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Fig. S1. (a,b) SEM images of ZnO precursor-NF. Digital images of (c) bare Ni foam, 

(d) ZnO precursor-NF, and (e) ZnO-NF.
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Fig. S2. SEM image of Na-NF.
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Fig. S3. High-resolution (a) Zn 2p and (b) O 1s XPS spectra of ZnO-NF.
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Fig. S4. Galvanostatic stripping voltage profile of Na-Zn-NF. The current density was 

1 mA cm−2 and the cut-off voltage was 1.0 V.
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Fig. S5. (a,b) Enlarged voltage profiles of the Na-Zn-NF, Na-NF, and bare Na 

symmetric cells at a current density of 1 mA cm−2 with a capacity of 1 mAh cm−2. 

Enlarged voltage profiles of the Na-Zn-NF and bare Na symmetric cells (c,d) at a 

current density of 2 mA cm−2 with a capacity of 2 mAh cm−2 and (e,f) at a current 

density of 3 mA cm−2 with a capacity of 1 mAh cm−2.
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Fig. S6. F 1s, S 2p, C 1s, and O 1s XPS spectra of the cycled Na-NF before (0 s) and 

after etching for 50 s and 100 s.
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Fig. S7. F 1s, S 2p, C 1s, and O 1s XPS spectra of the cycled bare Na before (0 s) and 

after etching for 50 s and 100 s.
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Fig. S8. (a) XRD pattern and (b) SEM image of NaTi2(PO4)3/C. (c) XRD pattern and 

(d) SEM image of Na4Fe3(PO4)2(P2O7)/C.
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Fig. S9. SEM images of the Na-Zn-NF after 1000 cycles and the bare Na after 600 

cycles in full cells.
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Fig. S10. Equivalent circuits used to fit the Nyquist plots of the Na-Zn-NF, Na-NF, and 

bare Na symmetric cells (a) before and (b) after 50 cycles.
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Table S1. Masses of ZnO-NF, Na-Zn-NF, and Na in Na-Zn-NF. Three representative 

groups of samples are selected.

ZnO-NF Na-Zn-NF Na in Na-Zn-NF
Sample 1 53.1 mg 102.4 mg 49.3 mg
Sample 2 53.4 mg 103.1 mg 49.7 mg
Sample 3 53.3 mg 102.7 mg 49.4 mg
Average 53.3 mg 102.7 mg 49.5 mg
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Table S2. Comparison of cycling performance between Na-Zn-NF and other state-of-

the-art Na metal anodes.

Materials Capacity 
(mAh 
cm−2)

Current 
density 

(mA cm−2)

Cycles Time 
(h)

Electrolyte Ref. 

1 1 > 1000 > 2000
Na-Zn-NF

2 2 > 550 > 1100
1 M NaCF3SO3 

in diglyme
This 
work

Na carbonized 
wood

1 1 > 250 > 500
1 M NaClO4 
in EC/DEC

1

Na/Ni foam 1 1 > 300 > 600
1 M NaPF6 in 

DEGDME
2

Na@oxygen-
treated Cu foam

1
1

0.5
1

> 100
> 100

> 400
> 200

1 M NaClO4 in 
EC/DEC

3

Na/3D flexible 
carbon Felt

2 1 > 120 > 480
1 M NaClO4 in 

EC/PC
4

Na@CP-NCNTs
1
1

1
3

> 175
> 270

> 350
> 180

1 M NaPF6 in 
EC/PC

5

Na-carbon cloth
composite

1 1 > 100 > 200
1 M NaCF3SO3 

in DME
6

Na-carbon fiber 1 0.5 > 150 > 300
1 M NaClO4 in 
EC/DMC/EMC 
with 5% FEC

7

Na-Sn alloy/Na2O
1
1

1
2

> 350
> 500

> 700
> 500

1 M NaCF3SO3 
in diglyme

8

Na-Na2S-
carbonized tissue 
paper

0.5 1 > 300 > 300
NaClO4 in 

EC/DEC with 
10% FEC

9
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Table S3. Percentages of F, S, C, and O elements detected at different depths of SEI 

films on the cycled Na-Zn-NF, Na-NF, and bare Na.

Percentages (%)
Electrodes Etching time (s)

F S C O
Na-Zn-NF 0

50
100

11.82
9.49
9.82

3.30
3.22
3.11

16.70
13.20
12.31

68.18
74.09
74.76

0
50

Na-NF

100

11.98
11.47
12.48

2.77
2.65
2.74

19.28
15.21
13.92

65.97
70.67
70.86

0
50

Bare Na

100

13.93
14.14
15.45

2.87
3.04
2.92

18.84
14.57
13.13

64.36
68.25
68.50
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