Construction of Supramolecular-Polymer Hydrogel Electrolyte with Ionic Channels for Flexible Supercapacitors

Kun-Peng Wang^a, Ye Yang^a, Qi Zhang^{*a}, Zhenyu Xiao^a, Lingbo Zong^a, Tetsu

Ichitsubo^b and Lei Wang^{*a}

^{*a*} State Key Laboratory Base of Eco-Chemical Engineering, Taishan Scholar

Advantage and Characteristic Discipline Team of Eco Chemical Process and

Technology, College of Chemistry and Molecular Engineering, Qingdao University of

Science and Technology, Qingdao 266042, China.

E-mail: <u>zhangqi@qust.edu.cn</u> (Qi Zhang), <u>inorchemwl@126.com</u> (Lei Wang). ^b Institute for Materials Research, Tohoku University Collaborative Research Center on Energy Materials, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan.

Experimental Materials

All the following chemical reagents were used without further purification. Poly (vinyl Alcohol) (n=approx. 1700 degree of saponification 97.0 to 100.0 mol % Aladdin Co., Japan), 2-Amino-9-beta-D-ribofuranosyl-9H-purine-6-(1H)-one hydrate (guanosine, Energy Chemical Co., China), KOH (Sinopharm Chemical Reagent Co., China), H₃BO₃ (Tianjin Beichen Fangzheng Chemical Reagent Factory Co., China), AC (Activated carbon, Nanjing XFNANO Co., China), PTFE (polytetrafluoroethylene D210C DAIKIN Co., Japan).

Preparation of original PVA gel and PVA-GB gel

Typically, the PVA hydrogel was prepared by dissolving 0.15 g PVA into 3 mL distilled water with stirring at 90 °C to form a clear solution. After cool the solution to room temperature, 1 mL KOH (10.7 M) solution was added to the solution drop by drop under stirring. The mixture was placed at room temperature for 72 h to form the original PVA hydrogel.

For the PVA-GB hydrogel, firstly, a certain quality of guanosine (0, 56, 112, 168 mg) and an appropriate amount of KOH (0.6 mM) and H₃BO₃ (1.9 mM) was dissolved in 4 mL deionized water. The mixture was ultrasound 30 s and heated to 90 °C to form a transparent solution. Then, mixing the hot solution with the above fresh PVA solution quickly to form a homogeneous mixture. Pour the mixed solution into a PTFE mold and let it polymerize spontaneously at room temperature for 24 hours to get the PVA-GB hydrogel.

Construction of all-solid-state SCs device

For the construction of the symmetric quasi-solid-state SCs device, active carbon (AC) serves as the positive and negative electrodes. The AC electrode material was prepared by mixing AC (80 mg, 80 wt%), carbon black (10 mg, 10 wt%), PTFE (10 mg, 10 wt%) and a few drops of ethanol to form a mixture slurry. Then, the as-prepared slurry was dried at 70 °C under vacuum for 12 h to remove the solvent. Finally, the dried slurry was pressed on NF with a mass loading of 2 mg. The device was assembled by employing the PVA-GB gel as electrolyte and separator between two AC electrodes

to form a sandwich structure.

Characterizations

Fourier transform infrared spectroscopy (FTIR) tests were performed on a Thermo Scientific Nicolet IS 50 spectrometer in the wavelength range of 4000-400 cm⁻¹. The crystalline structures were analyzed by X-ray diffraction patterns (XRD, Rigaku Dmaxrc diffractometer with Cu Ka radiation at $\lambda = 1.541$ Å). The water content of the samples were examined using Thermogravimetric Analyzer (TG 209 F3, Netzsch). The Morphologies of samples were studied by scanning electron microscopy (SEM, Hitachi S-4800). All the electrochemical measurements were carried out at room temperature on a CHI760E electrochemical working station (Chenhua, Shanghai). LAND cycler (Land Electronic, Wuhan) was employed for electrochemical tests. Then the specific capacitance (C and Cs, F g⁻¹), energy density (E, Wh kg⁻¹) and power density (P, W kg⁻¹), were according to the following equation.

$$C = \frac{I \times \Delta t}{\Delta V}$$
$$Cs = 4 \times C$$
$$E = \frac{C \times \Delta V^2}{7.2}$$
$$P = \frac{3600 \times E}{\Delta t}$$

Electrolytes	Ionic conductivity/ mS • cm ⁻¹	References
PVA/CH ₃ COONH ₄ /BmImBr	9.29±0.1	1
PVAG1.0N0.8	62.26	2
PVA-g-PAA/KCl	41	3
PVA-BMIMCl-Li ₂ SO ₄	37	4
B-PVA/KCl/GO	47.5	5
PPDE-LiCl-EV	20	6
AG/PAAm/LiCl	13 ± 0.8	7
PVA-H ₂ SO ₄ -ARS	33.3	8
PVDF-HFP/IL/DPA/KI	4.52	9
PKF4	45.56	10
PVA-LiClO ₄	31.3	11
PVA-H ₂ SO ₄ -IC	20.07	12
HA-GPE	74.1	13
PVA-Li ₂ SO ₄ -BMIMCl	46	14
PVA-GB	70	This work

Table S1. The σ of other previous reports based on hydrogel electrolyte

Figure S1. The XRD patterns of PVA-GB hydrogel with different contents G.

Figure S2. The rate performance of the device with PVA-GB (112 mg G) as the electrolyte at a wide range of current densities.

Figure S3. The CV curves at 100 mV s $^{-1}$ with different voltage ranges from 0 \sim 0.8 V to 0 \sim 1.6 V.

Figure S4. The GCD curves with different voltage ranges at 1 A g⁻¹.

Figure S5. The specific capacitance of the device with different voltage ranges at 1 A g⁻¹: $0 \sim 0.8$ V, $0 \sim 1.0$ V, $0 \sim 1.2$ V, $0 \sim 1.4$ V and $0 \sim 1.5$ V.

Figure S6. the cycle stability of the PVA hydrogel electrolyte-based device

Figure S7. The Nyquist plots after different cut-healing cycles.

Figure S8. The ionic conductivity after different cut-healing cycles.

Figure S9. The capacitance retention of the device after different bending times.

Supporting References

1 C. W. Liew, S. Ramesh and A. K. Arof, Characterization of ionic liquid added PVA-based proton conducting polymer electrolytes and electrochemical studies on the supercapacitors, *International Journal of Hydrogen Energy*, 2015, **40**, 852–862.

2 S. Peng, X. Jiang, X. Xiang, K.Chen, G. Chen, X. Jiang and L. Hou, High-performance and flexible solid-state supercapacitors based on high toughness and thermoplastic PVAGN supramolecular gel polymer electrolyte, *Electrochim. Acta*, 2019, **24**, 134874.

3 Z. Wang, F. Tao and Q. Pan, A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors, *J. Mater. Chem. A*, 2016, **4**, 17732–17739.

4 X. Zhang, L. Wang, J. Peng, P. Cao, X. Cai, J. Li and M. Zhai, A flexible ionic liquid gelled PVA-Li₂SO₄ polymer electrolyte for semi-solid-state supercapacitors, *Adv. Mater. Interface*, 2015, **2**, 1500267.

5 H. Peng, Y. Lv, G. Wei, J. Zhou, X. Gao, K. Sun, G. Ma and Z. Lei, A flexible and self-healing hydrogel electrolyte for smart supercapacitor, *J. Power Sources*, 2019, **431**, 210–219.

6 S. E. Hyeon, J. Y. Seo, J. W. Bae, W. J. Kim and C. H. Chung, Faradaic reaction of dual-redox additive in zwitterionic gel electrolyte boosts the performance of flexible supercapacitors, *Electrochim. Acta*, 2019, **319**, 672–681.

7 L. Feng, Z. Cai, Z. Ding, T. Chen, J. Zhang, F. Chen, J. Shen, F. Chen,
R. Li, X. Zhou and Z. Xie, Skin-inspired surface-microstructured tough
hydrogel electrolyte for stretchable supercapacitors, *ACS Appl. Mater*. *Interfaces*, 2019, 11, 21895–21903.

8 K. Sun, F. Ran, G. Zhao, Y. Zhu, Y. Zheng, M. Ma, X. Zheng, G. Ma and Z. Lei, High energy density of quasi-solid-state supercapacitor based on redox-mediated gel polymer electrolyte, *RSC Adv.*, 2016, **6**, 55225–55232.

9 N. Yadav and S. A. Hashmi, Energy enhancement of quasi-solid-state supercapacitor based on non-aqueous gel polymer electrolyte via synergistic effect of dual redox-additives diphenyl amine and potassium iodide, *J. Mater. Chem. A*, 2020, **8**, 18266–18279.

10 G. Ma, J. Li, K. Sun, H. Peng, J. Mu and Z. Lei, High performance solidstate supercapacitor with PVA-KOH- K_3 [Fe (CN)₆] gel polymer as electrolyte and separator, *J. Power Sources*, 2014, **256**, 281-287.

11 P. A. Le, V. T. Nguyen, P. J. Yen, T. Y. Tseng and K. H. Wei, A new redox phloroglucinol additive incorporated gel polymer electrolyte for flexible symmetrical solid-state supercapacitors, *Sustainable Energy & Fuels*, 2019, **3**, 1536–1544.

12 G. Ma, M. Dong, K. Sun, E. Feng, H. Peng and Z. Lei, A redox mediator doped gel polymer as an electrolyte and separator for a high performance solid state supercapacitor, *J. Mater. Chem. A*, 2015, **3**, 4035–4041.

13 R. Na, Y. Liu, N. Lu, S. Zhang, F. Liu and G. Wang, Mechanically robust hydrophobic association hydrogel electrolyte with efficient ionic transport for flexible supercapacitors, *Chem. Eng. J.*, 2019, **374**, 738–747. 14 Q. Tu, L. Fan, F. Pan, J. Huang, Y. Gu, J. Lin, M. Huang, Y. Huang and J. Wu, Design of a novel redox-active gel polymer electrolyte with a dual-role ionic liquid for flexible supercapacitors, *Electrochim. Acta*, 2018, **268**, 562–568.