{-3}$	1.274	1.220	1.678	1.435	
μ /mm $^{-1}$	8.394	8.404	23.335	15.033	
λ / Å	1.54184	1.54184	1.54184	1.54184	
T/ K	100	100	100	100	
Reflections	21573	28872	24941	20918	
collected					
Independent	4001 [R _{int} =	4573 [R _{int} =	4282 [R _{int} =	4395 [R _{int} =	
reflections	0.0839]	0.0767]	0.0529]	0.0639]	
Goodness-of-	1.094	1.061	1.096	1.064	
fit on F ²					
$R_1^a, w R_2^b$	$R_1 = 0.1009, wR_2$	$R_1 = 0.0960, wR_2 =$	$R_1 = 0.1293,$	$R_1 = 0.1232, wR_2$	
$[I > 2\sigma(I)]$	= 0.2769	0.2616	$wR_2 = 0.3275$	= 0.2878	
R_1^a , wR_2^b (all	$R_1 = 0.1055, wR_2$	$R_1 = 0.1006, wR_2 =$	$R_1 = 0.1366,$	$R_1 = 0.1362,$	
data)	= 0.2836	0.2667	$wR_2 = 0.3361$	$wR_2 = 0.2975$	
Largest diff.	1.44/-0.94	1.96/-1.19	2.64/-1.67	2.88/-1.29	
peak and hole					
/e.Å -3					

Table S1. Crystal data and structure refinement for JNU-200 (as-synthesized), JNU-200 (ethanol exchanged), JNU-200' and JNU-200".

 $\overline{{}^{a}R_{1} = \Sigma ||F_{o}| - |F_{c}|| / \Sigma |F_{o}|}$

 ${}^{b} wR_{2} = \{ \Sigma[w (F_{o}^{2} - F_{c}^{2})^{2}] / [w (F_{o}^{2})^{2}] \} 1/2 , [F_{o} > 4\sigma (F_{o})]$

MOF	JNU-201	JNU-202		
CCDC number	2059813	2059814		
Empirical formula	C144H130.66C07N14O48.67	C74H62C04N7O25		
Formula weight	3248.43	1685.02		
Crystal system	monoclinic	monoclinic		
Space group	<i>I</i> 2/m	<i>P</i> 2/c		
a/ Å	15.9042(2)	20.5687(3)		
b/ Å	22.8367(5)	25.5953(3)		
c/ Å	27.9925(5)	9.06771(10)		
α/°	90	90		
β/°	97.024(2)	97.3041(11)		
γ/°	90	90		
V/ Å ³	10090.6(3)	4735.08(10)		
Ζ	2	2		
$D_{\rm C}$ /g cm $^{-3}$	1.069	1.182		
μ /mm $^{-1}$	4.956	5.960		
$\lambda / \text{\AA}$	1.54184	1.54184		
T/ K	100.01(15)	100.01(15)		
Reflections collected	25393	26223		
Independent reflections	10314	9608		
Goodness-of-fit on F ²	1.027	1.041		
$R_1^a, w R_2^b [I > 2\sigma (I)]$	$R_1 = 0.1092, wR_2 = 0.2850$	$R_1 = 0.0991, wR_2 = 0.2822$		
R_1^a , wR_2^b (all data)	$R_1 = 0.1127, wR_2 = 0.2879$	$R_1 = 0.1083, wR_2 = 0.2947$		
Largest diff. peak and hole /e.Å $^{-3}$	2.30/-0.93	1.71/-0.84		

 Table S2. Crystal data and structure refinement for JNU-201 and JNU-202.

 $a R_1 = \Sigma ||\mathbf{F}_0| - |\mathbf{F}_c|| / \Sigma |\mathbf{F}_0|$

 $^{b} wR_{2} = \{\Sigma[w (F_{o}^{2} - F_{c}^{2})^{2}]/[w (F_{o}^{2})^{2}]\} 1/2, [F_{o} > 4\sigma (F_{o})]$

Section 4. General characterizations

Fig. S9. High resolution XPS spectra of different elements in JNU-200.

Fig. S10. (a) The TGA of **JNU-200**, **JNU-200**' and **JNU-200**"; (b) In-situ variable-temperature PXRD (VT-PXRD) patterns of **JNU-200** under ambient conditions.

Section 5. Iodine adsorption

The iodine adsorption capacity, Q (g/g), was calculated using equation (1)

$$Q = \frac{W_1 - W_0}{W_0}$$
(1)

where W_1 and W_0 are the weights of **JNU-200** before and after iodine capture.²

The I_2 adsorption efficiency (%) was obtained by the equation (2)

Adsorption efficiency (%) =
$$\left(\frac{C_0 - C_t}{C_0}\right) \times 100\%$$
 (2)

where C_0 and C_t (ppm) are the initial and time (t) I₂ concentrations, respectively.

The adsorption amount at equilibrium (Q_e) was obtained by equation (3)

$$Q_e = \left(\frac{C_0 - C_e}{m}\right) \times V \tag{3}$$

where $Q_e \text{ (mg g}^{-1)}$ is the adsorbed amount at equilibrium; C_0 and $C_e \text{ (ppm)}$ are the initial and equilibrium I₂ concentrations; V(L) represents the volume of the I₂ solution, and m (g) is the mass of the MOF.

The adsorbed amount was calculated by equation (4)

$$Q_t = \left(\frac{C_0 - C_t}{m}\right) \times V \tag{4}$$

where $Q_t \text{ (mg g}^{-1)}$ is the adsorption capacity at time *t* (min); C_0 is the initial concentration of I₂, $C_t \text{ (ppm)}$ is the concentration of I₂ at time t, V (L) is the volume of the solution, and *m* (g) is the mass of the MOF.

Fig. S11. The setup for iodine vapor adsorption.

Fig. S12. SEM-EDS mapping and EDS spectra profiles of JNU-200 after iodine vapor adsorption.

MOFs	CCDC	P calcg	BET	Iodine	Iodine	Iodine	Test	Ref
	number	/cm ³	m^2/g	Uptake	Uptake	Uptake	conditions	
				(g/g)	(wt.%)	g/cm ³		
MOF-808	1002672	0.955	1930	2.18	218	2.08	$80\ \Box,I_2(g)$	2
HKUST-1	112954	0.958	1850	1.75	175	1.68	75 °C, $I_2(g)$	3
NU-1000	1459134	/	2126	1.45	145	/	$80\ \Box,I_2(g)$	2

Table S3. A summary of some representative materials for the iodine capture.

MOF-808-imidazole	/	/	1379	1.34	134	/	$80\ \Box,I_2(g)$	2
ZIF-8	602542	1.141	1630	1.25	125	1.43	77 I ₂ (g)	4
MFM-300(In)	/	/	1050	1.16	116	/	80 °C, I ₂ (g)	5
JNU-200	2059810	1.274	466	1.08	108	1.38	80 °C, I ₂ (g)	This
								Work
Zn ₃ (DL-lac) ₂ (pybz) ₂	745410	1.080	762.5	1	100	1.08	R.T. I ₂ (l)	6
NU-1000-imidazole	/	/	1475	0.91	91	/	$80\ \Box,\ I_2\ (g)$	2
MOF-808-pyridine	/	/	1198	0.89	89	/	$80\ \Box,\ I_2\ (g)$	2
MOF-867	968930	0.756	2403	0.88	88	0.665	$80\ \Box,\ I_2\ (g)$	2
NU-1000-pyridine	/	/	1386	0.71	71	/	$80\ \Box,\ I_2\ (g)$	2
AlOC-26-NC	2042202	1.049	508	0.71	70.1	0.745	$80^{\circ}C, I_{2}(g)$	7
UiO-66	733458	/	1072	0.66	66	/	$80\ \Box,\ I_2\ (g)$	2
AlOC-28-NC	2042204	1.312	/	0.621	62.1	0.815	$80^{\circ}C, I_{2}(g)$	7
Micro-Cu ₄ I ₄ -MOF	1413643	1.297	641	0.13	12.5	0.169	R.T. I ₂ (g)	8
$\{[(ZnI_2)_3(-TPT)_2]\cdot 5.5(C_6H_5NO_2)\}n$	187830	2.065	/	0.59	37.2	1.22	$80^{\circ}C, I_{2}(g)$	9
UiO-67	/	/	2638	0.53	53	/	$80\ \Box,\ I_2\ (g)$	2
Aloc-27-NC	2042203	1.140	285	0.503	50.3	0.604	$80^{\circ}C, I_{2}(g)$	7
Th-SINAP-8	1960537	1.251	650	0.473	47.3	0.592	I ₂ (l)	10
SBMOF-2	1039469	1.192	195	0.427	42.7	0.509	$25\ \Box,\ I_2\ (g)$	11
Th-SINAP-8	1960537	1.251	650	0.325	32.55	0.407	$I_2(g)$	10
$\{[Co_3(BTC)_2(TIB)_2(H_2O)_2]\cdot (H_2O)_6\}n$	977332	1.620	/	0.279	27.9	0.452	$80^{\circ}C, I_{2}(g)$	12
Th-SINAP-7	1960536	1.818	426	0.258	25.8	0.469	I ₂ (l)	10
JNU-200	2059810	1.274	446	0.256	25.6	0.326	I ₂ (l)	This
								Work
SBMOF-1	891520	1.624	145.15	0.226	22.6	0.367	$25\ \Box,I_2(g)$	11
Th-SINAP-7	1960536	1.818	426	0.107	10.7	0.195	I ₂ (g)	10
Zn-BTC	1962948	0.987		0.2	20	0.197	I ₂ (g)	13

Fig. S13. UV-visible absorption spectra of hexane solutions (4 mL) of iodine at different concentrations after the addition of 4 mg JNU-200 for 24 h.

Fig. S14. SEM-EDS mapping and EDS spectra profiles of JNU-200 after iodine absorption from a hexane solution.

Fig. S15. UV-Vis absorption standard curve for iodine in hexane solution.

Fig. S16. Iodine adsorption kinetics of JNU-200 in hexane solutions.

Fig. S17. (a) The change curve of Q_t with time; (b) Kinetic adsorption curves of the pseudo-second-order model for iodine adsorption of JNU-200 in hexane solution.

Fig. S18. PXRD patterns of JNU-200 before and after iodine vapor adsorption.

Fig. S19. FT-IR spectra of (a) H₄BTTB, JNU-200 and (b) JNU-200, JNU-200", JNU-200'.

Fig. S20. High-resolution XPS spectra of different elements in JNU-200'.

Fig. S21. High-resolution XPS spectra of different elements in JNU-200".

Fig. S22. High-resolution XPS spectra of different elements in JNU-200'-EtOH.

	JNU-200	JNU-200'	JNU-200"	JNU-200'- EtOH
Со	802.29, 797.47 796.39, 785.46 781.68, 780.76,	802.55, 798.36, 797.04, 785.99, 782.77, 781.29	802.38, 797.68 796.60, 785.69 782.66, 781.17	802.28, 797.65 796.65, 785.71 782.42, 781.18
I	/	630.63, 619.63, 619.18, 631.37	630.63, 619.54, 619.03, 631.85	630.65, 620.95, 619.33, 631.81
С	290.28, 288.64, 284.88, 286.04	290.49, 288.59 284.78, 285.45	290.93, 288.52, 284.72, 285.26	290.90, 288.56 284.77, 285.66
Ν	399.36, 400.61	399.14, 400.00	399.13, 400.13	399.21, 400.63
0	531.65, 532.37	531.91, 533.47	531.75, 533.15	531.75, 532.74
Co ³⁺ /Co ^{2+ a}	0.4325	1.5885	0.6816	0.64

Table S4. XPS data for JNU-200, JNU-200', JNU-200" and JNU-200'-EtOH.

" According to Co(III) 2p_{3/2} and Co(II) 2p_{3/2} peak areas.

Fig. S23. Supramolecular interactions between iodine and framework (a) and (b) the distance between iodine and BTTB in the channel is 4.28 Å ($I \cdots \pi$ supramolecular interactions, dashed black line; white, dummy atom), (c) and (d) the I_3^- connected on the Co-O cluster, where the distance of C-H···I are 2.62 Å, 3.23 Å and 3.30 Å (dashed black lines), respectively; Crystal structures of JNU-200" in viewed along [001] direction in the (e) ball-and-stick and (f) space-filling model; sky blue for Co, red for O, gray for C, and blue for N.

Fig. S24. (a) **JNU-200** suspension excited at 365 nm with or without His; (b) Concentrationdependent emission spectra of THF/H₂O suspensions of **JNU-200** (4 mg/100 mL) upon incremental addition of His under 365 nm excitation. (c) Luminescence emission spectra of THF/H₂O suspensions of **JNU-200** (4 mg/100 mL) in the presence of different amino acids (1.0 mM) under 365 nm excitation.

Fig. S25. Luminescence spectra of **JNU-200** suspensions upon the addition of His in the presence of seven amino acids (X = Ala, Phe, Pro, Val, Met, Gly, and Ser, 0.1 mM for each amino acid) under 365 nm excitation.

Fig. S26. Concentration-dependent UV-Visible absorption spectra of THF/H₂O suspensions of **JNU-200** at different concentrations under 365-nm excitation.

- G. E. Kostakis, S. P. Perlepes, V. A. Blatov, D. M. Proserpio and A. K. Powell, *Coord. Chem. Rev.*, 2012, 256, 1246-1278.
- P. Chen, X. H. He, M. B. Pang, X. T. Dong, S. Zhao and W. Zhang, ACS Appl. Mater. Interfaces, 2020, 12, 20429-20439.
- D. F. Sava, K. W. Chapman, M. A. Rodriguez, J. A. Greathouse, P. S. Crozier, H. Zhao, P. J. Chupas and T. M. Nenoff, *Chem. Mater.*, 2013, 25, 2591-2596.
- D. F. Sava, M. A. Rodriguez, K. W. Chapman, P. J. Chupas, J. A. Greathouse, P. S. Crozier and T. M. Nenoff, *J. Am. Chem. Soc.*, 2011, **133**, 12398-12401.
- X. Zhang, I. da Silva, H. G. W. Godfrey, S. K. Callear, S. A. Sapchenko, Y. Cheng, I. Vitorica-Yrezabal, M. D. Frogley, G. Cinque, C. C. Tang, C. Giacobbe, C. Dejoie, S. Rudic, A. J. Ramirez-Cuesta, M. A. Denecke, S. Yang and M. Schroder, *J. Am. Chem. Soc.*, 2017, 139, 16289-16296.
- 6. Z. M. H, Q. X. Wang, Y. X. Tan, S. Hu, H. X. Zhao, L. S. Long and M. Kurmoo, J. Am. Chem.

Soc., 2010, **132**, 2561–2563

- 7. S. Yao, W. H. Fang, Y. Sun, S. T. Wang and J. Zhang, J. Am. Chem. Soc., 2021, DOI: 10.1021/jacs.0c11778.
- 8. N. X. Zhu, C. W. Zhao, J. C. Wang, Y. A. Li and Y. B. Dong, *Chem Commun (Camb)*, 2016, **52**, 12702-12705.
- G. Brunet, D. A. Safin, M. Z. Aghaji, K. Robeyns, I. Korobkov, T. K. Woo and M. Murugesu, *Chem. Sci.*, 2017, 8, 3171-3177.
- Z. J. Li, Z. H. Yue, Y. Ju, X. L. Wu, Y. M. Ren, S. F. Wang, Y. X. Li, Z. H. Zhang, X. F. Guo, J. Lin and J. A. Wang, *Inorg. Chem.*, 2020, **59**, 4435-4442.
- 11. D. Banerjee, X. Chen, S. S. Lobanov, A. M. Plonka, X. Chan, J. A. Daly, T. Kim, P. K. Thallapally and J. B. Parise, *ACS Appl. Mater. Interfaces*, 2018, **10**, 10622-10626.
- 12. Y. Rachuri, K. K. Bisht and E. Suresh, Cryst. Growth Des., 2014, 14, 3300-3308.
- 13. A. Sarkar, A. Adhikary, A. Mandal, T. Chakraborty and D. Das, *Cryst. Growth Des.*, 2020, **20**, 7833-7839.