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1. Experimental Section: 

Synthesis of PNMA and CPNMA: The nanostructured poly N-methylaniline (PNMA) was 

synthesized using the interfacial polymerization technique described in the literature.15 The 

monomer N-methylaniline (0.4 mol) was dissolved in 100 mL water containing 1.0 g of poly 

(methyl vinyl ether-alt-maleic acid) by vigorous handshaking then cool it to 2 to 5 ◦C. After that, 

0.6 molar 100 ml aqueous solution of pre-cooled ammonium persulfate was added slowly to the 

monomer solution under magnetic stirring condition and reaction still continued for another 30 

min. In the course of the reaction, the temperature was kept at 0-5 °C using an ice bath. Then the 

reaction mixture was kept in a refrigerator for about 24 h for completion of the reaction. Then the 

final precipitated PNMA was separated using a centrifuge and washed with a large amount of 

water and finally using ethanol. To obtain the CPNMA materials we have carbonized as-

synthesized solid dry PNMA using a tube furnace at different temperatures such as 800, 900, and 

1000 °C under N2 gas flow atmosphere. The 5°C/min. temperature ramp was used to reach the 

targeted carbonization temperature and then kept another 2 h at final temperature.  

Characterization: All the FE-SEM images were taken using a Zeiss Sigma FE-SEM operating at 

an accelerating voltage of 5 kV. Prior to the capture of the FE-SEM images, all the carbon samples 

and polymer were dispersed in ethanol then drop casted on the cleaned silicon substrate and dried 

at 60 °C. All the dried samples were then coated with platinum (~ 2 nm) by sputtering a Hitachi 

S-2030 ion coater. TEM and HR-TEM images of the CPNMA-1000 sample were taken using 

JEOL JEM-2100 operated at 200 kV. The CPNMA-1000 sample was dispersed in ethanol by bath 

sonication then drop cast on a standard carbon-coated copper grid and dried at 60 °C. Powder XRD 

and Raman spectra of all the solid CPNMA samples were taken at room temperature using a 

MiniFlex 600, Rigaku, with Cu-Kα radiation and WITec alpha 300RA Raman Confocal 

Microscope with 532 nm diode laser respectively. The XPS data of all the CPNMA samples were 

obtained using SPECS HSA3500 hemispherical analyzer with a monochromatic Al-Kα x-ray 

source. The nitrogen gas adsorption–desorption isotherms of CPNMA-1000, CPNMA-900, and 

CPNMA-800 together with PNMA were measured using Quantachrome Nova1000e Instrument at 

liquid nitrogen temperature 77.35 K. All cyclic voltammetry and chronopotentiometry data were 

collected using Gamry interface 1000 electrochemical analyzer within the potential range from 0 

to -1.0 V (vs. Ag/AgCl) in 2 M KOH electrolyte solution. All CPNMA modified electrodes were 

prepared by casting a slurry of CPNMA samples on the cleaned Nickel foam. The high viscus 
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slurry was prepared by dispersing 8 mg CPNMA and 1.0 mg PVDF in 350 µl water–isopropanol 

(3: 1) solvent containing 50 µl nafion (5 %). All the oxygen reduction reaction experiments were 

conducted using the Autolab instrument model number PGSTAT-M204. Prior to each 

measurement, 0.1 M KOH electrolyte was saturated with oxygen. The rotating disk electrode 

(RDE) was modified using an ink which is consists of CPNMA samples. The ink was prepared by 

taking 5 μL nafion solution (5 %) and CPNMA in a 95 mL water-ethanol (3:1) mixture and applied 

1 h bath sonication 

The kinetics of the ORR can be described by using Koutecky-Levich (K-L) equation 1 below.   
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Where J, JK and JL are the measure current density, the kinetic and diffusion-limiting current 

density of the electrode. The angular velocity of the disk is ω (ω = 2πN, N is the linear rotation 

speed), n is the number of electrons transferred in oxygen reduction at the cathode, F is the Faraday 

constant (F = 96485 Cmol−1), C0 is the bulk concentration of oxygen (C0 = 1.2 × 10−3 mol L−1), ν 

is the kinematic viscosity of the electrolyte (ν = 0.1 m2 s−1), diffusion coefficient D0 (1.9 × 10−5 

cm s−1), and K is the electron transfer rate constant. All the parameters are valid when we have 

performed ORR in 0.1 M KOH as an electrolyte. 
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2. Table S1: Nitrogen adsorption-desorption results of all the CPNMA samples  
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3. Table S2: Various nitrogen doped carbon synthesis and comparison their specific surface 

area and total atomic percentage of doped-nitrogen 
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4. Table S3: ORR results of all the CPNMA samples obtained from LSV data taken using RDE 

at a rotating speed of 1600 rpm 
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5. Table S4: Various nitrogen-doped carbon and comparison their specific ORR activity 
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6. Table S5: Various carbon materials and comparison their specific capacitance 
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7. SEM images of PNMA and CPNMA-1000 

 

Figure S1: FESEM images of PNMA (a, b) and CPNMA-1000 (c, d) 
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8. The SEM images of CPNMA-900 and CPNMA-800 

 

Figure S2: SEM images of CPNMA-900 and CPNMA-800 samples 
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9. Nitrogen adsorption-desorption plot 

 

Figure S3: Nitrogen adsorption-desorption isotherm (a) and pore diameter distribution (b) of 

CPNMA carbons 
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10. XPS survey plot 

 

 

Figure S4: XPS survey plot of CPNMA samples 
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11. Percentage of graphitic nitrogen vs carbonization temperature plot 

 

Figure S5: Atomic % of various nitrogen species vs carbonization temperature plot 
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12. Deconvolution plot of O1s XPS spectra 

 

Figure S6: Deconvolution of high resolution O1s XPS spectra of (a) CPNMA-1000, (b) 

CPNMA-900) and (c) CPNMA-800 respectively 
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13. LSV and K-L plot 

 

Figure S7: (a, c) LSV plot and (b, d) corresponding K-L plot of CPNMA-900 and CPNMA-800 

respectively 
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