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1. Experimental Section:

Synthesis of PNMA and CPNMA: The nanostructured poly N-methylaniline (PNMA) was
synthesized using the interfacial polymerization technique described in the literature.”® The
monomer N-methylaniline (0.4 mol) was dissolved in 100 mL water containing 1.0 g of poly
(methyl vinyl ether-alt-maleic acid) by vigorous handshaking then cool it to 2 to 5 "C. After that,
0.6 molar 100 ml aqueous solution of pre-cooled ammonium persulfate was added slowly to the
monomer solution under magnetic stirring condition and reaction still continued for another 30
min. In the course of the reaction, the temperature was kept at 0-5 °C using an ice bath. Then the
reaction mixture was kept in a refrigerator for about 24 h for completion of the reaction. Then the
final precipitated PNMA was separated using a centrifuge and washed with a large amount of
water and finally using ethanol. To obtain the CPNMA materials we have carbonized as-
synthesized solid dry PNMA using a tube furnace at different temperatures such as 800, 900, and
1000 °C under N2 gas flow atmosphere. The 5°C/min. temperature ramp was used to reach the

targeted carbonization temperature and then kept another 2 h at final temperature.

Characterization: All the FE-SEM images were taken using a Zeiss Sigma FE-SEM operating at
an accelerating voltage of 5 kV. Prior to the capture of the FE-SEM images, all the carbon samples
and polymer were dispersed in ethanol then drop casted on the cleaned silicon substrate and dried
at 60 °C. All the dried samples were then coated with platinum (~ 2 nm) by sputtering a Hitachi
S-2030 ion coater. TEM and HR-TEM images of the CPNMA-1000 sample were taken using
JEOL JEM-2100 operated at 200 kV. The CPNMA-1000 sample was dispersed in ethanol by bath
sonication then drop cast on a standard carbon-coated copper grid and dried at 60 °C. Powder XRD
and Raman spectra of all the solid CPNMA samples were taken at room temperature using a
MiniFlex 600, Rigaku, with Cu-Ka radiation and WITec alpha 300RA Raman Confocal
Microscope with 532 nm diode laser respectively. The XPS data of all the CPNMA samples were
obtained using SPECS HSA3500 hemispherical analyzer with a monochromatic Al-Ka x-ray
source. The nitrogen gas adsorption—desorption isotherms of CPNMA-1000, CPNMA-900, and
CPNMA-800 together with PNMA were measured using Quantachrome Noval000e Instrument at
liquid nitrogen temperature 77.35 K. All cyclic voltammetry and chronopotentiometry data were
collected using Gamry interface 1000 electrochemical analyzer within the potential range from 0
to -1.0 V (vs. Ag/AgCI) in 2 M KOH electrolyte solution. All CPNMA modified electrodes were
prepared by casting a slurry of CPNMA samples on the cleaned Nickel foam. The high viscus
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slurry was prepared by dispersing 8 mg CPNMA and 1.0 mg PVDF in 350 ul water—isopropanol
(3: 1) solvent containing 50 ul nafion (5 %). All the oxygen reduction reaction experiments were
conducted using the Autolab instrument model number PGSTAT-M204. Prior to each
measurement, 0.1 M KOH electrolyte was saturated with oxygen. The rotating disk electrode
(RDE) was modified using an ink which is consists of CPNMA samples. The ink was prepared by
taking 5 puL nafion solution (5 %) and CPNMA in a 95 mL water-ethanol (3:1) mixture and applied
1 h bath sonication

The kinetics of the ORR can be described by using Koutecky-Levich (K-L) equation 1 below.

i1, 1t _ 1t 1 1

] - ]K ]L - Bwos ]K ...........................

B = 0.62nFCy (Dy)?/397 Y6 ... 2

]K = TLFKCO ................................................... 3

Where J, Jk and J_ are the measure current density, the kinetic and diffusion-limiting current
density of the electrode. The angular velocity of the disk is ® (o = 2nN, N is the linear rotation
speed), n is the number of electrons transferred in oxygen reduction at the cathode, F is the Faraday
constant (F = 96485 Cmol 1), Co is the bulk concentration of oxygen (Co=1.2 x 103 mol L), v
is the kinematic viscosity of the electrolyte (v = 0.1 m? s™%), diffusion coefficient Do (1.9 x 10°
cm s 1), and K is the electron transfer rate constant. All the parameters are valid when we have
performed ORR in 0.1 M KOH as an electrolyte.

S4



2. Table S1: Nitrogen adsorption-desorption results of all the CPNMA samples

Sample Total BET Micropore | Average Total Micro
surface area | surface area pore pore pore
(m?g) (m?g) diameter | volume | volume
(nm) (cegh) (ceg?)
CPNMA-800 15.4 0 6.6 0.003 0
CPNMA- 900 2274 192.5 24 0.14 0.1
CPNMA-1000 545.1 498.4 23 0.31 0.27
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3. Table S2: Various nitrogen doped carbon synthesis and comparison their specific surface
area and total atomic percentage of doped-nitrogen

Precursor Carbonization Total BET Total
temperature surface area atomic %
°C m?g! of Nitrogen
N.F- Polytetrafluoroethyl 1000 838 1.74% S1
Carbon- ene/
1000 polyaniline
NC-900 Polypyrrole and 900 1450 28 S2
KOH activation
PNCNT Polypyrrole and 650 1765 4.36 S3
KOH activation
PNHCS polyaniline 600 213 6.7 S4
CT polyaniline 500 312 12 S5
PDMC-900 polyaniline 900 - 4.39 S6
CX1000 Polypyrrole (silica 1000 1480 3.55 S7
xerogel as template)
NCNFs polypyrrole 900 34.5 12.53 S8
+ polyacrylonitrile
G-CBP-a polyaniline 1000 362.9 5.3 S9
+ Amine
functionalized GO
C-PANI polyaniline 800 322 5.8 S10
MEP- polyaniline 850 1341.12 4.26 S11
NC850
NCM-700 poly(L.5- 700 403 5.94 S12
diaminonapthalene)
Hollow polyaniline 800 - 4.03 S13
PANI
N- Polyaniline 1000 261 4.87 S14
CNTs(1000) halloysite-
-1.5 template
CTS-4-700 Carbazole- 700 1226 2.5 S15
terephthalaldehyde
CPNMA- poly(N- 800 154 8.94 This
800 methylaniline) ‘Work
CPNMA- poly(N- 900 2274 4.82 This
900 methylaniline) ‘Work
CPNMA- poly(N- 1000 545.1 3.53 This
1000 methylaniline) Work
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4. Table S3: ORR results of all the CPNMA samples obtained from LSV data taken using RDE
at a rotating speed of 1600 rpm

Samples Onset p Limiting | Number of Tafel slope
potential current electron mV/Decade
density transfer
CPNMA-1000 0.87 0.73 -3.32 2.53 67.1
CPNMA-900 0.85 0.69 -2.68 2.58 55.9
CPNMA-800 0.80 0.65 -3.41 34 58.1
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5. Table S4: Various nitrogen-doped carbon and comparison their specific ORR activity

Samples

Co-PN-CNT
2D-hBN/RGO
N-CNTs(900)-1
N-,0-,S-OMCs
PDMC-800
NHPC1:3-900
Carbon-L
NGSH
NCNC
CPNMA-1000
CPNMA-900
CPNMA-800

Onset

potential
(V)
0.916
0.798

0.803

0.78
0.73
0.69
0.65

Cathodic
peak
potential (V

0.798

0.74
0.75
094V
0.82
0.73
-0.3

0.72
0.64
0.66

)

Reference

S16
S17
S18
S19
S20
S21
S22.
S23
S24
This work
This work
This work
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6. Table S5: Various carbon materials and comparison their specific capacitance

Materials ca

PNHCS (N-
doped carbon)

NHCNs-750

(N-doped
carbon)

HPCT-4 (N-
doped carbon)

NDC (N-doped
carbon)

NC-900 (N-
doped carbon)

CNFs@polypy
rrole (N-doped
carbon)

N-CS (N-
doped carbon)

Zn-TA-40%-90

Boron-doped
carbon

Graphene
aerogel

Carbon
nanotube

Activated
carbon

Mesoporous
fullerene
crystals

CPNMA-1000

CPNMA-900

CPNMA-800

Specific

pacitance (Fg!

210.1

365.9

187.1

190

202

191.9

271

0.26
228

175
128

180
102

2922
261.3

172
141
6.4

301.8

3324

176.2
130

54.9
20.8

Scan rate/Current Electrolyte
densi
45

05A¢g! 6 M KOH
5mVst 6 M KOH
0.1Ag! 6 M KOH
1Ag! 1M H,S0,
2mVs-1 15M
MeEt3NBF4/PC
1Ag! 6 M KOH
0.1Ag! 1 MH,S0,
02Ag! 6 M KOH
2mVs! 6 M KOH
1 mVs-! 1 MH,S0,
10 mVs! S MKOH
50 mA g! 6 M KOH
- 7.5 N KOH
100 Hz 38 wt % H,S0,
5 mVs! 1 MH,S0,
1Ag!
05Ag! 6 M KOH
05Ag™ Na,S0,
5mVs'l 1 MH,SO,
10 mVs! 2 M KOH
2 Agt
10 mVs-1 2 M KOH
2Ag-1
10 mVs-1 2 MKOH
2 Ag-1

46

47

48

49

50

51

52

53
54

55
56

57
58

59

60
61
62

This work

This work

This work
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7. SEM images of PNMA and CPNMA-1000

Figure S1: FESEM images of PNMA (a, b) and CPNMA-1000 (c, d)
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8. The SEM images of CPNMA-900 and CPNMA-800

100 nm

Figure S2: SEM images of CPNMA-900 and CPNMA-800 samples
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9. Nitrogen adsorption-desorption plot
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Figure S3: Nitrogen adsorption-desorption isotherm (a) and pore diameter distribution (b) of
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10. XPS survey plot
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Figure S4: XPS survey plot of CPNMA samples
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11. Percentage of graphitic nitrogen vs carbonization temperature plot
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Figure S5: Atomic % of various nitrogen species vs carbonization temperature plot

S14



12. Deconvolution plot of O1s XPS spectra
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Figure S6: Deconvolution of high resolution O1s XPS spectra of (a) CPNMA-1000, (b)
CPNMA-900) and (c) CPNMA-800 respectively
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13. LSV and K-L plot
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Figure S7: (a, c) LSV plot and (b, d) corresponding K-L plot of CPNMA-900 and CPNMA-800
respectively
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