Supporting Information

Zn alloyed MAPbBr₃ crystals for improved thermoelectrics and photocatalyst

Zhanwei Zhou^a, Jiuyuan Xu^a, Yuxuan Liu^b, Wei Chen^a, Hengyang Zhang^c, Qun Wang^{c*}

^aBeijing Satellite Manufacturing Co., Ltd, ^bAerospace Dong fang hong Satellite Co.,Ltd, Beijing 100194 China, ^cSchool of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China

E-mail:wangqun5992@hit.edu.cn;

Fig. S1 a) XRD patterns and b) zoomed-in XRD peaks of different Zn:Pb molar ratios of the precursors.

Fig. S2 Digital photographs of the orange-red color MAPbBr₃ and orange Zn-MAPbBr₃ powder samples and their band gap values from Tauc plots.

Fig. S3 XRD patterns of MAPbBr₃ and Zn-MAPbBr₃ after 3 weeks indicating no appreciable change in the crystal structure.

Fig. S4 (a, b) Schematic photocatalytic reaction cycle stability after the 1 st and 5th reaction cycle and the removal of MG still remain ~92%.

Fig. S5 (a, b) FTIR spectra of IPA solvent and Zn-MAPbBr₃ sample for different time, showing no evident change for solvent and catalyst.