Supporting Information

Fast acid-leaching strategy treated hollow cobalt-carbon materials as high-efficient electrochemical catalysts for Zn-air batteries

Jun Yang^a, Jilan Long^{a,*}, Cheng Chen^a, Guangming Liang^a, Bing Tang^a, Xiaohong Liu^b and Wei Zhang^{c,*}

^a Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province,

College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China.

^b National University of Singapore (Chongqing) Research Institute, Chongqing
401123, P.R. China

^c Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China

* Corresponding authors, e-mail: xlong612@126.com (J. Long);

andyzhangwei@163.com (W. Zhang).

Contents

- 1. Experimental section
- 2. Characterization
- 3. Experimental results

1. Experimental section

1.1 Electrochemical measurement for ORR and OER

The electrochemical performances of all catalysts were tested on a computercontrolled bipotentiostat (Princeton, PARSTAT 3000A-DX, USA) with three electrode systems with Pt/C as counter electrode, AgCl (for ORR) or Hg/HgO (for OER) catalysts as reference electrode, catalysts modified glassy carbon electrode (GCE) as work electrode. The synthetic procedure of work electrode is as follows: generally, 5mg catalyst was dispersed into 1 mL of EtOH-0.5wt% Nafion (v:v=9:1) solution and treated by ultrasonic processing. Then the polished glassy carbon electrode (GCE, diameter=5 mm) was modified by 10 uL of the catalysts ink to obtain a loading mass of 0.254 mg/cm². The CV and LSV tests were carried out in 0.1 M KOH with the scanning rate of 100 mV/s and 10 mV/s, respectively. After to test, all potentials were converted into reversible hydrogen electrode (RHE) according to the Nernst equation.

1.2 The assembly of liquid Zn-air battery

The liquid Zn-air battery is assembled with catalysts modified carbon paper as air cathode, Zn plates as cathode, O₂-saturated 6M KOH as electrolyte. All of these components are fixed by a sealed battery model, while the cycling of electrolyte depends on a circulating pump connected with the sealed battery model. The synthetic procedure is as follows:, in general, catalyst was dispersed into 300 uL of EtOH-nafion solution and treated by ultrasonic processing, then the catalysts ink were dipped onto the composite carbon paper (carbon paper+waterproof membrane+

conducting layer) to obtain a mass loading of 1 mg/cm² as air cathode catalysts.

1.3 The assembly of solid-state button Zn-air battery

The solid-state ZABs are assembled with catalysts modified carbon paper as air cathode, commercial Zn plate as anode, and PANa-KOH (sodium polyacrylate/6 M KOH; sodium polyacrylate purchases from Aladdin company) as electrolyte. The air cathode catalysts were prepared for the similar procedure of liquid ZABs, and the mass loading into catalysts was 1 mg/cm². Open circuit voltage, polarization curves, galvanostatic discharge curves and charge-discharge cycle curves were tested on the electrochemical workstation (Princeton, PARSTAT 3000A-DX, USA). As contrast, Pt/C-RuO₂(mass ratio 1:1) was also tested for the same conditions.

2. Characterization

The SEM and elemental mapping of $Co@CN-P_{10}$ -750 catalysts and corresponding elements distribution were investigated with a scanning electron microscope (Zeiss, Gemini SEM 500). PXRD patterns of Co@CN-P₁₀-T catalysts were tested by a Rigaku diffractometer (Ultimal V, 3 kW) with Cu K α radiation (40 kV, 40 mA, 0.1543 nm). The Raman spectra were tested on the confocal microraman spectrometer (Witec alpha300 access, Germany). The XPS spectra of C, Co, N, S elements were measured on the X-ray photoelectron spectroscopy (XPS, Thermo Scientific ESCALAB 250Xi). The metal particles and morphology of the Co@CN-P₁₀-750 and Co@CN-P₁₀-750-H⁺(12h) catalysts were determined by a transmission electron microscope (TEM, JEOL, JEM-2010HR). The CV and LSV were measured on the computer controlled electrochemical workstation (Princeton, PARSTAT 3000A-DX, USA) with a rotating disk electrode (Pine). The liquid and solid-state ZABs were also tested on the instrument of PARSTAT 3000A-DX.

3. Experimental results

	1	-			
	Р	С	Ν	0	Со
	(atom%)	(atom%)	(atom%)	(atom%)	(atom%)
Co@CN-P ₁₀ -700	0.88	74.5	6.52	14.35	3.75
Co@CN-P ₁₀ -750	0.82	77.06	5.71	13.06	3.35
Co@CN-P ₁₀ -800	0.63	80.24	4.39	10.02	4.72
Co@CN-P ₁₀ -850	0.52	81.61	4.02	8.02	5.83
Co@CN-P ₁₀ -900	0.25	84.97	2.89	5.24	6.65

Table S1. Chemical compositions of samples obtained from XPS results.

Fig. S1. (a) ORR performance of $Co@CN-P_{10}$ catalysts synthesized at different temperatures and (b) their performances comparison diagram.

Fig. S2. (a) ORR performance of $Co@CN-P_m-750$ catalysts synthesized at 750 °C with different P contents in their template and (b) their performances comparison diagram.

Fig. S3. (a) ORR performance of Co@CN-P₁₀-750 catalysts synthesized with various calcining time and (b) their performances comparison diagram.

Fig. S4. The comparison of ORR performance of Co@CN-750 catalysts and its acid treatment products.

Fig. S5. The performances of fresh Co@CN-P₁₀-750-H⁺(D) and reused Co@CN-P₁₀-750-H⁺(D) catalysts after 9 h continuous i-t test.

Fig. S6. OER performance of $Co@CN-P_{10}$ catalysts synthesized at different temperatures.

Fig. S7. OER performance of Co@CN- P_m -750 catalysts synthesized at 750 oC with different P-content templates.

Fig. S8. OER performance of $Co@CN-P_{10}$ -750 catalysts synthesized with different calcining time.

Fig. S9. CV curves of different catalysts. (a) Co@CN-P $_{10}$ -750-H⁺(D), (b) Co@CN-

 P_{10} -750, (c) Co@CN- P_{10} -750- $H^+(12h)$, and (d) Co@CN-750.

Fig. S10. (a) The OCV of home-made liquid ZABs assembled with different cathode catalysts, and (b) corresponding application schemes of Co@CN-P₁₀-750 based ZABs. (c) The maximum power density of ZABs, (d) rate performances of ZABs, (e) the discharge stability of ZABs at the current density of 10 mA/cm² and corresponding specific capacity (f). (g) The long-term charge-discharge curves of ZABs at the current of 2 mA/cm² with 20 minutes per cycle, and corresponding energy efficiencies (inset).

Fig. S11. The practical application of as-synthesized $Co@CN-P_{10}-750-H^+(D)$ based solid-state ZABs, and the application of $Co@CN-P_{10}-750-H^+(D)$ based ZABs after 10 minutes recharging at 10 mA/cm²

Fig. S12. (a) The OCV of home-made solid-state ZAB assembled with different catalysts, and (b) corresponding application images of Co@CN-P₁₀-750 based ZAB. (c) The maximum power density of ZABs, (d) rate performances of ZABs, (e) the discharge stability of ZABs at the current density of 5 mA/cm² and corresponding specific capacity (f). (g) The long-term charge-discharge curves of ZABs at the current of 1 mA/cm² with 20 minutes per cycle, and the energy efficiencies (inset).