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Experimental section

Materials 

ZnSO4·7H2O (>99.0%), tetrabutylammonium chloride hydrate (≥98.0%) and tetramethylammonium 

chloride (≥98.0%) were purchased from Sigma-Aldrich Chemical Co. Tetraethylammonium chloride 

(>98.0%) was purchased from TCI Co. All reagents were used directly without further purification. All 

aqueous electrolytes used deionized water as the solvent.

Materials Characterizations

The in-situ optical microscope (Caikon DMM-330C) was employed to observe the growth of zinc 

dendrites in symmetric Zn//Zn batteries. SEM images were collected on the GeminiSEM 300 with an 

accelerating voltage of 5 kV and it was employed to observe the morphology of anode surface in Zn//Cu 

batteries after 20 cycles.

Battery Assembly

The Zn//Zn symmetrical battery which consists of two zinc sheets (Ф16 mm) and a glass fiber separator 

(Ф16 mm) with 100 μL electrolyte (2 M ZnSO4 without/with 4 wt% additive) were sandwiched together 

in a CR2032 coin cell and crimped in the air. The Zn//Cu cell used for the CE test consists of a piece of 

Cu foil (Ф12 mm), a Zn chip (Ф16 mm) and a glass fiber separator (Ф16 mm) with 100 μL electrolyte 

(2 M ZnSO4 without/with 4 wt% additive). The cathode material which used in the full cell is a mixture 

of LiMnO2 (LMO), super phosphorus and Teflon (dissolved in water) in a mass ratio of 7:2:1. The 

resulting mixture is cast onto a stainless steel mesh and pressed with a roller press at the pressure of 2.5 

tons. And then the cathode material was dried at 80 ℃ for 12 hours in a vacuum oven. After drying, use 

a tablet press to cut them into 12 mm diameter pellets (each cathode pellet is loaded with ~1.5 mg cm2 

LMO). The Zn//LMO full-cell is the CR2032 coin cell composed of a LMO cathode pellet (Ф12 mm), 

a zinc sheet (Ф16 mm), a glass fiber separator (Ф16 mm) with 100 μL electrolyte (2 M ZnSO4 and 1 M 

Li2SO4 without/with 4 wt% additive).

Electrochemical Tests

Galvanostatic charge-discharge cycling tests of Zn//LMO full cells and CE tests of Zn//Cu cells are 

performed on the Neware BTS4000 battery test instrument. In addition, the polarization of the Zn//Zn 

symmetrical cell under different conditions was also performed in this battery test instrument. Cyclic 

voltammetry (CV) measurements of Zn//LiMnO2 full cells were carried out on an electrochemical 

workstation of CHI660E at 1 mV s1, and the voltage varied between 2.2 V and 1 V. The electrochemical 
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stability windows of the electrolytes without/with 4 wt% TEAC were tested by linear sweep 

voltammetry experiments at 1 mV s1 with a typical three-electrode system, where platinum wire serves 

as working and counter electrodes, Ag/AgCl serves as reference electrode. Corresponding 

electrochemical impedance spectroscopy (EIS) studies also performed on the electrochemical 

workstation of CHI660E, and the frequency varied from 106 Hz to 103 Hz with an amplitude of 5 mV. 

The Tafel curves of Zn symmetric cells in different electrolytes were carried out on the workstation by 

the technique of Tafel Plot, and the voltage ranged from 1.04 V to 0.87 V. 

DFT computational method 

The Spin-polarized DFT calculation using the Vienna ab initio simulation package (VASP) was adopted 

to simulate ionic binding capacity including Zn2+, TMA+, TEA+ and TBA+ in the Zn-111 Surface. The 

Perdew–Burke–Ernzerhof with generalized gradient approximation (GGA) was adopted to describe the 

electron–electron interaction. An energy cutoff of 450 eV was used, and a k-point sampling set of 3 × 

3 × 1 was tested to be converged. The criterion for all structural optimizations was set to 10−5 eV for 

electronic energy convergence and Hellmann−Feynman force less than 0.02 eV Å-1 for ionic relaxation 

loop. The vacuum space along the z-direction is set to be 15 Å. To account for the strong on-site 

coulombic interaction of localized d electrons, the Hubbard-like term (UZn = 3.5 eV) was added into the 

DFT calculation. The van der Waals dispersion forces and solvation effects in aqueous solution were 

included using the zero damping DFT-D3 method of Grimme and Poisson-Boltzmann implicit solvation 

model as implemented in VASPSOL. The visualization for electronic and structural analysis (VESTA) 

was used to straightforwardly visualize the charge distribution of each model.
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Figure S1. (a) Raman and (b) FTIR spectra of different electrolytes.

As shown in Fig. S1a, the symmetric stretching band (984 cm1) of SO4
2 could be detected, and this 

could be also confirmed by FTIR spectrum of different electrolytes in Fig. S1b.S1 The absorption peaks 

at 1049 cm1 and 1097 cm1 were attributed to the triply degenerate vibrations of SO4
2.S2 New 

absorption peaks at 2860 cm1and 2927 cm1 were introduced due to the addition of additives, which 

were dominated by strong CH bond stretching vibrations of organic ammonium cations.S3 

Furthermore, the blue shift of the peak at 3360 cm1 (OH stretching) indicated that the addition of 

additives has changed the solvation structure, confirming the effect of added organic ammonium cations 

on the electrolytes.S4
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Figure S2. Charge/discharge curves of Zn//Cu cells in different electrolyte obtained from Fig. 2a.
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Figure S3. Coulombic efficiency of Zn//Cu coin cells with/without TEA in the electrolytes at 1 mA 

cm2 and 0.5 mAh cm2.
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Figure S4. Coulombic efficiency of Zn//Cu coin cells with/without TEA in the electrolytes at 5 mA 

cm2 and 2.5 mAh cm2.
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Figure S5. Cycling stability and efficiency of Zn//LiMnO2 cells in electrolytes with different contents 

of TEAC additive at 2 C.

To explore the most suitable additive content, at the rate of 2 C, we tested the long-term cycling stability 

of Zn//LiMnO2 batteries with different contents of TEAC additive in the electrolyte (Fig. S5). In the 

electrolyte with 4 wt% TEAC, the stability of Zn//LiMnO2 battery was improved to the greatest extent.



9

Figure S6. CV tests of Zn//LiMnO2 full cells in the electrolyte without/with TEAC additive.
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Figure S7. The electrochemical stability windows of the electrolyte without/with TEAC additive.
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Figure S8. EIS curves of the Zn//Zn symmetric cell in the ZnSO4 electrolyte after 20 cycles and after 

20 cycles for 3 days.
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Figure S9. EIS curves of the Zn//Zn symmetric cell in the ZnSO4-TEAC electrolyte after 20 cycles and 

after 20 cycles for 3 days.
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Figure S10. Tafel curves of Zn symmetric cell in the electrolyte without/with TEAC additive.
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Figure S11. Differential charge density of Zn2 on a Zn surface. The zinc ion, hydrogen, zinc atoms are 

marked as blue, yellow and green, respectively.
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Figure S12. Differential charge density of TMA on a Zn surface. The zinc ion, hydrogen, zinc, carbon 

and nitrogen atoms are marked as blue, yellow, green, purple and red, respectively.
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Figure S13. Differential charge density of TEA on a Zn surface. The zinc ion, hydrogen, zinc, carbon 

and nitrogen atoms are marked as blue, yellow, green, purple and red, respectively.
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Figure S14. Differential charge density of TBA on a Zn surface. The zinc ion, hydrogen, zinc, carbon 

and nitrogen atoms are marked as blue, yellow, green, purple and red, respectively.
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