1 Layered Tungsten-Based Composites and Their Pseudocapacitive and Electrocatalytic Performance

- 2 Oluwafunmilola Ola^a*, Kunyapat Thummavichai^b, Yu Chen^c, Nannan Wang^b, Qijian Niu^d, Jiaao Wang^e
- 3 Shibin Sun^f and Yanqiu Zhu^c

⁴ ^aFaculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, United
⁵ Kingdom

- ⁶ ^bGuangxi Institute Fullerene Technology (GIFT), Key Laboratory of New Processing Technology for
- 7 Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and 8 Materials, Cuangyi University, Napping, E20004, China
- 8 Materials, Guangxi University, Nanning, 530004, China
- 9 College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, UK
- 10 dSchool of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
- 11 eSchool of Material Science and Engineering, University of Jinan, Jinan, 250022, China
- 12 ^fCollege of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China

13 *Corresponding author. Tel: +44 1157 487264. E-mail: Oluwafunmilola.Ola1@nottingham.ac.uk

14 Supporting Information:

- 15 Table S1: Summary of atomic percentage of all samples based on the intensities of W 4f, S 2p, N 1s, C
- 16 1s and O 1s determined by XPS analysis.

Samples	Surface composition (Atomic %)					Atomic ratio			
	W 4f	S 2p	N 1s	O 1s	C 1s	N 1S/	N (C=N-C)/	W 4f/	WO ₃
						C 1s	N-(C)₃	S 2p	1
									WS ₂
WS_400	0.85	0.43	17	9.74	71.98	0.24	1.99	1.98	4.62
WS_600	1.18	1.01	11.78	11.35	74.68	0.16	1.78	1.17	1.35
WS_800	0.55	0.21	4.11	31.91	63.22	0.08	0.73	2.61	1.19

17

18 Table S2: Performance comparison of different tungsten-based supercapacitors.

Electrode materials	Specific capacitance (F g ⁻¹)	Performance retention (%)	Reference
W ₂ C/WS ₂	1018	94% @ 5000 cycles	[26]
WS ₂ @NiCo ₂ O ₄	770	86% @ 5000 cycles	[27]
WS ₂ QDs	457	81% @ 8000 cycles	[29]
WS ₂ /PEDOT	71	90.7% @ 5000 cycles	[28]
WS ₂ /ACF	238	90.5% @ 1000 cycles	[30]
WC@GNF	1010	106% @ 2000 cycles	[32]
WNFs-3	588	95.5% @ 5000 cycles	[31]
WS_600	1156	82% @ 10,000 cycles	This work

19

21 Table S3: Comparison of the HER performance for different tungsten-based electrodes.

Electrode	Electrolyte	Potential at -10 mA cm ⁻²	Tafel slope	Referenc
materials	concentration	(V vs. RHE)	(mV dec⁻¹)	е
	(mol L ⁻¹)			
W ₂ C/WS ₂	0.5M H ₂ SO ₄	0.130	70	[26]
20WZ-800	0.5M H ₂ SO ₄	0.250	64	[34]
WS ₂	0.5M H ₂ SO ₄	0.125	60	[35]
W-CoP	0.5M H ₂ SO ₄	0.048	56	[36]
Pt/def-WO₃@CFC	0.5M H ₂ SO ₄	0.042	60	[37]
WO _x S _y	0.5M H ₂ SO ₄	0.103	54	[38]
20% WSx@OMC	0.5M H ₂ SO ₄	0.213	74	[1]
WS_600	0.5M H ₂ SO ₄	0.170	59	This work

25 Figure S1: Low magnification SEM images of WS_400 (a, c), and WS_600 (b, d).

28 Figure S2. (a) Nitrogen adsorption-desorption isothermal curves of of WS_2 -g-C₃N₄ composites and (b)

29 pore size distribution of WS_600.

33 Figure S3. (a) XPS survey spectrum of the WS_600 and (b) C 1s spectra of WS₂ - $g-C_3N_4$ composites.

35 Figure S4. Ratio of different nitrogen types determined from XPS analysis

Figure S5. Electrochemical characterization (a) CV curves at various scan rates of WS_800 from 10 to 100 mV s⁻¹, (b) Galvanostatic charge discharge curves of WS_800 at different current densities, c) CV curves at various scan rates of WS_400 from 10 to 100 mV s⁻¹ and (d) Galvanostatic charge discharge curves of WS_400 at different current densities.

42

43 Figure S6. Nyquist plots of WS_600 before and after 5000 cycles with the corresponding equivalent 44 circuit inset (R_{ct} - charge transfer resistance, C_{DL} - electrical double-layer capacitance, R_s - solution

- 45 resistance, W Warburg impedance and C_F Faradaic capacitance).
- 46
- 47