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Experimental details
a. General characterization

Thermogravimetric analysis was carried out on a thermogravimetric analyzer (TGA2,
Mettler Toledo) in the O2 environment. Morphology was observed by a scanning electron
microscope (JSM-7800F, JEOL), a transmission electron microscope (JEM-1400 plus,
JEOL) and a high-resolution transmission electron microscope (JEM-2100F, JEOL).
Fourier transform infrared (FTIR) spectra were recorded on a Bruker (Alpha) FTIR
spectrometer. X-ray diffraction (XRD) analysis was carried out on an X-ray diffractometer
(Smart Lab 9 kW, Rigaku). X-ray photoelectron spectroscopy (XPS) was performed on an
ESCALAB 250Xi spectrometer (Thermo Scientific). The N2-sorption isotherm, Brunauer-
Emmett-Teller (BET) surface area, and pore volume of the materials were analyzed using
a surface area and porosity analyzer (ASAP 2460, Micromeritics) at 77 K. Raman spectra
were collected on a Raman spectrometer (iHR 550, Horiba). Electrochemical tests were
carried out on an electrochemical workstation (Zennium, Zahner) equipped with a rotating
ring-disk electrode (RRDE, E7R9 (Tip), Shaft (MSR), Pine Research Instrumentation).

b. Electrochemical measurements

To test the catalytic performance, the obtained catalysts were drop-casted onto the
polished glassy carbon disk (diameter: 5.5 mm) of the RRDE to form a thin layer under
steady rotation (700 rpm), reaching a certain loading amount (0.2 or 1.0 mg cm?).5!
Meanwhile, the 20% Pt/C catalyst (Johnson Matthey) was used as the benchmark catalyst,
and drop-casted by the same method for comparison. The catalyst-coated electrode was
used as the working electrode for electrochemical characterizations in different electrolytes.

Specifically, a KOH solution (0.1 M) was used as the alkaline electrolyte, and a phosphate



buffer (PB, 50 mM, a solution of 31.3 mM Na:HPO4 and 18.7 mM NaH2POa, pH = 7) was
used as the neutral electrolyte. Notably, a Pt mesh was used as the counter electrode and
the Ag/AgCI/KCI (3 M) electrode was used as the reference electrode. Unless otherwise
noted, the potential presented was converted into the reversible hydrogen electrode (RHE)
scale using Equation S1.

ERHE = EAg/AgCl + 021 + 0059 X pH (Sl)

Before electrochemical tests, the electrolyte was purged with Oz for 30 min to create
an Oz-saturated environment. Linear sweep voltammetry (LSV) was carried out at a scan
rate of 5 mV s! with rotating rates from 625 to 2500 rpm. On the basis of LSV result, 1/j

was plotted against w2 according to Koutecky-Levich equation (Equation S2).
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where j is the current density of the glassy carbon disk (mA cm), jz and jx are the limiting
and kinetic current densities (mA cm™) respectively, o is the rotation rate (rpm) of the disk,
and B is defined by Equation S3.

B = 0.2nF Cy(Dy)*/3v=1/° (S3)

where n is the electron transfer number, F is the Faraday constant, C, is the bulk
concentration of Oz, D, is the diffusion coefficient of O2, and v is the kinematic viscosity
of the electrolyte.

For the RRDE test, the disk current density (js) and ring current density (j-) were
recorded simultaneously. The scan rate was 5 mV s™!, the rotating rate was 1600 rpm, and

the ring potential was set as 1.50 V vs. RHE. On the basis of RRDE results, the H202



selectivity and electron transfer number (n) can be derived using the following equations

(Equation S4 and S5).
o Jr/N
= X ——
H,0, selectivity = 2 Tatin/N (54)
" Jr/N+ia (53)

where jq is the disk current density, j- is the ring current density, and N is current collection
efficiency of the Pt ring (38% as the measured value).

The stability of the catalysts was evaluated by accelerated durability test (ADT).
Briefly, LSV was at first measured in Oz-saturated electrolytes, and measured again after
5000 cyclic scans (scan rate: 100 mV s!) for comparison. In the alkaline electrolyte (0.1 M
KOH solution), the potential range for cyclic scan was set as 0.1 to -0.3 V (vs.
Ag/AgCI/KCl (3 M)). In the neutral electrolyte (50 mM phosphate buffer), the potential
range for cyclic scan was set as 0.2 to -0.2 V (vs. Ag/AgCI/KCI (3 M)). The methanol
tolerance of the catalyst was evaluated by chronoamperometry during which methanol was
added into the 0.1 M KOH electrolyte to reach the concentration of 1 M.

Electrochemical active surface area (ECSA) of the catalyst was measured on the
catalyst-coated glassy carbon disk (0.2 mg cm™) by cyclic voltammetry (CV) in the non-
Faradaic region based on the double-layer capacitance. Particularly, 0.1 M KOH was used
as the electrolyte, the potential range was set as a 0.1 V window centered at the open circuit
potential (e.g.,-0.167 to -0.067 V vs. Ag/AgCI/KCl (3 M) for CNF-230), and the scan rates
were set as 10, 15, 20, 25, 30 and 35 mV s™'. The ECSA of the catalysts can be calculated

from the electrochemical double-layer capacitance (Car) according to the Equation S6.5% 53

ECSA = 24 (S6)

N



where Cai is the slope of current density against scan rate, and Cs is the specific capacitance
associated with smooth carbon catalysts (40 pF cm?).53
c. Practical application in Zn-air batteries

The practical applications were carried out in both the alkaline and neutral Zn-air
batteries.>* The Zn-air battery was assembled in a cubic configuration with the Zn plate
anode (4.5 cm?, thickness: 0.2 mm), and the carbon cloth cathode (1 cm?) which was coated
with polytetrafluoroethylene (13.5 mg cm) on the air-facing side and catalyst (CNF-based
catalysts: 1.0 mg cm™ or Pt/C: 0.2 mg cm™) on the electrolyte-facing side. Between the
anode and cathode, the distance was 1.4 cm, and the total volume of electrolyte was 4 mL.
For the alkaline Zn-air battery, a solution containing KOH (6 M) and Zn(CH3COO)2 (0.2
M) was used as the electrolyte. For the neutral Zn-air battery, a solution containing NH4Cl
(4.0 M) and KCI (2.0 M) was used as the electrolyte, and the pH of the electrolyte was
adjusted to 7 by NH3-H20. The polarization curve was measured by LSV, and the scan rate

was 5 mV s



Figure S1. (a-f) TEM images of PAN-based materials and CNF-based catalysts. (a) PAN-

230, (b) CNF-230, (c) PAN-230-H:0, (d) CNF-230-H:0, () PAN-230-H:02, (f) CNF-

230-H20:z. (g, h) High-resolution TEM images of CNF-230-H20:.
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Figure S2. (a) TG curve of PAN mat in Oz environment. (b) Fourier transform infrared

spectra of PAN and PAN preoxidized at 230, 280, and 295 °C in air.

The PAN was preoxidized at different temperatures in air for 1 h to study the structure
evolution, and the resulting materials were characterized by infrared spectroscopy. As
shown in Figure S2b, three characteristic peaks, attributed to the C-H stretch in CH2 (~2931
cm™), C=N stretch in CN (~2241 cm™) and C-H bending in CH2 (~1452 ¢cm™), decrease
after proxidization.5>S® Meanwhile, another peak appears at ~1579 cm™', which can be
attributed to the C=N stretch in the -C=N- structure.5® The infrared spectra reveal the
cyclization of the PAN structure to a six-membered ring-containing structure to different
extents after the preoxidation at varied temperatures. To keep the cyclization at a relatively
low level and to introduce more oxygen-containing groups in the next oxidation step, we

chose 230 °C as the preoxidation temperature.
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Figure S3. (a) Linear sweep voltammograms of the Pt/C catalyst at rotating rates of 625 to
2500 rpm in the Oz-saturated 0.1 M KOH. (b) The K-L plots corresponding to the linear
sweep voltammograms in (a). (¢c) Ring and disk currents on a rotating ring-disk electrode
using the Pt/C catalyst in the Oz-saturated 0.1 M KOH at a rotating rate of 1600 rpm. (d)

H20: selectivity and electron transfer number based on ring and disk currents using the

Pt/C catalyst.
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Figure S4. (a) The K-L plots corresponding to the linear sweep voltammograms in Figure
2b. (b) Ring and disk currents on a rotating ring-disk electrode using the CNF-230-H202
catalyst in the Oz-saturated 0.1 M KOH at a rotating rate of 1600 rpm. (c) Linear sweep
voltammograms of the CNF-230- H20: catalyst before and after 5000 cyclic scans of the

accelerated durability test (ADT) at a rotating rate of 1600 rpm.
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Figure S5. (a) The K-L plots corresponding to the linear sweep voltammograms in Figure
3c. (b) Ring and disk currents on a rotating ring-disk electrode using the CNF-230-H202

catalyst in the O2-saturated 50 mM PB at a rotating rate of 1600 rpm.
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Figure S6. (a) Linear sweep voltammograms of the Pt/C catalyst at rotating rates of 625 to
2500 rpm in the Oz2-saturated 50 mM PB. (b) The K-L plots corresponding to the linear
sweep voltammograms in (a). (¢c) Ring and disk currents on a rotating ring-disk electrode
using the Pt/C catalyst in the Oz-saturated 50 mM PB at a rotating rate of 1600 rpm. (d)

H20: selectivity and electron transfer number based on ring and disk currents using the

Pt/C catalyst.
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Figure S7. (a) Linear sweep voltammograms of CNF-based catalysts in the Oz-saturated

0.1 M KOH. The catalysts were obtained after the treatment in H202 aqueous solutions
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with different H2O2 concentrations (6, 8.6, 12, and 15%) in the oxidation step during the
preparation. (b) Raman spectra of the CNF-230-H202-6%, CNF-230-H202-12%, and CNF-
230-H202-15% catalysts. (c, e, g) Ring and disk currents on a rotating ring-disk electrode
using (c¢) CNF-230-H202-6%, (e) CNF-230-H202-12%, and (g) CNF-230-H202-15%
catalysts in the Oz-saturated 0.1 M KOH at a rotating rate of 1600 rpm. (d, f, h) H202
selectivity and electron transfer number based on ring and disk currents using (d) CNF-
230-H202-6%, (f) CNF-230-H202-12% and (h) CNF-230-H202-15% catalysts. Note: the
CNF-230-H20: catalyst was treated in an 8.6% H20:2 solution in the oxidation step during

the preparation.

13



(a) (b) .
o4 CNF-230-H,0,-10 min CNF-230-H,0,-10 min I/l
. 4] — CNF230HO,
% —— CNF-230-H,0,-2 h ,
s
< 2 8 0.87
= >
@ -3 0]
3 £ | CNF-230-H,0,-2 h
=
[0}
£ 41
(@]
0.87
_5—
02 04 06 08 10 1000 1200 1400 1600 1800 2000
Potential/V vs. RHE Raman shift/cm’

Figure S8. (a) Linear sweep voltammograms of CNF-based catalysts in the Oz-saturated
0.1 M KOH. The catalysts were obtained after the treatment in the 8.6% H202 aqueous
solution for different durations (10 min, 1 h and 2 h) in the oxidation step during the
preparation. (b) Raman spectra of the CNF-230-H202-10 min and CNF-230-H202-2 h
catalysts. Note: the CNF-230-H20: catalyst was obtained after treated in the H202 solution

for 1 h in the oxidation step during the preparation.
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Figure S9. (a) Linear sweep voltammograms of CNF-based catalysts preoxidized at
different temperatures (210 and 230 °C) in the Oz-saturated 0.1 M KOH. (b) Raman

spectrum of the CNF-210-H20: catalyst.
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Figure S10. (a) Linear sweep voltammograms of CNF-based catalysts carbonized at
different temperatures in the Oz-saturated 0.1 M KOH. (b) Raman spectra of the CNF-230-
H202-900 °C and CNF-230-H202-1000 °C catalysts. Note: the CNF-230-H20: catalyst was

carbonized at 1000 °C.
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Figure S11. (a, ¢, €) CV curves in the non-Faradaic region of (a) CNF-230, (c¢) CNF-230-

H20, and (e) CNF-230-H20: catalysts measured at different scan rates. (b, d, f)

Corresponding current density-scan rate relationships of (b) CNF-230, (d) CNF-230-H:0,

and (f) CNF-230-H20: catalysts.
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Figure S12. (a, c, €) CV curves in the non-Faradaic region of (a) CNF-230-H202-6%, (c)
CNF-230-H202-12%, and (e) CNF-230-H202-15% catalysts measured at different scan
rates. (b, d, f) Corresponding current density-scan rate relationships of (b) CNF-230-H20:-

6%, (d) CNF-230-H202-12%, and (f) CNF-230-H202-15% catalysts.
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Figure S13. (a) High-resolution XPS spectra of the C 1s peak in PAN-based materials. (b)
High-resolution XPS spectra of the C 1s peak in CNF-based catalysts. (c) High-resolution
XPS spectra of the N 1s peak in PAN-based materials. Note: the peak heights in the figure

were relative to the atomic ratios of C or N element in the corresponding material.
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Figure S14. (a) High-resolution XPS spectra of the O 1s peak in PAN-based materials. (b)

High-resolution XPS spectra of the O 1s peak in CNF-based catalysts. (¢) O content in the

PAN-based materials based on the deconvoluted O 1s spectra in (a). Note: the peak heights

in the figure were relative to the atomic ratios of O in the corresponding material.
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Table S1. The key experimental conditions used to convert PAN into PAN-based materials and

CNF-based catalysts.

Samples Temperature for Oxidation process at Temperature for
peroxidation boiling temperature carbonization
PAN-230 230 °C - -
PAN-230-H>0, 230 °C in 8.6% H>O, for 1 h -
PAN-230-H,O 230 °C in H,O for 1 h -
CNF-230 230 °C - 1000 °C
CNF-230-H>0, 230 °C in 8.6% H>O, for 1 h 1000 °C
CNF-230-H,O 230 °C in H,O for 1 h 1000 °C
CNF-230-H20:-6% 230 °C in 6% H,0, for 1 h 1000 °C
CNF-230-H20:-12% 230 °C in 12% H,O;, for 1 h 1000 °C
CNF-230-H20,-15% 230 °C in 15% H>O, for 1 h 1000 °C
CNF-230-H20,-10 min 230 °C in 8.6% H>O; for 10 min 1000 °C
CNF-230-H20,-2 h 230 °C in 8.6% H,O, for 2 h 1000 °C
CNF-210-H>0, 210 °C in 8.6% H>O, for 1 h 1000 °C
CNF-230-H20,-900 °C 230 °C in 8.6% H20O, for 1 h 900 °C
CNF-230-H,0,-1100 °C 230 °C in 8.6% H>O, for 1 h 1100 °C
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Table S2. Electrochemical performance of catalysts for ORR in the Oz-saturated 0.1 M
KOH.

Catalyst Eonser (V) Ein (V) Jiim (MA cm?)
CNF-230 (0.2 mg cm?) 0.727 0.696 2.95
CNF-230-H,0 (0.2 mg cm2) 0.782 0.735 3.46
CNF-230-H,0; (0.2 mg cm™) 0.841 0.793 4.05
CNF-230-H,0; (1 mg cm?) 0.919 0.805 4.96
Pt/C (0.2 mg cm?) 0.898 0.839 5.25
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Table S3. Electrochemical performance of catalysts for ORR in the Oz-saturated 50 mM

PB.
Catalyst Eonser (V) Eiz (V) Jiim (MA cm?)
CNF-230-H,0; (0.2 mg cm™?) 0.650 0.484 4.45
CNF-230-H,0; (1 mg cm?) 0.737 0.450 5.89
Pt/C (0.2 mg cm?) 0.802 0.594 5.62
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Table S4. Comparison of ORR activity of the CNF-230-H20: catalyst with other PAN-
based ORR catalysts reported previously in the Oz-saturated 0.1 M KOH (Eonser and E1/2)

and in fuel cell applications (Pmax).

Catalvst Precursor with Eonser Eip Prax Ref
Y optional additives /V vs. RHE /V vs. RHE /mW cm '
PANRGO PAN + graphene ~0.89 0.864 116 [S7]
=700 oxide (~20 mV higher  (~20 mV higher  (10% lower
than Pt/C) than Pt/C) than Pt/C)
Fe/IL- PAN + Fe(OAc)+  0.95 0.74 289 [S8]
PAN- ionic liquid (30 mV lower (110 mV lower (18% lower
A1000 than Pt/C) than Pt/C) than Pt/C)
Co-PAN- PAN + Co(OAc), 0.91 0.74 267 [S8]
A1000 (70 mV lower (110 mV lower (24% lower
than Pt/C) than Pt/C) than Pt/C)
IL-Fe- PAN + ionic liquid  1.00 0.85 61 [S9]
PAN-900- (20 mV higher (30 mV higher
0.75 than Pt/C) than Pt/C)
FeZ- PAN + ZnCl, + 0.963 0.881 168 [S10]
CNS-900 FeCls (33 mV higher (39 mV higher (10% higher
than Pt/C) than Pt/C) than Pt/C)
PAC/ZnO PAN +ZnO ~0.902 0.852 NA [S11]
-900 (22 mV higher (26 mV higher
than Pt/C) than Pt/C)
NCNFs PAN ~0.787 ~0.737 NA [S12]
(45 mV lower (~70 mV lower
than Pt/C) than Pt/C)
CNF-230- PAN + H20» 0.841 0.793 101 This
H>0, (57 mV lower (46 mV lower (24% higher  work
than Pt/C) than Pt/C) than Pt/C)
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Table S5. Estimated cost of producing the CNF-230-H20: catalyst in industry.

Precursor Preoxidation Oxidation Carbonization Other processes Total
Cost ($/kg) 7.5 2.4 3 3.6 1.5 18

Note: Typically, the cost of producing PAN-based carbon nanofibers in industry is ~$15, which is
comprised by the cost of precursor, preoxidation, carbonization, and other processes (such as sizing
and winding).5!*5!* In our method, we estimate that the additional oxidation process increases the

total cost by ~20% according to the cost of preoxidation and carbonization.
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