Highly Enantioselective Access to Chiral Chromanes andThiochromanes via Cu-Catalyzed Hydroamination withAnthranils
Xiaodong Gu, ${ }^{\text {a }}$ Ling Meng ${ }^{\text {b,c }}$ Mingliang Li ${ }^{\text {a }}$ and Jun (Joelle) Wang*a,b
${ }^{\text {a }}$ Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
${ }^{\mathrm{b}}$ Department of Chemistry, Hong Kong Baptist University, Kowloon, Hong Kong
${ }^{c}$ Institute of Research and Continuing Education, Hong Kong Baptist University Shenzhen 518000, China
Table of Contents

1. General Information ..... S2
2. Procedure for Preparation Chromene and Anthranil Derivatives ..... S2
3. General Procedural Information and Optimization of Hydroamination ..... S4
4. Analytic Data for the Products ..... S7
5. Reference ..... S27
6. NMR Spectrum ..... S28
7. HPLC Spectrum ..... S69

## 1. General Information

NMR Spectra were recorded on a Bruker DPX-500 (400) spectrometer at 500 MHz or 400 MHz for ${ }^{1} \mathrm{H}$ NMR, 376 MHz for ${ }^{19} \mathrm{~F}$ NMR and 100 MHz or 125 MHz for ${ }^{13} \mathrm{C}$ NMR in $\mathrm{CDCl}_{3}$ with tetramethylsilane (TMS) or the residual deuterated solvent peaks as internal standard. Chemical shifts ( $\delta$ ) are reported in ppm, and coupling constants $(J)$ are in Hertz $(\mathrm{Hz})$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad. Flash column chromatograph was carried out using 200-300 mesh silica gel at medium pressure. High resolution mass spectra (HRMS) were recorded on a LC-TOF spectrometer. ESI-HRMS data were acquired using a Thermo LTQ Orbitrap XL Instrument equipped with an ESI source. Optical rotation was obtained on a Rudolph Research Analytical (Atopol I). HPLC analysis was performed on Agilent 1260 series, UV detection monitored at 254 nm , using a Chiralcel OD-H or AD-H column with hexane and $i-\mathrm{PrOH}$ as the eluent. Unless otherwise noted, all reagents were purchased from commercial suppliers and used without purification. All air- and moisture-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or in a glove box under argon. Anhydrous toluene, THF (Tetrahydrofuran) and dioxane were distilled from sodium benzophenone prior to use. Anhydrous DCE and $\mathrm{CH}_{3} \mathrm{CN}$ were distilled from calcium hydride and stored under argon. Anhydrous DMF was distilled from calcium hydride under reduced pressure and stored under argon.

## 2. Procedure for Preparation Chromene and Anthranil derivatives

## General procedure for the synthesis of Anthranil derivatives ${ }^{1-4}$



To a solution of 5-chloro-2-nitrobenzaldehyde ( 10 mmol ) in $\mathrm{MeOH} / \mathrm{EtOAc}(20 / 20 \mathrm{~mL}$ ) was added $\mathrm{SnCl}_{2}(5.69 \mathrm{~g}, 30 \mathrm{mmol})$ at room temperature. The mixture was stirred for $6-24$ hours at room temperature before diluting with $\mathrm{DCM}(100 \mathrm{~mL})$ followed by quenching with saturated aqueous solution of $\mathrm{NaHCO}_{3}$. The mixture was passed through short celite bed. The organic phase was separated, washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The residue was
subjected to silica gel column chromatography using PE/EA (silica gel, 50:1) as eluent to give 6-chlorobenzo[c]isoxazole (2e) as white solid.

Other anthranils $\mathbf{2 d} \mathbf{- 2} \mathbf{j}$, $\mathbf{2 l}$ were synthesized following similar synthetic procedure. By the way, the method could not give pure $\mathbf{2 a}-\mathbf{2 c}, \mathbf{2 k}$ due to acetal which is hard to isolate from anthranils. The pure anthranils were obtained by following method $(\mathrm{Sn} / \mathrm{AcOH})$ although in moderate yield.

## General procedure for the synthesis of substrates $\mathbf{2 a}-2 \mathbf{c}, 2 \mathbf{k}^{5,6}$



Tin foil ( $1.30 \mathrm{~g}, 11 \mathrm{mmol}$ ) was added in small pieces to a stirred solution of 4,5-dimethoxy-2nitrobenzaldehyde ( $500 \mathrm{mg}, 2.39 \mathrm{mmol}$ ) in glacial acetic acid ( 15 mL ), and the mixture was stirred at room temperature for 20 h and then worked up with ether and water. The organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, solvent was removed under reduced pressure, and the residue was purified by column chromatography (silica gel, PE/EA (8:2)), affording anthranil $\mathbf{2 k}(230 \mathrm{mg}, 54 \%)$ in the form of white needles.

## A general procedure for the synthesis of $\mathbf{2 H}$-chromene $\mathbf{1 b}-\mathbf{c}, \mathbf{1 f} \mathbf{- 1} \mathbf{g}, \mathbf{1 i}{ }^{7}$



A solution of phenol ( 5 mmol ) was added $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2 equiv) in acetone. The reaction mixture was stirred at room temperature. After 15 mins, 1.5 equiv of propargyl bromide or 1-bromo-2butyne were added. The resulting mixture was stirred at $60^{\circ} \mathrm{C}$ overnight, and the reaction was stopped by filtration and evaporation under vacuum. The crude product was extracted with ethyl acetate, washed by saturated brine. It was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and then solvent was removed. The crude product was purified by silica gel chromatography.

To a solution of aryl propargyl ethers ( 2.5 mmol ) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ was added $\mathrm{Ph}_{3} \mathrm{PAuNTf}_{2}$ ( $19 \mathrm{mg}, 1 \mathrm{~mol} \%$ ) at room temperature. After disappearance of the starting material (TLC and/or GC analysis), the reaction was concentrated under vacuum, and the residue was purified by chromatography (hexane/ethyl acetate, 50:1) through a short pad of silica gel to obtain 2 H -chronenes.

Synthesis of $\mathbf{1 a}, \mathbf{1 d} \mathbf{- e}, \mathbf{1 h}, \mathbf{1 j} \mathbf{- 1 0}$. They were prepared according to the reported procedure. ${ }^{8}$

## 3. General Procedural Information and Optimization of Hydroamination

## Typical Reaction Conditions for Synthesis of Chiral Amine.

A flame-dried pressure tube ( 15 mL ) equipped with a magnetic stir barr ( $10 \mathrm{~mm} \times 5 \mathrm{~mm}$, egg shaped) was evacuated and filled Ar for three times before being transferred into a glovebox. CuOAc ( $0.01 \mathrm{mmol}, 5 \mathrm{~mol} \%$ ), ( $(S, S)-(\mathrm{Ph}-\mathrm{BPE})(0.011 \mathrm{mmol}, 5.5 \mathrm{~mol} \%)$ and dry toluene ( 1 mL ) was added to the tube stirring for $10 \mathrm{~min} . \mathrm{PhSiH}_{3}(50 \mu \mathrm{~L}, 0.4 \mathrm{mmol}, 2$ equiv) was then added. This mixture was stirred for 30 min as a homogenous solution formed. At this time, chromene substrate ( 0.2 mmol , 1 equiv), fresh anthranil substrate ( $0.3 \mathrm{mmol}, 1.5$ equiv) and $t$ - BuOH ( 0.4 mmol , 2 equiv) were added in succession. The reaction tube was capped and taken out of the glovebox. The reaction was stirred at room temperature for 3-12 h. After completion by TLC, a saturated solution of $\mathrm{NH}_{4} \mathrm{~F}$ in MeOH (ca. 3 mL ) was carefully added to quench the reaction (Caution: gas evolution was observed). The reaction mixture was allowed to stir at room temperature for 15 min before diluted with $\mathrm{DCM}(\mathrm{ca} 10 \mathrm{~mL}$.$) and water (5 \mathrm{~mL})$. The organic phase was separated and the aqueous layer was extracted with DCM ( $10 \mathrm{~mL} * 2$ ). The combined organic phase was concentrated in vacuo and the residue was purified by silica gel chromatography using PE/EA (silica gel, $10: 1$ to $5: 1$ ) with $1 \% \mathrm{Et}_{3} \mathrm{~N}$ to afford the product.

## Optimization of Asymmetric Hydroamination Conditions



| 16 | $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ | L3 | n-hexane | $\mathrm{PhSiH}_{3}$ | - | NR | - |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 17 | CuOAc | L3 | n -hexane | $\mathrm{Ph}_{2} \mathrm{MeSiH}$ | - | NR | - |
| 18 | CuOAc | L3 | n-hexane | $\mathrm{Ph}_{2} \mathrm{SiH}_{2}$ | - | 15 | 98 |
| 19 | CuOAc | L3 | n -hexane | $(\mathrm{MeO})_{3} \mathrm{SiH}$ | - | 52 | 98 |
| 20 | CuOAc | L3 | n-hexane | $(\mathrm{EtO})_{3} \mathrm{SiH}$ | - | 73 | 98 |
| 21 | CuOAc | L3 | n -hexane | DEMS | - | 75 | 98 |
| 22 | CuOAc | L3 | n -hexane | PMHS | - | 32 | 98 |
| 23 | CuOAc | L3 | n -hexane | DMMS | - | 50 | 98 |
| 24 | CuOAc | L3 | n-hexane | $\left(\mathrm{Me}_{2} \mathrm{SiH}\right)_{2} \mathrm{O}$ | - | 22 | 98 |
| 25 | CuOAc | L3 | n -hexane | $\left(\mathrm{Me}_{3} \mathrm{SiO}\right)_{3} \mathrm{SiH}$ | - | 41 | 98 |
| 26 | CuOAc | L3 | n-hexane | $\left(\mathrm{Me}_{2} \mathrm{SiHO}\right)_{4} \mathrm{Si}$ | - | 34 | 98 |
| 27 | CuOAc | L3 | n-hexane | $\mathrm{PhSiH}_{3}$ | - | 83 | 98 |
| 28 | CuOAc | L3 | n -hexane | $\mathrm{PhSiH}_{3}$ | - | 9 e | 99 |
| 29 | CuOAc | L3 | Cyclo haxane | $\mathrm{PhSiH}_{3}$ | - | 78 | 97 |
| 30 | CuOAc | L3 | Toluene | $\mathrm{PhSiH}_{3}$ | - | 91 | 98 |
| 31 | CuOAc | L3 | P -xylene | $\mathrm{PhSiH}_{3}$ | - | 88 | 98 |
| 32 | CuOAc | L3 | THF | $\mathrm{PhSiH}_{3}$ | - | 71 | 98 |
| 33 | CuOAc | L3 | dioxane | $\mathrm{PhSiH}_{3}$ | - | 69 | 98 |
| 34 | CuOAc | L3 | EA | $\mathrm{PhSiH}_{3}$ | - | 82 | 98 |
| 35 | CuOAc | L3 | DCE | $\mathrm{PhSiH}_{3}$ | - | 48 | 91 |
| 36 | CuOAc | L3 | DMF | $\mathrm{PhSiH}_{3}$ | - | 57 | 98 |
| 37 | CuOAc | L3 | n-hexane | $\mathrm{PhSiH}_{3}$ | $\mathrm{PPh}_{3}$ | 69 | 98 |
| 38 | CuOAc | L3 | n-hexane | $\mathrm{PhSiH}_{3}$ | $\mathrm{t}-\mathrm{BuONa}$ | 77 | 98 |
| 39 | CuOAc | L3 | n -hexane | $\mathrm{PhSiH}_{3}$ | $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ | 65 | 98 |

The effect of temperature


The effect of the ratio between the reagents

| entry | $\mathbf{2 a}$ (equiv) | $\mathrm{PhSiH}_{3}$ <br> (equiv) | t-BuOH <br> (equiv) | yield <br> $(\%)$ | $e e(\%)$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 1 | 1.2 | 4.0 | 2.0 | 81 | 98 |
| 2 | 1.5 | 4.0 | 2.0 | 91 | 98 |
| 3 | 2.0 | 4.0 | 2.0 | 88 | 98 |
| 4 | 1.5 | 2.0 | 2.0 | 94 | 98 |
| 5 | 1.5 | 6.0 | 2.0 | 85 | 98 |
| 6 | 1.5 | 8.0 | 2.0 | 76 | 98 |
| 7 | 1.5 | 4.0 | 4.0 | 91 | 98 |

## 4. Analytic Data for the Products

(R)-(2-(chroman-4-ylamino)phenyl)methanol (3aa)


Yellow oil (47.9 mg, 94\% yield, $98 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63-4.53(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.63(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1,145.9,130.2,129.7,129.6,129.1,124.5,123.2,120.7,117.0,116.8,110.6,64.6$, 62.8, 46.4, 27.8. $[\alpha]^{27} \mathrm{D}=580.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=15.3$ $\min , \mathrm{t}_{\mathrm{r}}($ minor $)=21.6 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) m / z:[\mathrm{M}+\mathrm{H}]^{+}$calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}, 256.1338$; found 256.1331.

## (R)-(2-((6-methoxychroman-4-yl)amino)phenyl)methanol (3ba)



Yellow oil ( $48.5 \mathrm{mg}, 85 \%$ yield, $98 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.03(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.71-6.66(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.58(\mathrm{~m}, 1 \mathrm{H}), 4.61-$ $4.51(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.12(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 2.14-2.04(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $153.6,149.1,145.9,129.7,129.6,124.5,123.5,117.8,116.8,116.0,113.8,110.6,64.7,62.8,55.8,46.7$, 28.0. $[\alpha]^{28}{ }_{\mathrm{D}}=274.5$ (c 2.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel OJ-3 $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=$ 13.5 min . HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}$, 286.1443; found 286.1436 .

## (R)-(2-((6-methylchroman-4-yl)amino)phenyl)methanol (3ca)



Yellow oil (49.0 mg, 91\% yield, $98 \%$ ee, ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CHCl}_{3}$ ): $\delta 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.12$ $7.06(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 1 \mathrm{H}), 5.02$ (br s, 1H), $4.64-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.22-4.14(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 152.9,145.8,130.4,129.9,129.9,129.7,129.6,124.5,122.8,116.8,116.8,110.6,64.6$, 62.7, 46.4, 27.9, 20.6. $[\alpha]^{26}{ }_{\mathrm{D}}=602.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.6$ $\min , \mathrm{t}_{\mathrm{r}}($ major $)=13.1 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}, 270.1494$; found 270.1489.

## (R)-(2-((6-bromochroman-4-yl)amino)phenyl)methanol (3da)



Yellow oil ( $64.6 \mathrm{mg}, 97 \%$ yield, $96 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CHCl}_{3}$ ): $\delta \delta 7.44-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.27-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.82-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.67(\mathrm{~m}, 2 \mathrm{H}), 5.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.65-4.52$ $(\mathrm{m}, 3 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.05(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 154.2,145.7,132.6$, $132.0,129.7,129.6,125.3,124.6,119.0,117.1,112.6,110.6,64.7,63.0,46.3,27.6 .[\alpha]^{27}{ }_{\mathrm{D}}=596.7(\mathrm{c} 1.0$, $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=18.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=21.5 \mathrm{~min}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}_{2}, 334.0443$; found 334.0436.

## (R)-(2-((6-chlorochroman-4-yl)amino)phenyl)methanol (3ea)



Yellow oil ( $52.0 \mathrm{mg}, 90 \%$ yield, $97 \% \mathrm{ee}$ ). ${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 7.31-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.14-$ $7.10(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.83-6.75(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.67(\mathrm{~m}, 1 \mathrm{H}), 5.06(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67-4.53$ $(\mathrm{m}, 3 \mathrm{H}), 4.26-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 153.7,145.7,129.7$,
$129.6,129.6,129.2,125.4,124.8,124.6,118.5,117.1,110.6,64.7,63.1,46.3,27.6 .[\alpha]^{28}{ }_{D}=269.3(c 2.0$, $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/$ IPA $=85 / 15,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=13.8 \mathrm{~min} . \operatorname{HRMS}(E S I) \mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNO}_{2}, 290.0948$; found 290.0938.

## (R)-(2-((6-fluorochroman-4-yl)amino)phenyl)methanol (3fa)



Yellow oil (44.2 mg, 81\% yield, $97 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.30-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.12-7.07$ $(\mathrm{m}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.76(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.67-4.57(\mathrm{~m}, 3 \mathrm{H}), 4.25-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $156.9\left(\mathrm{~d}, J_{C-F}=238.5 \mathrm{~Hz}\right), 151.1\left(\mathrm{~d}, J_{C-F}=1.9 \mathrm{~Hz}\right), 145.8,129.7,129.6,124.6,124.3\left(\mathrm{~d}, J_{C-F}=6.9 \mathrm{~Hz}\right)$, $118.0\left(\mathrm{~d}, J_{C-F}=8.0 \mathrm{~Hz}\right), 117.1,116.1\left(\mathrm{~d}, J_{C-F}=23.3 \mathrm{~Hz}\right), 115.5\left(\mathrm{~d}, J_{C-F}=23.0 \mathrm{~Hz}\right), 110.6,64.8,63.1$, 46.6, 27.9. ${ }^{19}$ F NMR: $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-123.40 .[\alpha]_{\mathrm{D}}=578.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IC ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA $=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{r}}($ major $)=5.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=6.7 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}_{2}$, 274.1243; found 274.1233.

## (R)-(2-((6-phenylchroman-4-yl)amino)phenyl)methanol (3ga)



Colorless oil ( $60.9 \mathrm{mg}, 92 \%$ yield, $97 \% e e$,). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CHCl}_{3}$ ): $\delta 7.53-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.49-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.34-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.93$ $-6.87(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.78(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69-4.63(\mathrm{~m}, 1 \mathrm{H})$, $4.54-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.23-4.17(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 154.8$,
145.9, 140.7, 133.9, 129.8, 129.7, 128.8, 128.8, 127.9, 126.8, 126.7, 124.6, 123.6, 117.6, 117.0, 110.7, 64.6, 63.0, 46.6, 27.9. $[\alpha]^{28} \mathrm{D}=217.7\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IC $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=6.7 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $)=7.3 \mathrm{~min}$. HRMS $(E S I) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}, 332.1651$; found 332.1638 .

## (R)-(2-((6,8-dimethylchroman-4-yl)amino)phenyl)methanol (3ha)



Yellow oil ( $50.4 \mathrm{mg}, 89 \%$ yield, $95 \%$ ee). ${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.11-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.62-6.53(\mathrm{~m}, 2 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.61-4.51$ $(\mathrm{m}, 3 \mathrm{H}), 4.25-4.12(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 4 \mathrm{H}), 2.01-1.92(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,145.5,138.9,138.8,129.7,129.6,124.2,123.6,117.9,116.5,115.1,110.0,64.6$, $61.5,43.5,27.3,21.1,18.1 .[\alpha]^{27}{ }_{\mathrm{D}}=601.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ 11.9 min, $\mathrm{t}_{\mathrm{r}}($ major $)=13.6 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{2}, 284.1651$; found 284.1643.

## (R)-(2-((3,4-dihydro-2H-benzo[h]chromen-4-yl)amino)phenyl)methanol (3ia)



Yellow oil ( $52.5 \mathrm{mg}, 86 \%$ yield, $96 \% \mathrm{ee}$, ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CHCl}_{3}$ ): $\delta 8.25-8.18(\mathrm{~m}, 1 \mathrm{H}), 7.74-$ $7.71(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.88$ $-6.82(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 1 \mathrm{H}), 5.11((\mathrm{br} \mathrm{s}, 1 \mathrm{H})), 4.69(\mathrm{~s}, 1 \mathrm{H}), 4.56-4.48(\mathrm{~m}, 2 \mathrm{H}), 4.46-4.41(\mathrm{~m}$, 1H), $4.35-4.29(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.14(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 150.6,145.8,134.1$,
$129.7,129.6,127.6,127.5,126.6,125.5,125.2,124.5,122.0,120.2,116.8,116.4,110.6,64.6,63.0,46.3$, 27.8. $[\alpha]^{27}{ }_{\mathrm{D}}=680.6$ (c 1.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel IA $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/$ IPA $=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=9.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ 10.1 min . HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{NO}_{2}, 306.1494$; found 306.1491.

## (R)-(2-((6,6-dimethyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-8yl)amino)phenyl)methanol (3ja)



White solid ( $43.8 \mathrm{mg}, 67 \%$ yield, $87 \% e e$ ). M.p. $99-102^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26-7.21$ $(\mathrm{m}, 1 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.81-6.76(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.65(\mathrm{~m}, 1 \mathrm{H}), 6.36(\mathrm{~s}, 1 \mathrm{H}), 5.89$ $-5.83(\mathrm{~m}, 2 \mathrm{H}), 4.94(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.71-4.59(\mathrm{~m}, 3 \mathrm{H}), 2.23(\mathrm{dd}, \mathrm{J}=13.5,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.79(\mathrm{dd}, \mathrm{J}=13.5$, $9.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 148.7,147.7,146.8,141.6$, $129.8,129.6,124.4,116.5,115.0,110.5,106.5,100.9,98.9,75.2,64.9,46.1,39.9,29.0,25.5 .[\alpha]^{27}{ }_{D}=$ 581.2 (c 1.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25$ $\mathrm{cm})$, Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}(\mathrm{minor})=6.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=7.3 \mathrm{~min} . \mathrm{HRMS}$ (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{4}, 328.1549$; found 328.1541 .

## (2-(((2S,4R)-2-phenylchroman-4-yl)amino)phenyl)methanol (3ka)



Yellow oil ( $32.5 \mathrm{mg}, 49 \%$ yield, $95 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 7.46-7.30(\mathrm{~m}, 6 \mathrm{H}), 7.29-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.81(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 1 \mathrm{H}), 5.33$ $-5.05(\mathrm{~m}, 2 \mathrm{H}), 4.74-4.60(\mathrm{~m}, 3 \mathrm{H}), 2.47-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.14(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 155.3,145.7,140.9,130.5,129.7,129.6,129.4,128.6,128.0,126.4,124.6,122.4,121.0,117.4$,
$117.0,110.6,73.9,64.7,47.0,35.3 .[\alpha]^{26}{ }_{\mathrm{D}}=602.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IC $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}$, $\mathrm{t}_{\mathrm{r}}($ major $)=4.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=6.1 \mathrm{~min} . . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}, 332.1651$; found 332.1641 .

## (2-(((2R,4R)-2-phenylchroman-4-yl)amino)phenyl)methanol (3ka')



Yellow oil (17.9 mg, 27\% yield, $99 \% e e) .{ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.48-$ $7.43(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.87$ $-6.83(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.25(\mathrm{~m}, 1 \mathrm{H}), 5.12-4.93(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.57(\mathrm{~m}, 2 \mathrm{H}), 2.71$ $-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1,146.9,140.8,129.8,129.5$, $128.8,128.6,128.2,127.3,126.1,124.7,124.4,121.0,117.0,116.7,110.8,77.6,64.8,48.8,37.3 \cdot[\alpha]^{27}{ }_{D}$ $=501.1\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IC $(0.46 \mathrm{~cm} \mathrm{x} 25$ $\mathrm{cm})$, Hexanes $/ \mathrm{IPA}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=8,6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=10.0 \mathrm{~min} .$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}, 332.1651$; found 332.1641 .

## (2-(((3S,4R)-3-methylchroman-4-yl)amino)phenyl)methanol (3la)



Yellow oil ( $10.2 \mathrm{mg}, 19 \%$ yield, $99 \% e e,>20: 1 \mathrm{dr}$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.29-7.22(\mathrm{~m}, 2 \mathrm{H})$, $7.21-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.72(\mathrm{~m}, 1 \mathrm{H}), 6.72-6.66(\mathrm{~m}, 1 \mathrm{H})$, $5.10(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.63-6.57(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.99-3.93(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.09$ $(\mathrm{d}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,151.6,139.8,130.1,129.0,126.5,123.5$, $120.6,117.0,116.0,114.2,112.4,64.4,62.7,55.9,47.1,27.8 .[\alpha]^{27}{ }_{\mathrm{D}}=661.7$ (c 1.0, $\left.\mathrm{CHCl}_{3}\right)$. The
enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA = $80 /$ $20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=14.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=35.7 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}$, 270.1494; found 270.1488.

## (2-(((3S,4R)-3-phenylchroman-4-yl)amino)phenyl)methanol (3ma)



Yellow oil ( $32.1 \mathrm{mg}, 48 \%$ yield, $98 \% \mathrm{ee},>20: 1 \mathrm{dr}$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.35-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.29-7.15(\mathrm{~m}, 7 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.88(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.69(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.64(\mathrm{~m}, 1 \mathrm{H})$, $5.20(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.78-4.71(\mathrm{~m}, 1 \mathrm{H}), 4.55-4.46(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.32-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.37$ $-3.30(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.8,146.2,139.9,134.2,130.0,129.7,129.5,129.1$, $128.8,128.0,127.2,124.3,123.5,121.2,116.9,111.1,68.1,64.7,52.6,43.5 .[\alpha]^{27}{ }_{\mathrm{D}}=700.0(\mathrm{c} 1.0$, $\left.\mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IB ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / $\operatorname{IPA}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.3 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=15.0 \mathrm{~min} . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{NO}_{2}, 332.1651$; found 332.1641.

## (R)-(2-(chroman-4-ylamino)-5-methoxyphenyl)methanol (3ab)



Light yellow solid (34.2 mg, 60\% yield, $97 \%$ ee). M.p. $84-86{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32-$ $7.26(\mathrm{~m} \mathrm{H} \mathrm{H}), 7.22-7.15(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.71(\mathrm{~m}, 5 \mathrm{H}), 4.62-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.27-4.20(\mathrm{~m}, 2 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5,146.3,130.7,129.7,129.6,129.0$, $124.2,122.4,120.9,116.8,116.7,110.5,67.9,64.7,53.2,31.6,14.5 .[\alpha]^{27}{ }_{\mathrm{D}}=594.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OD-H ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA $=95$ $/ 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=21.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=24.4 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$
calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3}$, 286.1443; found 286.1436.

## (R)-4-(chroman-4-ylamino)-3-(hydroxymethyl)phenyl acetate (3ac)



Light yellow solid ( $37.6 \mathrm{mg}, 60 \%$ yield, $95 \%$ ee). M.p. $137-139^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.30$ $-7.26(\mathrm{~m} \mathrm{1H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.77(\mathrm{~m}, 4 \mathrm{H}), 4.99(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.66-$ $4.54(\mathrm{~m}, 3 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.17-2.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $170.4,155.0,143.7,141.2,130.0,129.2,125.2,123.1,122.5,122.0,120.7,117.1,110.9,64.2,62.7,46.7$, 27.8, 21.0. $[\alpha]^{26} \mathrm{D}=532.9\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IA $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/$ IPA $=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)$ $=18.6 \mathrm{~min}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4}, 314.1392$; found 314.1381.

## (R)-(2-(chroman-4-ylamino)-5-fluorophenyl)methanol (3ad)



Colorless oil ( $47.5 \mathrm{mg}, 87 \%$ yield, $97 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-$ $7.15(\mathrm{~m}, 1 \mathrm{H}), 6.98-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.71(\mathrm{~m}, 1 \mathrm{H}), 4.61-4.51(\mathrm{~m}, 3 \mathrm{H}), 4.27$ $-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 155.3(\mathrm{~d}, \mathrm{~J} C-F=190.0 \mathrm{~Hz}), 155.0,142.0$ $\left(\mathrm{d}, \mathbf{J}_{C-F}=2.1 \mathrm{~Hz}\right), 130.1,129.2,126.0\left(\mathrm{~d}, \mathrm{~J}_{C-F}=6.0 \mathrm{~Hz}\right), 123.1,120.7,117.1,116.2\left(\mathrm{~d}, \mathrm{~J}_{C-} F=22.7 \mathrm{~Hz}\right)$, $115.3\left(\mathrm{~d}, \mathrm{~J}_{C-F}=21.7 \mathrm{~Hz}\right), 111.6\left(\mathrm{~d}, \mathrm{~J}_{C-F}=7.3 \mathrm{~Hz}\right), 63.9\left(\mathrm{~d}, \mathrm{~J}_{C-F}=1.6 \mathrm{~Hz}\right), 62.7,46.9$, 27.7. ${ }^{19} \mathrm{~F}$ NMR: ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta-128.25 .[\alpha]^{27}{ }_{\mathrm{D}}=583.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}$ (major) $=16.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=30.5 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}_{2}, 274.1243$; found 274.1237.

## (R)-(5-chloro-2-(chroman-4-ylamino)phenyl)methanol (3ae)



Yellow oil ( $55.5 \mathrm{mg}, 96 \%$ yield, $98 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.17(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.84(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 1 \mathrm{H}), 5.03(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.65-4.59(\mathrm{~m}, 2 \mathrm{H}), 4.58-4.50(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C} \quad$ NMR: $\quad(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,144.4,130.0,129.3,129.2,129.1,126.0122 .9,121.3,120.8,117.1,111.8,64.0$, 62.7, 46.6, 27.7. $[\alpha]^{26}{ }_{\mathrm{D}}=576.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IC $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=10.0 \mathrm{~min}$, $\mathrm{t}_{\mathrm{r}}($ minor $)=12.0 \mathrm{~min}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNO}_{2}$, 290.0948; found 290.0938.

## (R)-(5-bromo-2-(chroman-4-ylamino)phenyl)methanol (3af)



Yellow oil ( $57.3 \mathrm{mg}, 86 \%$ yield, $99 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.94-4.79$ (m, 2H), $4.67-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 155.0,147.5,130.4,130.0,129.3,125.1,123.1,122.8,121.2,120.8,117.2,110.0,62.8,62.7,46.6$, 27.7. $[\alpha]^{27}{ }_{\mathrm{D}}=571.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=$ 13.4 min. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}_{2}, 334.0443$; found 334.0436.

## (R)-(2-(chroman-4-ylamino)-4-fluorophenyl)methanol (3ag)



Yellow oil ( $50.2 \mathrm{mg}, 92 \%$ yield, $98 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.55-6.49(\mathrm{~m}, 1 \mathrm{H}), 6.41-6.34(\mathrm{~m}, 1 \mathrm{H}), 5.23$ (br s, 1H), 4.61-4.52(m, 3H), 4.29-4.19(m, 2H), 2.20-2.10(m, 2H). ${ }^{13} \mathrm{C}$ NMR: ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 164.4(\mathrm{~d}, J=243.5 \mathrm{~Hz}), 155.1,147.6(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 130.7(\mathrm{~d}, J=10.5 \mathrm{~Hz}), 123.0,129.3,122.7$, $120.8,120.2,120.2,117.2,102.6(\mathrm{~d}, J=21.6 \mathrm{~Hz}), 98.0(\mathrm{~d}, J=26.3 \mathrm{~Hz}), 64.0,62.7,46.6,27.7 \cdot[\alpha]^{27}{ }_{\mathrm{D}}=$ 584.2 (c 1.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25$ $\mathrm{cm})$, Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=10.1 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.1 \mathrm{~min}$. HRMS (ESI) m/z: [M+H]+ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNO}_{2}$, 274.1243; found 274.1237.

## (R)-(4-chloro-2-(chroman-4-ylamino)phenyl)methanol (3ah)



Yellow oil ( $45.1 \mathrm{mg}, 78 \%$ yield, $99 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR: $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23-$ $7.17(\mathrm{~m}, 1 \mathrm{H}), 7.02-6.97(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.85(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.69-6.63(\mathrm{~m}, 1 \mathrm{H}), 5.19$ $(\mathrm{d}, \mathrm{J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.53(\mathrm{~m}, 3 \mathrm{H}), 4.30-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.20-2.09(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,146.9,135.4,130.4,130.0,129.3,122.7,122.6,120.8,117.2,116.4,110.5,64.1,62.7$, 46.4, 27.7. $[\alpha]^{27} \mathrm{D}=289.6$ (c 2.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel OJ-3 $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/$ IPA $=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=10.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ $($ minor $)=13.1 \mathrm{~min}$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNO}_{2}, 290.0948$; found 290.0938.

## (R)-(4-bromo-2-(chroman-4-ylamino)phenyl)methanol (3ai)



Light red oil ( $51.4 \mathrm{mg}, 77 \%$ yield, $97 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.21-$ $7.14(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}) 6.96-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.93$ $-4.78(\mathrm{~m}, 2 \mathrm{H}), 4.63(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.16(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.06(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 155.0,147.5,130.4,130.0,129.3,125.1,123.1,122.7,121.2,120.8,117.2,110.0,62.8,62.7$, 46.6, 27.7. $[\alpha]^{27}{ }_{\mathrm{D}}=601.3\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}$ $($ major $)=13.4$ min. $\mathrm{HRMS}(E S I) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}_{2}, 334.0443$; found 334.0436.

## (R)-(2-bromo-6-(chroman-4-ylamino)phenyl)methanol (3aj)



Yellow needle crystal (49.3 mg, 74\% yield, $97 \%$ ee). M.p. $111-113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta$ $7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.97-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.80-6.75(\mathrm{~m}, 1 \mathrm{H})$, $5.27(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.95-4.79(\mathrm{~m}, 2 \mathrm{H}), 4.69-4.60(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0,147.5,130.4,130.0,129.3,125.1,123.1,122.8,121.2,120.8$, 117.2, 110.0, 62.8, 62.7, 46.6, 27.7. $[\alpha]^{28}{ }_{\mathrm{D}}=573.0\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=75 / 25,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=11.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=13.8 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNO}_{2}$, 334.0443; found 334.0430.

## (R)-(2-(chroman-4-ylamino)-4,5-dimethoxyphenyl)methanol (3ak)



Yellow oil (45.3 mg, 72\% yield, $97 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.31-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.13(\mathrm{~m}, 1 \mathrm{H}), 6.91-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.62(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.25$ $-4.19(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.08(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.0$, $150.1,140.6,140.5,130.1,129.1,123.4,120.7,117.0,116.9,115.1,97.7,63.8,62.8,57.0,56.2,47.3$, 28.0. $[\alpha]^{28}{ }_{\mathrm{D}}=224.8\left(\mathrm{c} 3.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=16.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ 19.1 min . HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NO}_{4}, 316.1549$; found 316.1542.

## (R)-(4-bromo-2-(chroman-4-ylamino)phenyl)methanol (3al)



Yellow oil (23.1 mg, 43\% yield, dr: 7:1, 99.8\% ee (major), $87 \%$ ee (minor)). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.34-7.12(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.81(\mathrm{~m}, 3 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 1 \mathrm{H}), 5.37(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.95-4.83(\mathrm{~m}, 1 \mathrm{H})$, $4.73-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.33-4.18(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $(125$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 155.1,145.0,130.1,129.0,129.0,127.7,126.8,123.4,120.7,117.0,116.7,110.8,69.6$, 62.9, 46.3, 27.8, 21.6. $[\alpha]^{26}{ }_{\mathrm{D}}=220.9\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$ The enantiomeric excess was determined by Daicel Chiralcel OD-H $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=98 / 2,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r} \text {-major }}($ minor $)=$ $18.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}-\mathrm{major}}($ major $)=21.5 \mathrm{~min} . \mathrm{T}_{\mathrm{r} \text {-minor }}(\operatorname{minor})=12.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r} \text {-minor }}($ major $)=22.8 \mathrm{~min}$. HRMS $(E S I)$ $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{2}, 270.1494$; found 270.1483.

## (4-chloro-2-((R-chroman-4-yl)amino)phenyl)(phenyl)methanol (3am)



Yellow oil ( $65.6 \mathrm{mg}, 90 \%$ yield, dr: 7:1, $99.5 \%$ ee (major), $84 \%$ ee (minor)). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.34-7.22(\mathrm{~m}, 5 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 1 \mathrm{H}), 6.85-6.66(\mathrm{~m}, 4 \mathrm{H}), 5.69(\mathrm{~s}, 1 \mathrm{H}), 4.86$ $-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.50-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.18-3.92(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 1 \mathrm{H}), 2.13-1.92(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 154.8,143.3,141.0,129.9,129.0,128.8,128.8,128.7,128.3,128.0,126.4,122.8$, $121.4,120.7,116.9,112.0,74.7,62.7,46.6,27.8 \cdot[\alpha]^{25}{ }_{D}=187.2\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IB $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{r}-\text { major }}(\operatorname{minor})=11.9 \min , \mathrm{t}_{\mathrm{r} \text {-major }}($ major $)=18.5 \mathrm{~min} . \mathrm{T}_{\mathrm{r} \text {-minor }}(\operatorname{minor})=13.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r} \text {-minor }}($ major $)=$ 14.6 min . HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClNO}_{2}, 366.1261$; found 366.1256.

## (R)-1-(2-(chroman-4-ylamino)phenyl)ethan-1-one (3al')



Yellow oil (48.6 mg, 91\% yield, 97\% ee). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.32-9.16(\mathrm{~m}, 1 \mathrm{H}), 7.86-$ $7.78(\mathrm{~m}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.69$ $-6.65(\mathrm{~m}, 1 \mathrm{H}), 4.82-4.73(\mathrm{~m}, 1 \mathrm{H}), 4.29-4.21(\mathrm{~m}, 2 \mathrm{H}), 2.58(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.11(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 200.8,154.9,149.4,135.2,133.1,129.8,129.2,122.6,120.8,118.0,117.1,114.6$, 111.6, 63.0, 46.0, 28.2, 28.1. $[\alpha]^{25}{ }_{\mathrm{D}}=78.4\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=$ $16.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=20.2 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}, 268.1338$; found 268.1332.

## (R)-(4-chloro-2-(chroman-4-ylamino)phenyl)(phenyl)methanone (3am')



Yellow oil ( $69.0 \mathrm{mg}, 95 \%$ yield, $96 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.82(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.67 $-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.60-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.99$ $-6.88(\mathrm{~m}, 3 \mathrm{H}), 4.85-4.77(\mathrm{~m}, 1 \mathrm{H}), 4.34-4.25(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.15(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: ( 100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 198.1,154.9,148.6,139.5,134.9,134.5,131.5,129.8,129.4,129.1,128.3,122.1,120.9,118.9$, $118.5,117.2,113.2,62.9,46.4,28.0 .[\alpha]^{25}=23.6\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.8 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=15.8 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClNO}_{2}$, 364.1104; found 364.1095.

## (R)-(2-(thiochroman-4-ylamino)phenyl)methanol (3na)



Yellow oil ( $47.7 \mathrm{mg}, 88 \%$ yield, $94 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.29-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.07(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.84-6.77(\mathrm{~m}, 1 \mathrm{H}), 6.74$ $-6.66(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.74-4.67(\mathrm{~m}, 1 \mathrm{H}), 4.65-4.57(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.94-$ $2.86(\mathrm{~m}, 1 \mathrm{H}), 2.49-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 145.9,134.6$, $133.5,130.3,129.7,129.6,127.9,126.9,124.5,124.4,116.8,110.9,64.7,50.1,27.5,22.9 \cdot[\alpha]^{25}{ }_{D}=32.0$ (c 1.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel IC ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=97 / 3,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=14.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=15.7 \mathrm{~min}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NOS}$, 272.1109; found 272.1098.
(R)-(4-fluoro-2-(thiochroman-4-ylamino)phenyl)methanol (3ng)


Light yellow oil ( $43.4 \mathrm{mg}, 75 \%$ yield, $95 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.29-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.18$ - $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.53-6.45(\mathrm{~m}, 1 \mathrm{H}), 6.40-6.31(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.66-$ $4.50(\mathrm{~m}, 3 \mathrm{H}), 3.21-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.97-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.08(\mathrm{~m}, 1 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 164.4(\mathrm{~d}, J=243.5 \mathrm{~Hz}), 147.6(\mathrm{~d}, J=10.9 \mathrm{~Hz}), 134.0,133.5,130.7(\mathrm{~d}, J=$ $10.5 \mathrm{~Hz}), 130.3,128.0,127.0,124.5,120.1(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 102.6(\mathrm{~d}, J=21.7 \mathrm{~Hz}), 98.2(\mathrm{~d}, J=26.3 \mathrm{~Hz})$, 64.0, 50.3, 27.4, 22.7. ${ }^{19} \mathrm{~F}$ NMR ( $376 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta-111.86 .[\alpha]^{26}{ }_{\mathrm{D}}=34,9$ (c 1.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA $=90$ / $10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=9.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.6 \mathrm{~min} . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{FNOS}$, 290.1015; found 290.1005 .

## (R)-(4-chloro-2-(thiochroman-4-ylamino)phenyl)methanol (3nh)




Yellow oil ( $45.1 \mathrm{mg}, 74 \%$ yield, $92 \% e e) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.29-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.18-$ $7.13(\mathrm{~m}, 2 \mathrm{H}), 7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 7.00-6.96(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 1 \mathrm{H}), 6.68-6.62(\mathrm{~m}, 1 \mathrm{H}), 5.12$ (br s, 1H), $4.65(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.59-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.13(\mathrm{~m}, 1 \mathrm{H}), 2.94-2.87(\mathrm{~m}, 1 \mathrm{H}), 2.47-2.40(\mathrm{~m}$, $1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 146.9,135.4,133.9,133.5,130.4,130.4$, $128.0,127.0,124.5,122.7,116.4,110.7,64.1,50.1,27.3,22.7 .[\alpha]^{27}{ }_{D}=46.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IC ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA $=97 / 3$, $1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=7.7 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=8.5 \mathrm{~min} . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClNOS}$, 306.0719; found 306.0709.
(R)-(5-bromo-2-(thiochroman-4-ylamino)phenyl)methanol (3nf)


Light yellow oil ( $56.5 \mathrm{mg}, 81 \%$ yield, $93 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.27$ $-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.12(\mathrm{~m}, 3 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.73-6.61(\mathrm{~m}, 1 \mathrm{H}), 5.00(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.67-$ $4.60(\mathrm{~m}, 1 \mathrm{H}), 4.60-4.49(\mathrm{~m}, 2 \mathrm{H}), 3.20-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.98-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.44-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.18$ $-2.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 144.9,134.2,133.5,132.0,131.9,130.2,128.0,127.0$, 126.3, 124.6, 112.6, 108.3, 63.9, 50.3, 27.4, 22.8. $[\alpha]^{27}{ }_{\mathrm{D}}=52.6\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IC ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA $=90 / 10,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254$ $\mathrm{nm}, \mathrm{t}_{\mathrm{r}}($ major $)=6.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=7.1 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNOS}$, 350.0214; found 350.0205 .

## (R)-(2-bromo-6-(thiochroman-4-ylamino)phenyl)methanol (3nj)



White solid ( $39.8 \mathrm{mg}, 57 \%$ yield, $78 \%$ ee). M.p. $99-101{ }^{\circ} \mathrm{C}{ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.31-7.24$ $(\mathrm{m}, 1 \mathrm{H}), 7.22-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.00(\mathrm{~m}, 2 \mathrm{H}), 6.98-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.79-6.69(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.94-4.81(\mathrm{~m}, 2 \mathrm{H}), 4.71-4.61(\mathrm{~m}, 1 \mathrm{H}), 3.23-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.35(\mathrm{~m}$, $1 \mathrm{H}), 2.20-2.06(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 147.6,134.2,133.6,130.4,130.2,128.0,127.0$, $125.0,124.6,123.0,121.2,110.3,62.8,50.5,27.6,22.9 .[\alpha]^{25}=46.2\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IB ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}$, $\lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=7.2 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=8.5 \mathrm{~min} . \mathrm{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{BrNOS}$, 350.0214; found 350.0204 .
(4-chloro-2-(((R)-thiochroman-4-yl)amino)phenyl)(phenyl)methanol (3nm)


Yellow oil ( $57.2 \mathrm{mg}, 75 \%$ yield, dr: 5:1, $99.5 \% e e($ major $), 69 \% e e($ minor $)$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.33-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.18-7.15(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.63(\mathrm{~m}$, $1 \mathrm{H}), 5.74-5.67(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.54-4.47(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.64(\mathrm{~m}, 2 \mathrm{H}), 2.41(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.28$ - $2.01(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 MHz, $\mathrm{CDCl}_{3}$ ): $\delta 143.2,141.0,134.2,133.2,129.9,128.8,128.7,128.6$, $128.3,128.0,127.8,126.8,126.5,124.5,121.4,112.2,74.6,50.4,27.5,22.8 .[\alpha]^{25}{ }_{\mathrm{D}}=13.5\left(\mathrm{c} 2.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel IB $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/$ IPA $=95$ $/ 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r} \text {-major }}($ major $)=13.0 \mathrm{~min}, \mathrm{t}_{\mathrm{r}-\text { major }}(\operatorname{minor})=21.9 \mathrm{~min} . \mathrm{T}_{\mathrm{r}-\text { minor }}($ minor $)=14.5$ $\min , \mathrm{t}_{\mathrm{r} \text {-minor }}($ major $)=17.2 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{ClNOS}, 382.1032$; found 382.1022.

## (R)-(4-chloro-2-(thiochroman-4-ylamino)phenyl)(phenyl)methanone (3nm')



Yellow oil ( $53.8 \mathrm{mg}, 71 \%$ yield, $92 \% e e) .{ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 8.83(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65$ $-7.60(\mathrm{~m}, 2 \mathrm{H}), 7.57-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21$ $-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.83(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.73(\mathrm{~m}, 1 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 1 \mathrm{H}), 3.03$ $-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.25(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ( $125 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 198.2,148.7,139.5,134.9,134.4$, $134.0,133.6,131.5,129.4,129.2,129.2,128.3,128.3,128.0,127.2,124.7,118.9,118.4,113.5,50.4$, 28.3, 23.4. $[\alpha]^{28}=9.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ$3(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/$ IPA $=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.4 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)$ $=22.0 \mathrm{~min}$. HRMS $(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClNOS}, 380.0876$; found 380.0865 .

## 1-(2-(((R)-thiochroman-4-yl)amino)phenyl)ethan-1-ol (3nl)



Light yellow oil ( $46.5 \mathrm{mg}, 82 \%$ yield, dr: 6:1, $99 \% e e\left(\right.$ major), $72 \% e e($ minor) $) .{ }^{1} \mathrm{H}$ NMR ( 500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.34-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.84-$ $6.79(\mathrm{~m}, 1 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.93-4.85(\mathrm{~m}, 1 \mathrm{H}), 4.72-4.67(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.14(\mathrm{~m}, 1 \mathrm{H}), 2.96$ - $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.12(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.54(\mathrm{~m}, 3 \mathrm{H}){ }^{13} \mathrm{C}$ NMR: $(125 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 145.2,134.8,133.4,130.2,128.9,127.8,127.7,126.9,126.8,124.5,116.7,111.2,69.8,50.2$, 27.7, 23.0, 21.8. $[\alpha]^{25}{ }_{\mathrm{D}}=63.9$ (c 2.0, $\mathrm{CHCl}_{3}$ ). The enantiomeric excess was determined by Daicel Chiralcel IB $(0.46 \mathrm{~cm} \times 25 \mathrm{~cm})$, Hexanes $/ \mathrm{IPA}=95 / 5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\text {r-major }}($ major $)=13.8$ $\min , \mathrm{t}_{\mathrm{r} \text {-major }}(\operatorname{minor})=9.9 \min . \mathrm{T}_{\mathrm{r} \text {-minor }}(\operatorname{minor})=14.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r} \text {-minor }}($ major $)=17.2 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:$ $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NOS}$, 286.1266; found 286.1261.

## (R)-1-(2-(thiochroman-4-ylamino)phenyl)ethan-1-one (3nl')



Yellow oil ( $32.8 \mathrm{mg}, 58 \%$ yield, $93 \% e e$ ). ${ }^{1} \mathrm{H}$ NMR ( $500 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 9.36-9.15(\mathrm{~m}, 1 \mathrm{H}), 7.82-$ $7.77(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.85$ $-6.80(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.62(\mathrm{~m}, 1 \mathrm{H}), 4.78-4.71(\mathrm{~m}, 1 \mathrm{H}), 3.16-3.09(\mathrm{~m}, 1 \mathrm{H}), 3.00-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.59$ $(\mathrm{s}, 3 \mathrm{H}), 2.38-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.21(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: $\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.9,149.6,135.2$, $134.4,133.5,133.1,129.4,127.8,127.1,124.6,117.8,114.5,111.9,45.0,28.4,28.1,23.5 \cdot[\alpha]^{25} \mathrm{D}=18.6$ (c $\left.1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=70 / 30,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ major $)=12.6 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ minor $)=13.8 \mathrm{~min}$. HRMS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NOS}$, 284.1109; found 284.1104.

## ethyl 2-(1-((R)-chroman-4-yl)-2-oxo-1,2,3,5-tetrahydrobenzo[e][1,4]oxazepin-3-

## yl)acetate (4) ${ }^{8}$



The solution of fumaric acid chloride monoethyl ester ( $38.9 \mathrm{mg}, 0.24 \mathrm{mmol}$ ) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added dropwise to a solution of $\mathbf{3 a a}(51.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(41.7 \mathrm{mg}, 0.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.5 \mathrm{~mL})$. The reaction mixture was stirred for 2 h at room temperature and filtered. The filtrate was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure to give the mixture without further purify. The mixture, $\mathrm{K}_{2} \mathrm{CO}_{3}(45.5 \mathrm{mg}, 0.33 \mathrm{mmol}), \mathrm{MeOH}(1 \mathrm{~mL})$ and water $(150 \mathrm{uL})$ was stirred overnight at room temperature. The reaction mixture was diluted with water, acidified, extracted with AcOEt. The extract was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and then concentrated under reduced pressure. The residue was purified by column chromatography to give the $\mathbf{4}$ as a solid in 65\% yield (silica gel, PE/EA).

## Ethyl (R)-2-(1-(chroman-4-yl)-2-oxo-1,5-dihydro-313-benzo[e][1,4]oxazepin-

## 3(2H)-yl)acetate (4)



White solid ( 49.6 mg , $65 \%$ yield, dr: 4:1, $98 \%$ ee(major), $97 \%$ ee(minor)). M.p. $111-113{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.36-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H})$, $7.00-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.88-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.70-6.66(\mathrm{~m}, 1 \mathrm{H}), 6.50-6.44(\mathrm{~m}, 1 \mathrm{H}), 4.75-4.58(\mathrm{~m}, 2 \mathrm{H})$, $4.43-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.19-4.11(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.15(\mathrm{~m}, 1 \mathrm{H}), 2.72-2.64(\mathrm{~m}, 1 \mathrm{H})$, $2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 170.9$, $169.4,155.0,139.8,130.4,130.1,130.0,128.8,127.8,127.4,122.9,122.7,121.4,117.2,70.2,67.7,65.3$,
$60.7,49.7,35.7,26.3,14.2 .[\alpha]^{25}=-62.8\left(\mathrm{c} 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OD-H ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes $/ \mathrm{IPA}=80 / 20,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r} \text {-major }}$ $($ major $)=8.5 \mathrm{~min}, \mathrm{t}_{\mathrm{r}-\text { major }}($ minor $)=19.0 \mathrm{~min} . \mathrm{T}_{r-\text { minor }}($ minor $)=12.9 \mathrm{~min}, \mathrm{t}_{r-\text { minor }}($ major $)=42.4 \mathrm{~min}$. HRMS (ESI) m/z: $[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{NO}_{5}, 382.1654$; found 382.1644.

## (R)-1-(chroman-4-yl)-1,4-dihydro-2H-benzo[d][1,3]oxazine (5)



To the suspension of $3 \mathbf{a a}(51.0 \mathrm{mg}, 0.2 \mathrm{mmol})$ in 1 ml of toluene, a 0.1 mL of $37 \%$ formaldehyde solution was added. The mixture was then stirred vigorously at room temperature for 2 h (The process of the reaction could be monitored by TLC analysis). The organic phase was separated and the aqueous layer was extracted with $\mathrm{DCM}(10 \mathrm{~mL} * 2)$. The combined organic solution was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The residue was purified by flash column chromatography using PE/EA to afford 5. Light yellow oil ( $52.9 \mathrm{mg}, 99 \%$ yield, $96 \%$ ee). ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ): $\delta 7.49-7.44$ (m, $1 \mathrm{H}), 7.22-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.04-7.00(\mathrm{~m}, 1 \mathrm{H}), 6.99-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.88-6.83(\mathrm{~m}, 1 \mathrm{H}), 5.00-4.95(\mathrm{~m}$, $1 \mathrm{H}), 4.94-4.86(\mathrm{~m}, 2 \mathrm{H}), 4.67-4.45(\mathrm{~m}, 2 \mathrm{H}), 4.36-4.29(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.14(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.25(\mathrm{~m}$, $1 \mathrm{H}), 2.14-2.07(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR: ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 156.0,143.6,128.9,128.7,127.4,125.2$, 122.7, 120.7, 120.2, 117.5, 117.1, 117.1, 77.1, 67.8, 65.1, 56.3, 27.2. $[\alpha]^{28}{ }_{D}=693.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$. The enantiomeric excess was determined by Daicel Chiralcel OJ-3 ( $0.46 \mathrm{~cm} \times 25 \mathrm{~cm}$ ), Hexanes / IPA $=95$ / $5,1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{r}}($ minor $)=16.9 \mathrm{~min}, \mathrm{t}_{\mathrm{r}}($ major $)=29.7 \mathrm{~min} . \operatorname{HRMS}(\mathrm{ESI}) \mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]+$ calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{2}$, 268.1338; found 268.1334.

## 5. Reference

1. J. Chauhan, S. Fletcher, Tetrahedron Lett. 2012, 53, 4951-4954.
2. H. Jin, L. Huang, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 794-797.
3. H. Jin, B. Tian, X. Song, J. Xie, M. Rudolph, F. Rominger, A. S. K. Hashmi, Angew. Chem. Int. Ed. 2016, 55, 12688-12692.
4. B. O. Ashburn, R. G. Carter, Angew. Chem. Int. Ed. 2006, 45, 6737-6741.
5. S. Kumar, E. J. Wachtel, E. Keinan, J. Org. Chem. 1993, 58, 3821-3827.
6. L. Ren, T. Lei, J.-X. Ye, L.-Z. Gong, Angew. Chem. Int. Ed. 2012, 124, 795-798.
7. C. Efe, I. N. Lykakis, M. Stratakis, Chem. Commun. 2011, 47, 803-805.
8. T. Miki, M. Kori, H. Mabuchi, H. Banno, R.Tozawa, M. Nakamura, S. Itokawa, Y. Sugiyama, H. Yukimasa, Biorg. Med. Chem. 2002, 10, 401-414.

## 6. NMR Spectrum

## (R)-(2-(chroman-4-ylamino)phenyl)methanol (3aa)



```
\~
```



## (R)-(2-((6-methoxychroman-4-yl)amino)phenyl)methanol (3ba)




(R)-(2-((6-methylchroman-4-yl)amino)phenyl)methanol (3ca)




(R)-(2-((6-bromochroman-4-yl)amino)phenyl)methanol (3da)






1 I VジV II II

(R)-(2-((6-chlorochroman-4-yl)amino)phenyl)methanol (3ea)





(R)-(2-((6-fluorochroman-4-yl)amino)phenyl)methanol (3fa)





```
\infty
N~~
```



(R)-(2-((6-phenylchroman-4-yl)amino)phenyl)methanol (3ga)



|  | $\bigcirc 0$ | $\bullet$ |
| :---: | :---: | :---: |
| ¢ | ¢ | $\stackrel{+}{+}$ |
|  | \/ | \| |


(R)-(2-((6,8-dimethylchroman-4-yl)amino)phenyl)methanol (3ha)



| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | -10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | f1 |  |  |  |  |  |  |

(R)-(2-((3,4-dihydro-2H-benzo[h]chromen-4-yl)amino)phenyl)methanol (3ia)



|  | $\bigcirc 0$ | m |
| :---: | :---: | :---: |
|  | ホ ¢ | $\stackrel{\circ}{\circ}$ |
| - | \/ | \| |


( $R$ )-(2-((6,6-dimethyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-8-
yl)amino)phenyl)methanol (3ja)



$$
\begin{aligned}
& \text { (2x) }
\end{aligned}
$$



| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | $-10$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |

(2-(((2S,4R)-2-phenylchroman-4-yl)amino)phenyl)methanol (3ka)





| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | -10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |

(2-(((2R,4R)-2-phenylchroman-4-yl)amino)phenyl)methanol (3ka')









| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | -10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |

(2-(((3S,4R)-3-methylchroman-4-yl)amino)phenyl)methanol (3la)






(2-(((3S,4R)-3-phenylchroman-4-yl)amino)phenyl)methanol (3ma)





(R)-(2-(chroman-4-ylamino)-5-methoxyphenyl)methanol (3ab)
$\underset{\sim}{\dot{N}} \underset{\sim}{\Gamma} \underset{\sim}{\sim} \underset{\sim}{\sim}$





|  |  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | -10 |
| f1 |  |  |  |  |  |  |  |  |  |  |  |
| $(\mathrm{ppm})$ |  |  |  |  |  |  |  |  |  |  |  |

(R)-4-(chroman-4-ylamino)-3-(hydroxymethyl)phenyl acetate (3ac)



(R)-(2-(chroman-4-ylamino)-5-fluorophenyl)methanol (3ad)


鯇
路害


| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | －10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |

\begin{abstract}
$\stackrel{L}{\sim}$


| 10 | -10 | -30 | -50 | -70 | $\begin{array}{r} -90 \\ f 1 \end{array}$ | $\begin{aligned} & -110 \\ & \mathrm{pm}) \end{aligned}$ | -130 | -150 | -170 | -190 | -210 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

## (R)-(5-chloro-2-(chroman-4-ylamino)phenyl)methanol (3ae)





## ( $R$ )-(5-bromo-2-(chroman-4-ylamino)phenyl)methanol (3af)






## (R)-(2-(chroman-4-ylamino)-4-fluorophenyl)methanol (3ag)





(R)-(4-chloro-2-(chroman-4-ylamino)phenyl)methanol (3ah)



(R)-(4-bromo-2-(chroman-4-ylamino)phenyl)methanol (3ai)




(R)-(2-bromo-6-(chroman-4-ylamino)phenyl)methanol (3aj)



(R)-(2-(chroman-4-ylamino)-4,5-dimethoxyphenyl)methanol (3ak)


```
\underbrace~
```



```
\underbrace~
* N~N~
```





(R)-(4-bromo-2-(chroman-4-ylamino)phenyl)methanol (3al)



(4-chloro-2-(((R)-chroman-4-yl)amino)phenyl)(phenyl)methanol (3am)




(R)-1-(2-(chroman-4-ylamino)phenyl)ethan-1-one (3al')





$\begin{array}{lllllllllllll}210 & 190 & 170 & 150 & 130 & \begin{array}{rlrl}110 & 90 \\ \text { f1 }\end{array} & & & \begin{array}{c}90 \\ (\mathrm{ppm})\end{array} & & 70\end{array}$
(R)-(4-chloro-2-(chroman-4-ylamino)phenyl)(phenyl)methanone (3am')







|  |  |  |  |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 210 | 190 | 170 | 150 | 130 | 110 <br> f1 | 90 <br> $(\mathrm{ppm})$ | 70 | 50 | 30 | 10 |

(R)-(2-(thiochroman-4-ylamino)phenyl)methanol (3na)





| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | $-10$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  | f1 |  |  |  |  |  |  |

(R)-(4-fluoro-2-(thiochroman-4-ylamino)phenyl)methanol (3ng)



## 




| 210 | 190 | 170 | 150 | 130 | 110 | 90 | 70 | 50 | 30 | 10 | -10 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |




## (R)-(4-chloro-2-(thiochroman-4-ylamino)phenyl)methanol (3nh)



| ¢ | $\overline{0}$ |
| :---: | :---: |






## (R)-(5-bromo-2-(thiochroman-4-ylamino)phenyl)methanol (3nf)





## (R)-(2-bromo-6-(thiochroman-4-ylamino)phenyl)methanol (3nj)








## (4-chloro-2-(((R)-thiochroman-4-yl)amino)phenyl)(phenyl)methanol (3nm)




(R)-(4-chloro-2-(thiochroman-4-ylamino)phenyl)(phenyl)methanone (3nm')




## 1-(2-(((R)-thiochroman-4-yl)amino)phenyl)ethan-1-ol (3nl)






$\infty$
0
0
1
1




## (R)-1-(2-(thiochroman-4-ylamino)phenyl)ethan-1-one (3nl')



$-200.9$

~


ethyl 2-(1-((R)-chroman-4-yl)-2-oxo-1,2,3,5-tetrahydrobenzo[e][1,4]oxazepin-3yl)acetate (4)





(R)-1-(chroman-4-yl)-1,4-dihydro-2H-benzo[d][1,3]oxazine (5)

## 






## 7. HPLC Spectrum

(R)-(2-(chroman-4-ylamino)phenyl)methanol (3aa)



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 15.458 |  | 0.5120 | 2976.71094 | 89.50433 | 50.0890 |
| 2 | 21.668 | BBA | 1.0166 | 2966.12695 | 45.37621 | 49.9110 |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak RetTime Type | Width | Area | Height | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | [min] | [min] | [mAU*s] | [mAU] | \% |

(R)-(2-((6-methoxychroman-4-yl)amino)phenyl)methanol (3ba)



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime [min] | Type | Width [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area 응 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.055 |  | 0.4153 | 5102.24561 | 191.20593 | 50.3364 |
| 2 | 13.441 |  | 0.5918 | 5034.04297 | 132.93022 | 49.6636 |

Totals : $1.01363 e 4324.13615$


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | ```RetTime Type [min]``` | $\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$ | $\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.120 MM | 0.4070 | 13.95423 | $5.71487 e-1$ | 1.0345 |
| 2 | 13.515 BB | 0.5955 | 1334.96936 | 34.80577 | 98.9655 |

(R)-(2-((6-methylchroman-4-yl)amino)phenyl)methanol (3ca)



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.437 |  | 0.4205 | 5859.16064 | 218.71104 | 49.4025 |
| 2 | 12.995 | BBA | 0.5595 | 6000.89697 | 168.51047 | 50.5975 |

Totals : 1.18601 e 4387.22151


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area <br> 응 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.587 | BB | 0.3944 | 148.62700 | 5.41217 | 1.0118 |
| 2 | 13.104 | BB | 0.5774 | 1.45412 e 4 | 398.82242 | 98.9882 |

```
Totals :
                        1.46898e4 404.23459
```


## (R)-(2-((6-bromochroman-4-yl)amino)phenyl)methanol (3da)





```
Signal 2: DAD1 B, Sig=254,4 Ref=off
```

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 18.030 |  | 0.7376 | 1.30836 e 4 | 269.87268 | 49.8064 |
| 2 | 21.485 |  | 0.8267 | 1.31854 e 4 | 243.11670 | 50.1936 |



Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak RetTime Type | Width | Area | Height | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | [min] |  | [min] | [mAU*s] | [mAU] |

```
Totals :

\section*{(R)-(2-((6-chlorochroman-4-yl)amino)phenyl)methanol (3ea)}



Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\quad \#
\end{gathered}
\] & \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} * \mathrm{~s}]}
\end{gathered}
\] & Height
[mAU ] & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 11.754 & BB & 0.4691 & 9404.85156 & 314.29456 & 50.4391 \\
\hline 2 & 13.777 & BB & 0.5825 & 9241.09180 & 249.26575 & 49.5609 \\
\hline
\end{tabular}

Totals : 1.86459 e 4 563.56030


Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{cccccc} 
Peak RetTime Type & Width & Area & Height & Area \\
\(\#\) & [min] & & {\([\) min] } & [mAU*s] & [mAU]
\end{tabular}
```

Totals :
2.51293e4 644.86590

```

\section*{(R)-(2-((6-fluorochroman-4-yl)amino)phenyl)methanol (3fa)}



Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area \% \\
\hline 1 & 5.535 & BV R & 0.1302 & 1.70161 e 4 & 2018.80334 & 49.6591 \\
\hline 2 & 6.687 & VB & 0.1623 & \(1.72497 e 4\) & 1645.98511 & 50.3409 \\
\hline
\end{tabular}

Totals: \(3.42658 e 43664.78845\)


Signal 1: DAD1 A, Sig=254,4 Ref=360,100


\section*{(R)-(2-((6-phenylchroman-4-yl)amino)phenyl)methanol (3ga)}


```

Signal 2: DAD1 B, Sig=254,4 Ref=off

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & Height [mAU] & Area \% \\
\hline 1 & 6.645 & & 0.1734 & \(1.39226 e 4\) & 1236.04980 & 49.8186 \\
\hline 2 & 7.240 & & 0.2124 & 1.40240 e 4 & 1100.20471 & 50.1814 \\
\hline
\end{tabular}


Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{cccccc} 
Peak & RetTime Type & Width & Area & Height & Area \\
\(\#\) & [min] & & [min] & [mAU*s] & [mAU]
\end{tabular}

\section*{(R)-(2-((6,8-dimethylchroman-4-yl)amino)phenyl)methanol (3ha)}



Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime [min] & Type & \[
\begin{aligned}
& \text { width } \\
& {[m i n]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~S}]}
\end{gathered}
\] & Height
[mAU] & Area \% \\
\hline 1 & 11.798 & & 0.5443 & 8537.05273 & 240.38194 & 49.3159 \\
\hline 2 & 13.683 & & 0.5491 & 8773.88672 & 246.61345 & 50.6841 \\
\hline Totals & S : & & & 1.73109 e 4 & 486.99539 & \\
\hline
\end{tabular}


Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{cccccc} 
Peak \\
RetTime Type & Width & Area & Height & Area \\
\# & [min] & & [min] & [mAU*s] & [mAU]
\end{tabular}

\section*{(R)-(2-((3,4-dihydro-2H-benzo[h]chromen-4-yl)amino)phenyl)methanol (3ia)}



Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[m A U^{*} \mathrm{~s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 9.161 & BB & 0.1914 & 1811.32349 & 143.40982 & 50.0904 \\
\hline 2 & 10.140 & BB & 0.2138 & 1804.78467 & 128.52042 & 49.9096 \\
\hline Total & s : & & & 3616.10815 & 271.93024 & \\
\hline
\end{tabular}


Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{cccccc} 
Peak RetTime Type & Width & Area & Height & Area \\
\(\#\) & [min] & & [min] & [mAU*s] & [mAU]
\end{tabular}

\section*{(R)-(2-((6,6-dimethyl-7,8-dihydro-6H-[1,3]dioxolo[4,5-g]chromen-8-}

\section*{yl)amino)phenyl)methanol (3ja)}


```

Signal 2: DAD1 B, Sig=254,4 Ref=off

| $\begin{gathered} \text { Peak } \\ \# \end{gathered}$ | RetTime Type [min] | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU} * \mathrm{~s}]} \end{gathered}$ | Height [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 6.219 BV | 0.2406 | 2604.79468 | 166.40924 | 49.7679 |
| 2 | 7.404 VB | 0.3230 | 2629.09253 | 124.18684 | 50.2321 |

Totals : 5233.88721 290.59608

```

```

Signal 2: DAD1 B, Sig=254,4 Ref=off

```
Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak
\# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[m A U * s]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 6.158 & & 0.2365 & 129.38199 & 8.27130 & 6.1634 \\
\hline 2 & 7.311 & & 0.3178 & 1969.82446 & 95.03085 & 93.8366 \\
\hline
\end{tabular}
```

```
Totals : 2099.20645 103.30215
```

```
Totals : 2099.20645 103.30215
```


## (2-(((2S,4R)-2-phenylchroman-4-yl)amino)phenyl)methanol (3ka)




Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | RetTime [min] | Type | $\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$ | Area 응 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4.909 | FM | 0.1468 | 2121.17163 | 240.75459 | 49.9489 |
| 2 | 6.107 |  | 0.1750 | 2125.51538 | 202.44238 | 50.0511 |
| Totals | S : |  |  | 4246.68701 | 443.19698 |  |



Signal 2: DAD1 B, Sig=254,4 Ref=off


## (2-(((2R,4R)-2-phenylchroman-4-yl)amino)phenyl)methanol (3ka')




Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[m A U * s]} \end{gathered}$ | $\begin{gathered} \text { Height } \\ {[\mathrm{mAU}]} \end{gathered}$ | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 8.569 |  | 0.2330 | 2998.84106 | 197.68797 | 49.7428 |
| 2 | 9.966 |  | 0.2803 | 3029.84912 | 166.51379 | 50.2572 |

Totals : 6028.69019 364.20177


Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak RetTime Type |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# Width | Area | Height | Area |  |  |
| [min] |  | [min] | [mAU*s] | [mAU] | \% |

## (2-(((3S,4R)-3-methylchroman-4-yl)amino)phenyl)methanol (3la)




Signal 1: DAD1 A, Sig=254, 4 Ref=360,100

| Peak \# | RetTime <br> [min] | Type | $\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14.827 | BB | 0.6961 | 3033.13452 | 67.77893 | 46.5173 |
| 2 | 35.768 |  | 4.5900 | 3487.31006 | 12.66272 | 53.4827 |



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$ | $\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 14.470 |  | 0.6707 | 1305.15381 | 30.287 | 100.0000 |
| Total | s : |  |  | 1305.15381 | 30.287 |  |

## (2-(((3R,4R)-3-phenylchroman-4-yl)amino)phenyl)methanol (3ma)




Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| RetTime Type | Width | Area | Height | Area |  |
| $\#$ | [min] | [min] | [mAU*s] | [mAU] | \% |

Totals : 7004.64233357 .92229


Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | RetTime [min] | Type | Width [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \text { s }]} \end{gathered}$ | Height <br> [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.352 | BB | 0.2940 | 31.04382 | 1.56096 | 0.8395 |
| 2 | 14.998 |  | 0.3392 | 3666.71924 | 163.79053 | 99.1605 |

## (R)-(2-(chroman-4-ylamino)-5-methoxyphenyl)methanol (3ab)




Signal 2: DAD1 B, Sig=254,4 Ref=off



Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak RetTime Type | Width | Area | Height | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | [min] | [min] | [mAU*s] | [mAU] | \% |

(R)-4-(chroman-4-ylamino)-3-(hydroxymethyl)phenyl acetate (3ac)



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.483 | BB | 0.3259 | 4405.81934 | 204.02747 | 49.7587 |
| 2 | 18.266 | BB | 0.4436 | 4448.55127 | 153.71765 | 50.2413 |

Totals :


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*s}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & {[m A U]} \end{aligned}$ | Area <br> $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 13.569 |  | 0.4056 | 77.30832 | 2.70368 | 2.3821 |
| 2 | 18.637 |  | 0.4536 | 3168.10620 | 106.95918 | 97.6179 |
| Total | s : |  |  | 3245.41452 | 109.66285 |  |

## (R)-(2-(chroman-4-ylamino)-5-fluorophenyl)methanol (3ad)




Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak | RetTime Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | [min] |  | [min] | [mAU*s] | [mAU] |

Totals :
1.76459 e 4362.41483


Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | RetTime [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | Height <br> [mAU] | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.461 |  | 0.4784 | 4277.69043 | 137.69296 | 98.6774 |
| 2 | 30.532 | MM | 1.5101 | 57.33657 | $6.32825 e-1$ | 1.3226 |

Totals : 4335.02700138 .32579

## (R)-(5-chloro-2-(chroman-4-ylamino)phenyl)methanol (3ae)




Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 9.970 |  | 0.2478 | 4842.10791 | 300.84753 | 50.3759 |
| 2 | 11.903 |  | 0.3071 | 4769.85107 | 240.76421 | 49.6241 |

Totals : $9611.95898 \quad 541.61174$


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | RetTime <br> [min] | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~S}]} \end{gathered}$ | Height [mAU ] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.021 |  | 0.2227 | 1622.10889 | 112.17372 | 98.7646 |
| 2 | 12.022 | BB | 0.2881 | 20.28997 | 1.08531 | 1.2354 |

## (R)-(5-bromo-2-(chroman-4-ylamino)phenyl)methanol (3af)




Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$ | $\begin{gathered} \text { Area } \\ {\left[m A U^{\star} s\right]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area. \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.931 | BB | 0.3282 | 1.41281e4 | 664.18909 | 49.8324 |
| 2 | 13.304 | BB | 0.4182 | 1.42232e4 | 521.45111 | 50.1676 |

Totals: 2.83513e4 1185.64020


Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak | RetTime Type | Width | Area | Height | Area |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\#$ | [min] |  | [min] | [mAU*s] | [mAU] |

Totals : 7689.87591294 .24840
(R)-(2-(chroman-4-ylamino)-4-fluorophenyl)methanol (3ag)



Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak RetTime Type | Width | Area | Height | Area |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \# | [min] |  | [min] | [mAU*s] | $[\mathrm{mAU}]$ |

Totals : $4.02211 e 41630.55029$


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ {[\text { min] }} \end{gathered}$ | Type | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & {[m A U]} \end{aligned}$ | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.062 |  | 0.3128 | 2845.87183 | 137.89563 | 99.1355 |
| 2 | 13.092 | MM | 0.5337 | 24.81657 | $7.75027 e-1$ | 0.8645 |

Totals: 2870.68839138 .67066

## (R)-(4-chloro-2-(chroman-4-ylamino)phenyl)methanol (3ah)





Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | Width [min] | $\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$ | Area <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.658 | BB | 0.3806 | 1.88868 e 4 | 758.30756 | 49.9520 |
| 2 | 13.071 |  | 0.6061 | 1.89231 e 4 | 484.03149 | 50.0480 |

Totals : $3.78099 e 4$ 1242.33905


Signal 1: DAD1 A, Sig=254,4 Ref=360,100


## (R)-(4-bromo-2-(chroman-4-ylamino)phenyl)methanol (3ai)





```
Signal 2: DAD1 B, Sig=254,4 Ref=off
```

| Peak \# | $\begin{aligned} & \text { RetTime Type } \\ & \text { [min] } \end{aligned}$ | Width <br> [min] | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & \text { [mAU] } \end{aligned}$ | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 10.931 BB | 0.3282 | $1.41281 e 4$ | 664.18909 | 49.8324 |
| 2 | 13.304 BB | 0.4182 | 1.42232e4 | 521.45111 | 50.1676 |

```
Totals :
2.83513e4 1185.64020
```



Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{gathered} \text { Width } \\ {[m i n]} \end{gathered}$ | $\begin{gathered} \text { Area } \\ {[\mathrm{mAU*} \mathrm{~s}]} \end{gathered}$ | $\begin{aligned} & \text { Height } \\ & {[\mathrm{mAU}]} \end{aligned}$ | Area $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 11.034 | BB | 0.3195 | 84.88226 | 4.10124 | 1.1038 |
| 2 | 13.356 |  | 0.4018 | 7604.99365 | 290.14716 | 98.8962 |

Totals : $7689.87591 \quad 294.24840$

## (R)-(2-bromo-6-(chroman-4-ylamino)phenyl)methanol (3aj)




Signal 1: DAD1 A, Sig=254,4 Ref=360,100

| Peak |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RetTime Type | Width | Area | Height | Area |
| [min] | [min] | [mAU*s] | [mAU] | \% |

Totals :
$1.47831 e 4541.20084$


Signal 1: DAD1 A, Sig=254,4 Ref=360,100

(R)-(2-(chroman-4-ylamino)-4,5-dimethoxyphenyl)methanol (3ak)



Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| RetTime Type | Width | Area | Height | Area |  |
| \# | [min] | [min] | [mAU*s] | [mAU] | \% |



Signal 2: DAD1 B, Sig=254,4 Ref=off

| Peak \# | $\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$ | Type | $\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$ | $\begin{gathered} \text { Area } \\ {\left[m A U^{*} s\right]} \end{gathered}$ | Height <br> [mAU] | Area \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 16.828 |  | 0.4830 | 1483.79126 | 47.42852 | 98.8251 |
| 2 | 19.122 |  | 0.5437 | 17.64017 | $5.40724 \mathrm{e}-1$ | 1.1749 |

```
Totals :

\section*{(R)-(4-bromo-2-(chroman-4-ylamino)phenyl)methanol (3al)}



Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]}
\end{gathered}
\] & Height
[mAU ] & Area \% \\
\hline 1 & 12.052 & BB & 0.2817 & 7206.12744 & 393.37830 & 24.2169 \\
\hline 2 & 17.957 & BB & 0.4563 & 7775.44043 & 261.95740 & 26.1302 \\
\hline 3 & 21.487 & BB & 0.3642 & 7695.20117 & 322.75977 & 25.8605 \\
\hline 4 & 22.810 & BB & 0.4621 & 7079.80176 & 237.26437 & 23.7924 \\
\hline
\end{tabular}

Totals :
2.97566 e 41215.35983


Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area \% \\
\hline 1 & 12.006 & BB & 0.3030 & 216.34616 & 11.21551 & 1.3546 \\
\hline 2 & 18.043 & MM & 0.4099 & 26.55558 & 1.07970 & 0.1663 \\
\hline 3 & 21.502 & & 0.4648 & 1.35828 e 4 & 470.44107 & 85.0457 \\
\hline 4 & 22.845 & BB & 0.4611 & 2145.47900 & 72.11691 & 13.4334 \\
\hline
\end{tabular}

Totals :
(4-chloro-2-(((R)-chroman-4-yl)amino)phenyl)(phenyl)methanol (3am)




Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 12.270 & BV E & 0.2765 & 516.12323 & 28.33297 & 4.4736 \\
\hline 2 & 13.108 & VB R & 0.3034 & 5229.89404 & 261.38773 & 45.3315 \\
\hline 3 & 14.889 & BB & 0.3282 & 5226.50049 & 241.81271 & 45.3021 \\
\hline 4 & 18.688 & & 0.4349 & 564.48114 & 19.43325 & 4.8928 \\
\hline
\end{tabular}

Totals : 1.15370 e4 550.96666


Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 11.903 & BV R & 0.2757 & 3.14211 e 4 & 1715.56531 & 85.4114 \\
\hline 2 & 12.636 & VV E & 0.2950 & 748.07092 & 36.51688 & 2.0335 \\
\hline 3 & 12.985 & VB E & 0.2932 & 357.08893 & 18.50089 & 0.9707 \\
\hline 4 & 14.590 & & 0.3256 & 4196.40918 & 196.17961 & 11.4070 \\
\hline 5 & 18.506 & & 0.3976 & 65.28155 & 2.41355 & 0.1775 \\
\hline
\end{tabular}
```

Totals : 3.67880e4 1969.17623

```

\section*{(R)-1-(2-(chroman-4-ylamino)phenyl)ethan-1-one (3al')}



Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{cccccc} 
Peak & RetTime Type & Width & Area & Height & Area \\
\(\#\) & [min] & {\([\) min] } & [mAU*s] & [mAU] & \(\%\)
\end{tabular}

Totals : 1.11836e4 286.19057


Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[m A U^{\star} s\right]}
\end{gathered}
\] & \[
\begin{gathered}
\text { Height } \\
\text { [mAU] }
\end{gathered}
\] & Area \% \\
\hline 1 & 16.204 & MM & 0.5541 & 11.73015 & \(3.52807 e-1\) & 1.4533 \\
\hline 2 & 20.238 & BB & 0.6937 & 795.39874 & 17.45280 & 98.5467 \\
\hline Total & S : & & & 807.12890 & 17.80561 & \\
\hline
\end{tabular}
(R)-(4-chloro-2-(chroman-4-ylamino)phenyl)(phenyl)methanone (3am')




Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \[
\begin{aligned}
& \text { Width } \\
& {[\mathrm{min}]}
\end{aligned}
\] & \[
\begin{gathered}
\text { Area } \\
{\left[m A U^{*} s\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \begin{tabular}{l}
Area \\
\(\%\)
\end{tabular} \\
\hline 1 & 14.214 & & 0.8488 & 3521.58472 & 63.91703 & 49.6062 \\
\hline 2 & 16.482 & & 0.9172 & 3577.49658 & 60.03707 & 50.3938 \\
\hline
\end{tabular}

Totals :
\(7099.08130 \quad 123.95410\)


Signal 2: DAD1 B, Sig=254,4 Ref=off


\section*{(R)-(2-(thiochroman-4-ylamino)phenyl)methanol (3na)}



Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area
\% \\
\hline 1 & 14.371 & & 0.3243 & 7286.68066 & 348.02106 & 49.9075 \\
\hline 2 & 15.798 & & 0.3608 & 7313.68164 & 312.83505 & 50.0925 \\
\hline
\end{tabular}

Totals :
1.46004 e 4660.85611


Signal 1: DAD1 A, Sig=254,4 Ref=360,100
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
\#
\end{tabular} & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & \begin{tabular}{l}
Area \\
\(\%\)
\end{tabular} \\
\hline 1 & 14.222 & BB & 0.3699 & 1.60285 e 4 & 672.98535 & 96.7826 \\
\hline 2 & 15.650 & & 0.3964 & 532.83881 & 20.97133 & 3.2174 \\
\hline
\end{tabular}
```

Totals :
1.65613 e 4693.95668

```
(R)-(4-fluoro-2-(thiochroman-4-ylamino)phenyl)methanol (3ng)




Signal 2: DAD1 B, Sig=254,4 Ref=off



Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
\#
\end{tabular} & \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{\star} \mathrm{s}\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area \% \\
\hline 1 & 9.577 & & 0.2870 & \(1.33771 e 4\) & 706.02710 & 97.2703 \\
\hline 2 & 13.628 & BB & 0.5619 & 375.40225 & 10.23566 & 2.7297 \\
\hline
\end{tabular}

Totals :
\(1.37525 e 4 \quad 716.26276\)

\section*{(R)-(4-chloro-2-(thiochroman-4-ylamino)phenyl)methanol (3nh)}




Signal 2: DAD1 B, Sig=254,4 Ref=off



Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Peak \\
\#
\end{tabular} & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[m A U^{*} s\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 7.718 & BV R & 0.2217 & 3019.64307 & 212.62964 & 95.7573 \\
\hline 2 & 8.500 & VB E & 0.2761 & 133.79126 & 7.29035 & 4.2427 \\
\hline Tota & s : & & & 3153.43433 & 219.91999 & \\
\hline
\end{tabular}

\section*{(R)-(5-bromo-2-(thiochroman-4-ylamino)phenyl)methanol (3nf)}




Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \[
\begin{gathered}
\text { Width } \\
\text { [min] }
\end{gathered}
\] & \[
\begin{gathered}
\text { Area } \\
{[m A U * s]}
\end{gathered}
\] & Height
[mAU ] & \begin{tabular}{l}
Area \\
\(\%\)
\end{tabular} \\
\hline 1 & 6.277 & MF & 0.1572 & 1032.31177 & 109.41663 & 50.2556 \\
\hline 2 & 7.116 & & 0.1828 & 1021.81226 & 93.15769 & 49.7444 \\
\hline Totals & s : & & & 2054.12402 & 202.57432 & \\
\hline
\end{tabular}


Signal 2: DAD1 B, Sig=254,4 Ref=off

(R)-(2-bromo-6-(thiochroman-4-ylamino)phenyl)methanol (3nj)



```

Signal 2: DAD1 B, Sig=254,4 Ref=off

```
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \begin{tabular}{l}
Area \\
\(\%\)
\end{tabular} \\
\hline 1 & 7.176 & & 0.1394 & 5376.48730 & 595.25037 & 48.9660 \\
\hline 2 & 8.541 & & 0.1927 & 5603.55176 & 484.58673 & 51.0340 \\
\hline
\end{tabular}


Signal 2: DAD1 B, Sig=254,4 Ref=off


\section*{(4-chloro-2-(((R)-thiochroman-4-yl)amino)phenyl)(phenyl)methanol (3nm)}




Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~S}]}
\end{gathered}
\] & Height [mAU] & Area \% \\
\hline 1 & 13.165 & MF & 0.3171 & 1467.96484 & 77.14549 & 38.8365 \\
\hline 2 & 14.678 & FM & 0.3601 & 438.74365 & 20.30690 & 11.6074 \\
\hline 3 & 17.352 & BB & 0.3821 & 406.78787 & 16.13917 & 10.7620 \\
\hline 4 & 21.962 & & 0.4788 & 1466.36462 & 46.39190 & 38.7941 \\
\hline Total & s : & & & 3779.86099 & 159.98346 & \\
\hline
\end{tabular}


Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{*} \mathrm{~S}\right]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 13.044 & BB & 0.3987 & 1310.67456 & 49.86439 & 87.6326 \\
\hline 2 & 14.522 & MM & 0.4177 & 27.64594 & 1.10318 & 1.8484 \\
\hline 3 & 17.204 & & 0.4482 & 151.63867 & 5.14004 & 10.1387 \\
\hline 4 & 21.918 & & 0.5140 & 5.68853 & \(1.84449 \mathrm{e}-1\) & 0.3803 \\
\hline
\end{tabular}
(R)-(4-chloro-2-(thiochroman-4-ylamino)phenyl)(phenyl)methanone (3nm')




Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{\left[m A U^{*} s\right]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 13.318 & BB & 0.6869 & 332.51227 & 7.14550 & 50.3000 \\
\hline 2 & 21.979 & MM & 1.3691 & 328.54565 & 3.99968 & 49.7000 \\
\hline
\end{tabular}

Totals :
661.0579211 .14518


Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \begin{tabular}{l}
RetTime \\
[min]
\end{tabular} & Type & \[
\begin{gathered}
\text { Width } \\
\text { [min] }
\end{gathered}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 13.362 & & 0.7951 & 40.80608 & \(8.55317 e-1\) & 4.1008 \\
\hline 2 & 22.041 & & 1.4322 & 954.26312 & 11.10505 & 95.8992 \\
\hline Totals & S : & & & 995.06920 & 11.96036 & \\
\hline
\end{tabular}

\section*{1-(2-(((R)-thiochroman-4-yl)amino)phenyl)ethan-1-ol (3nl)}



Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
{[\text { min] }}
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} * \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & \begin{tabular}{l}
Area \\
\%
\end{tabular} \\
\hline 1 & 9.919 & BB & 0.1918 & 5709.18799 & 456.83337 & 30.8331 \\
\hline 2 & 11.173 & BB & 0.2159 & 3556.79150 & 250.09726 & 19.2089 \\
\hline 3 & 12.423 & BB & 0.2419 & 3530.35742 & 223.93298 & 19.0661 \\
\hline 4 & 13.720 & BB & 0.2700 & 5720.07617 & 323.88736 & 30.8919 \\
\hline Total & s : & & & 1.85164 e 4 & 254.75098 & \\
\hline
\end{tabular}


Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & Width [min] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU} * \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area \% \\
\hline 1 & 9.946 & BB & 0.2156 & 285.08511 & 20.08410 & 2.5683 \\
\hline 2 & 11.180 & BB & 0.2364 & 9051.78027 & 585.49432 & 81.5469 \\
\hline 3 & 12.456 & & 0.2434 & 36.40385 & 2.29055 & 0.3280 \\
\hline 4 & 13.774 & & 0.2917 & 1726.82666 & 90.88046 & 15.5569 \\
\hline Total & s : & & & 1.11001 e 4 & 698.74944 & \\
\hline
\end{tabular}

\section*{(R)-1-(2-(thiochroman-4-ylamino)phenyl)ethan-1-one (3nl')}



Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & RetTime [min] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~s}]}
\end{gathered}
\] & \[
\begin{aligned}
& \text { Height } \\
& \text { [mAU] }
\end{aligned}
\] & Area \% \\
\hline 1 & 12.620 & & 0.3855 & 1983.91479 & 78.85223 & 49.7518 \\
\hline 2 & 13.823 & & 0.4113 & 2003.70911 & 75.09126 & 50.2482 \\
\hline
\end{tabular}

Totals : \(3987.62390 \quad 153.94349\)


Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\text { Peak } \\
\#
\end{gathered}
\] & \[
\begin{gathered}
\text { RetTime } \\
{[\mathrm{min}]}
\end{gathered}
\] & Type & \[
\begin{gathered}
\text { Width } \\
\text { [min] }
\end{gathered}
\] & \[
\begin{gathered}
\text { Area } \\
{[\mathrm{mAU*} \mathrm{~S}]}
\end{gathered}
\] & \begin{tabular}{l}
Height \\
[mAU]
\end{tabular} & Area \% \\
\hline 1 & 12.597 & BB & 0.3823 & 3433.37622 & 137.98973 & 96.2273 \\
\hline 2 & 13.826 & BB & 0.3842 & 134.60760 & 5.44973 & 3.7727 \\
\hline Total & S : & & & 3567.98383 & 143.43946 & \\
\hline
\end{tabular}
ethyl 2-(1-((R)-chroman-4-yl)-2-oxo-1,2,3,5-tetrahydrobenzo[e][1,4]oxazepin-3-
yl)acetate (4)




Signal 1: DAD1 B, Sig=254,4 Ref=off



Signal 1: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Peak \# & \[
\begin{gathered}
\text { RetTime } \\
\text { [min] }
\end{gathered}
\] & Type & \begin{tabular}{l}
Width \\
[min]
\end{tabular} & \[
\begin{gathered}
\text { Area } \\
{\left[\mathrm{mAU}{ }^{2} \mathrm{~s}\right]}
\end{gathered}
\] & Height [mAU] & \[
\begin{gathered}
\text { Area } \\
\%
\end{gathered}
\] \\
\hline 1 & 8.511 & & 0.1912 & 3595.29175 & 288.85440 & 78.2157 \\
\hline 2 & 12.939 & MM & 0.3325 & 14.20251 & \(7.11811 \mathrm{e}-1\) & 0.3090 \\
\hline 3 & 18.987 & MM & 1.0218 & 43.29458 & \(7.06166 \mathrm{e}-1\) & 0.9419 \\
\hline 4 & 42.402 & BB & 0.8791 & 943.84888 & 16.07265 & 20.5335 \\
\hline Total & s : & & & 4596.63771 & 306.34502 & \\
\hline
\end{tabular}

\section*{(R)-1-(chroman-4-yl)-1,4-dihydro-2H-benzo[d][1,3]oxazine (5)}




Signal 2: DAD1 B, Sig=254,4 Ref=off
\begin{tabular}{cccccc} 
Peak RetTime Type & Width & Area & Height & Area \\
\# & [min] & [min] & [mAU*S] & [mAU] & \%
\end{tabular}


Signal 2: DAD1 B, Sig=254,4 Ref=off
```

