Electronic Supplementary Information

Two-step *in situ* synthesis of $CsPbX_3@TS-1$ zeolites (X = Cl, Br, I) nanocomposites for optical thermometric, latent fingerprints and anti-counterfeiting applications

Le Han,^a Yide Han,^a Junbiao Wu,^a Xia Zhang,^a Zhuopeng Wang,^a Yan Xu^{a,b*}

^aDepartment of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, PR China. E-mail: xuyanjlu@126.com (Y. Xu); Fax: +86-024-83684533; Tel.: +86-024-83684533.

^bGuangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, China.

Fig. S1 Photoluminescent emission spectra of TS-1 and CsPbBrI₂-TS composite.

Fig. S2 PL emission spectra of (a) CsPbCl₃-TS at different temperatures range from 80 to 500 K; (b) PL intensity ratio of I/I_o as a function of temperature; (c) Absolute sensitivity (S_a) and relative sensitivities (S_r) at different temperatures; (d) Corresponding temperature resolution of CsPbCl₃-TS versus temperatures.

Fig. S3 PL emission spectra of (a) CsPbBr_{1.5}I_{1.5}-TS at different temperatures range from 80 to 500 K; (b) PL intensity ratio of I/I_o as a function of temperature; (c) Absolute sensitivity (S_a) and relative sensitivities (S_r) at different temperatures; (d) Corresponding temperature resolution of CsPbBr_{1.5}I_{1.5}-TS versus temperatures.

Fig. S4 PL emission spectra of (a) CsPbBrI₂-TS at different temperatures range from 80 to 500 K; (b) PL intensity ratio of I/I_o as a function of temperature; (c) Absolute sensitivity (S_a) and relative sensitivities (S_r) at different temperatures; (d) Corresponding temperature resolution of CsPbBrI₂-TS versus temperatures.

Table S1 Comparison of the absolute sensitivity (S_a), relative sensitivity (S_r), and temperature resolution (δ T) of the CsPbX₃-TS (X = Cl, Br, I) nanocomposites in optical temperature sensing.

Materials	Temperature range (K)	S _a (maximum) (K ⁻¹)	S _r (maximum) (K ⁻¹)	δТ (К)
CsPbCl ₃ -TS	80-380	0.35% (at 80 K)	6.61% (at 380 K)	0.039
CsPbCl _{1.5} Br _{1.5} -TS	80-380	0.34% (at 80 K)	7.32% (at 380 K)	0.039
CsPbBr ₃ -TS	80-380	1.73% (at 80 K)	7.14% (at 380 K)	0.012
CsPbBr _{1.5} I _{1.5} -TS	80-380	0.70% (at 80 K)	16.46% (at 380 K)	0.020
CsPbBrl ₂ -TS	80-380	0.90% (at 80 K)	11.57% (at 300 K)	0.016