SUPPORTING INFORMATION

Switchable Synthesis of Glycosyl Selenides or Diselenides With Direct Use of Selenium as Selenating Agent

Alfonso Iadonisi, Serena Traboni, Domenica Capasso, Emiliano Bedini, Sabrina Cuomo, Sonia Di Gaetano, Giulia Vessella

TABLE OF CONTENTS

General remarks and experimental synthetic procedures	S2 - S4
Spectral data of all synthesized compounds	S5 - S8
References	S9
Copies of ¹ H and ¹³ C NMR spectra of symmetrical compounds 9-12	S10 - 13
Copies of ¹ H and ¹³ C NMR spectra of symmetrical compounds 15-22	S14 - 21
Copies of ¹ H and ¹³ C NMR spectra of compounds 23 and 25	S22 - S23
Copies of ¹ H and ¹³ C NMR spectra of compounds 26 and 27	S24 - S25
Experimental section of biological studies	S25 - S26

General remarks.

All reagents adopted in the one-pot protocols are commercially available and were used as supplied without any pre-treatment. Selenium, sodium borohydride, iodine and poly(methylhydrosiloxane) (PMHS) were purchased from Sigma Aldrich. The progress of reactions was monitored by TLC; after elution in the suitable eluent, the plates were soaked in 5% concentrated H_2SO_4 in ethanol and heated at 230 °C. NMR spectra were recorded in a 400 Bruker MHz device. Reactions were performed at 0.5–1 mmol scale adopting the stoichiometric ratios indicated in the pertinent entries of the tables and in the schemes.

General procedure for the synthesis of glycosyl iodides

To a solution of a peracetylated sugar (390 mg, 1.0 mmol) in anhydrous DCM (6 mL) was added I_2 (279 mg, 1.1 mmol), and poly(methylhydrosiloxane) (PMHS) (65 μ L, 1.1 mmol) (caution: exothermic reaction). The system was refluxed until complete consumption of the starting material (5–10 min as monitored by TLC, eluent: hexane/ethyl acetate mixtures). The mixture was then diluted with DCM and the organic phase washed with aq. sodium carbonate containing sodium thiosulfate (this latter is added portionwise as a solid, until consumption of residual iodine indicated by discoloration of the organic phase upon shaking). The organic phase was then washed with water, dried, and concentrated. The crude residue was directly adopted for the subsequent selenoglycosidation steps.

General procedure for the synthesis of symmetrical diglycosyl selenides

A mixture of elementary selenium (95 mg, 1.2 mmol) and sodium borohydride (137 mg, 3.6 mmol) was suspended in DMF (3 mL) and the suspension was kept under stirring at rt. After 40 minutes triethyl phosphite (175 µL, 1.0 mmol) was added (with an instantaneous discoloration) and the mixture was poured to a vessel containing crude glycosyl iodide (or the GlcNAc chloride). The vessel adopted for the first step was washed with portionwise DMF (3 mL overall). The mixture was kept under stirring at room temperature until completion of the reaction (in all cases less than two hours). The reaction was guenched with acetic acid (0.25 mL) and the mixture was transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase re-extracted with DCM. Combined organic phases were dried with sodium sulfate, filtrated and concentrated. The residue was treated with pyridine (1 mL) and acetic anhydride (0.5 mL) for one-hour at rt. The mixture was then treated with methanol (ca 0.5 mL) in a cold bath, transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then reextracted with DCM. Combined organic phases were dried with sodium sulfate, filtrated and concentrated. The residue was purified by silica-gel flash chromatography (hexane/ethyl acetate or

dichloromethane/methanol mixtures). When detectable, the selenide/diselenide ratio was determined by NMR analysis of chromatographed products.

General procedure for the synthesis of diglycosyl diselenides

A mixture of elementary selenium (1.1 or 1.5 mmol, see Scheme 2) and sodium borohydride (1.2 or 1.0 mmol, see Scheme 2) was suspended in DMF (3 - 4 mL) and the suspension was kept under stirring at rt. After 40 minutes the mixture was poured to a vessel containing the crude glycosyl iodide (or the GlcNAc chloride) (1.0 mmol) in DMF (3 mL). The vessel adopted for the first step was washed with portionwise DMF (3 mL overall). The mixture was kept under stirring at room temperature until completion of the reaction (in all cases less than two hours). The reaction was quenched with acetic acid (0.25 mL) and the mixture was transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase re-extracted with DCM and combined organic phases were dried with sodium sulfate, filtrated and concentrated. The residue was treated with methanol (ca 0.5 mL) in a cold bath, transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then re-extracted with DCM. The organic phase was washed with ag sodium carbonate and the aqueous phase was then re-extracted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then re-extracted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then re-extracted with DCM and combined organic phases were dried with sodium sulfate, filtrated and concentrated. The residue was purified by silica-gel flash chromatography (hexane/ethyl acetate or dichloromethane/methanol mixtures). When detectable, the selenide/diselenide ratio was determined by NMR analysis of chromatographed products.

Synthesis of unsymmetrical diglycosyl selenides from a diselenide precursor

To a solution of galactosyl diselenide (31 mg, 0.038 mmol) in DMF (0.45 mL) were added sequentially triethyl phosphite (165 μ L of a 0.23 M solution in DMF, 1 equiv) and NaBH₄ (29 μ L of a 1. 3 M solution in DMF, 2 equiv). After a few seconds the mixture was poured to a vessel containing the crude glycosyl iodide (or the GlcNAc chloride) (0.11 mmol). The vessel adopted for the first step was washed with portionwise DMF (0.5 mL overall). After the appropriate time (see Scheme 4 and 5), the reaction was quenched with acetic acid (five drops) and the mixture transferred into a separatory funnel and diluted with DCM. The organic phase was washed with a sodium carbonate and the aqueous phase was then re-extracted with DCM. Combined organic phases were dried with sodium sulfate, filtrated and concentrated. The residue was treated with methanol (ca 0.3 mL) in a cold bath, transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then re-extracted with DCM. The organic phase was washed with a cold bath, transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then re-extracted with DCM. The organic phase was washed with a cold bath, transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then re-extracted with DCM, and combined organic phases were dried with sodium sulfate, filtrated and concentrated. The residue was purified by silica-gel flash chromatography (hexane/ethyl acetate or ethyl acetate alone).

One-pot synthesis of unsymmetrical diglycosyl selenide 25

A mixture of elementary selenium (10 mg, 0,126 mmol) and sodium borohydride (5.2 mg, 0.137 mmol) was suspended in DMF (0.35 mL) and the suspension was kept under stirring at rt. After 40 minutes the mixture was poured to a vessel containing the crude galactosyl iodide 7 (prepared from 45 mg of the peracetylated precursor, 0.115 mmol). The vessel adopted for the first step was washed with portionwise DMF (0.5 mL overall). After stirring for 1 hour at rt, were added sequentially triethyl phosphite (10 μ L, 0.057 mmol), NaBH₄ (90 μ L of a 1.3 M solution in DMF, 0.115 mmol), and solid GlcNAc chloride **14** (62 mg, 0.169 mmol). The mixture was stirred for an additional hour and then the reaction was quenched with acetic acid (0.15 mL) and the mixture transferred into a separatory funnel and diluted with DCM. The organic phase was washed with aq sodium carbonate and the aqueous phase was then re-extracted with DCM and combined organic phases were dried with sodium sulfate, filtrated and concentrated. The residue was purified by silica-gel flash chromatography (eluent: ethyl acetate) to yield pure **25** (52 mg, 61 % yield).

Zemplen deacetylation: synthesis of galactosyl selenide 26 and galactosyl diselenide 27

To a solution of **9** or **11** in MeOH (20-30 mg/mL) was added a solution of sodium methoxide in methanol (0.1 eq), preliminarily prepared by adding a weighted amount of NaH (60 % suspension) in methanol. The mixture was left under stirring at rt until detection via TLC (eluent: ethyl acetate) of the reaction completion (generally 2-4 hours were needed). The mixture was treated with Amberlyst H⁺ resin (preliminarily washed with methanol) until neutrality, and then a slightly differentiated procedure was applied to isolate either **26** or **27**. Owing to the poor solubility of **26** in methanol, multiple washings with methanol (ca 1 mL each) were needed to suspend this product (a white solid) in a pipette and transfer it to another vessel, where it was concentrated *in vacuo*.

When diselenide **27** had to be separated from minor amounts of **26** (in the case in which the peracetylated diselenide **11** precursor was partially contaminated by **9**, see Scheme 2), small amounts of methanol (ca 0.3 - 0-5 mL) were used in each washing, taking care of not transferring the insoluble solid (if present) in the pipette. The transferred methanol solution was concentrated under vacuum to afford purified diselenide **27**.

Characterization data of all synthesized compounds

Di(2,3,4,6-tetra-O-acetyl- β -D-galactosyl) selenide (9)¹

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 1:1 to 3:7). Rf (hexane/ethyl acetate 2:3) 0.42. $[\alpha]_D$ -29.5 (c 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.41 (1H, bd, J = 2.8 Hz, H-4), 5.26 (1H, t, J = 10.0 Hz, H-2), 5.10 (1H, dd, J = 2.8 and 10.0 Hz, H-3), 5.10 (1H, d, J = 2.8 Hz, H-4), 5.26 (1H, t, J = 10.0 Hz, H-2), 5.10 (1H, dd, J = 2.8 and 10.0 Hz, H-3), 5.10 (1H, dd, J = 2.8 Hz, H-4), 5.26 (1H, t, J = 10.0 Hz, H-2), 5.10 (1H, dd, J = 2.8 Hz, H-4), 5.26 (1H, t, J = 10.0 Hz, H-2), 5.10 (1H, dd, J = 2.8 Hz, H-4), 5.26 (1H, t, J = 10.0 Hz, H-2), 5.10 (1H, dd, J = 2.8 Hz, H-4), 5.26 (1H, t, J = 10.0 Hz, H-2), 5.10 (1H, dd, J = 2.8 Hz, H-4), 5.10 (1

10.0 Hz, H-1), 4.15-4.00 (H₂-6, m, 2 H), 3.86 (1H, bt, J = 6.8 Hz, H-5), 2.13, 2.02, 2.01, 1.94 (12H, 4 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.1, 170.0, 169.8, 169.5, 76.9, 75.7, 67.9, 67.1, 61.3, 20.5. Anal. Calcd. for C₂₈H₃₈O₁₈Se: C, 45.35; H, 5.17. Found: C, 45.45; H, 5.10. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₈O₁₈SeNa) 765.1121, found 765.1115.

Di(2,3,4,6-tetra-O-acetyl-β-D-glucosyl) selenide (10)²

Purified as a white solid by silica gel chromatography (eluent: hexane/ethyl acetate from 1:1 to 3:7). Rf (hexane/ethyl acetate 2:3) 0.40. $[\alpha]_D$ -61.5 (c 1.10, CHCl₃) ¹H NMR (400 MHz, CDCl₃) δ 5.25–5.10 (3H, overlapped signals, H-2, H-3, and H-4), 5.03 (1H, d, J = 10.0 Hz, H-1), 4.25 (1H, dd, J = 4.8 and 12.4 Hz, H-6a), 4.16 (1H, dd, J = 2.4 and 12.4 Hz, H-6b), 3.67 (1H, m, H-5), 2.11, 2.03, 2.02, 1.99 (12H, 4 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 169.8, 169.1 (x2), 76.9, 73.6, 70.8, 68.0, 61.9, 20.4. Anal. Calcd. for C₂₈H₃₈O₁₈Se: C, 45.35; H, 5.17. Found: C, 45.30; H, 5.20. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₈O₁₈SeNa) 765.1121, found 765.1128.

Di(2,3,4,6-tetra-O-acetyl-β-D-galactosyl) diselenide (11)¹

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 1:1 to 1:4). Rf (hexane/ethyl acetate 1:1) 0.30. $[\alpha]_D$ -37.5 (c 0.80, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.44 (1H, bd, J = 2.8 Hz, H-4), 5.35 (1H, t, J = 10.0 Hz, H-2), 5.06 (1H, dd, J = 2.8 and 10.0 Hz, H-3), 4.91 (1H, d, J = 10.0 Hz, H-1), 4.20 (1H, dd, J = 6.8 and 12.0 Hz, H-6a), 4.09 (1H, bt, J = 6.8 Hz, H-5), 4.03 (1H, dd, J = 6.8 and 12.0 Hz, H-6b), 2.16, 2.06, 2.03, 1.97 (12H, 4 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.0 (x2), 169.9, 169.6, 81.1, 75.4, 71.4, 69.3, 67.0, 60.7, 20.5. Anal. Calcd. for C₂₈H₃₈O₁₈Se₂: C, 40.99; H, 4.67. Found: C, 41.00; H, 4.65. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₈O₁₈Se₂Na) 845.0286, found 845.0281.

Di(2,3,4,6-tetra-O-acetyl-β-D-glucosyl) diselenide (12)²

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 1:1 to 1:4). Rf (hexane/ethyl acetate 1:1) 0.32. $[\alpha]_D$ -102.6 (c 1.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.21 (1H, t, J = 9.6 Hz), 5.15 (1H, t, J = 9.6 Hz), 5.06 (1H, t, J = 9.6 Hz), 4.91 (1H, d, J = 9.6 Hz, H-1), 4.27 (1H, dd, J = 3.6 and 12.4 Hz, H-6a), 4.14 (1H, dd, J = 2.0 and 12.4 Hz, H-6b), 3.75 (1H, m, H-5), 2.08, 2.04, 1.99, 1.96 (12H, 4 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.9, 169.2 (x2), 79.6, 73.5, 71.5, 67.8, 61.5, 20.6-20.4. Anal. Calcd. for C₂₈H₃₈O₁₈Se₂: C, 40.99; H, 4.67. Found: C, 41.5 H, 4.60. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₈O₁₈Se₂Na) 845.0286, found 845.0293.

Di(3,4,6-tri-O-acetyl-2-deoxy-2-acetamido-β-D-glucosyl) selenide (15)

Purified as a foam by silica gel chromatography (eluent: dichlormethane/MeOH from 1:0 to 95:5). $[\alpha]_D$ - 59.6 (c 0.40, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.10 (1H, d, J = 9.6 Hz, 2-NH), 5.15–5.10 (2H, overlapped signals, H-3 and H-4), 5.07 (1H, d, J = 10.4 Hz, H-1), 4.30–4.10 (3H, overlapped signals, H-2, H₂-6), 3.67 (1H, m, H-5), 2.10, 2.03 (x2), 1.93 (12H, 3 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.6, 170.5, 169.2, 77.2, 73.7, 68.1, 62.0, 53.4, 23.0, 20.7-20.5. Anal. Calcd. for C₂₈H₄₀N₂O₁₆Se: C, 45.47; H, 5.45. Found: C, 45.55 H, 5.40. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₄₀N₂O₁₆SeNa) 763.1441, found 763.1445.

Di(2,3,6,2',3',4',6'-hepta-O-acetyl-β-D-lactosyl) selenide (16)

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 2:3 to 1:4). Rf (hexane/ethyl acetate 3:7) 0.40. $[\alpha]_D$ -20.9 (c 1.58, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.29 (1H, bd, J = 2.8 Hz, H-4'), 5.13 (1H, t, J = 8.8 Hz), 5.05 (1H, dd, J = 7.6 and 10.0 Hz), 5.00-4.95 (2H, overlapped signals), 4.92 (1H, dd, J = 3.2 and 10.4 Hz, H-3'), 4.44 (1H, d, J = 7.6 Hz, H-1'), 4.42 (1H, bd, J = 9.6 Hz, H-6a), 4.15-4.00 (3H, overlapped signals), 3.83 (1H, bt, J = 6.8 Hz, H-5'), 3.75 (1H, t, J = 9.6 Hz, H-4), 3.54 (1H, m, H-5), 2.09, 2.08, 2.00 (x3), 1.99, 1.91 (21H, 7 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.2-168.9, 100.9, 77.8, 76.1, 76.0, 73.6, 71.2, 70.8, 70.5, 68.9, 66.4, 62.1, 60.6, 20.5. Anal. Calcd. for C₅₂H₇₀O₃₄Se: C, 47.39; H, 5.35. Found: C, 47.50 H, 5.30. MALDI HRMS m/z [M + Na]⁺ calc. for (C₅₂H₇₀O₃₄SeNa) 1341.2811, found 1341.2820.

Di(2,3,4,6-tetra-O-acetyl- α -D-mannosyl) selenide (17)

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 2:3 to 1:4). Rf (hexane/ethyl acetate 3:7) 0.47. ¹H NMR (400 MHz, CDCl₃) δ 5.49 (1H, bd, J = 2.8 Hz, H-2), 5.30 (1H, bs, H-1), 5.25 (1H, t, J = 10.0 Hz, H-4), 5.06 (1H, dd, J = 2.8 and 10.0 Hz, H-3), 4.22 (1H, dd, J = 6.8 and 12.4 Hz, H-6a), 4.16 (1H, dd, J = 12.4 Hz, H-6a), 3.68 (1H, m, H-5), 2.16, 2.08, 2.03, 1.95 (12H, 4 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.5-169.2 (COCH₃), 77.7, 75.1, 71.5, 70.5, 65.5, 62.5, 20.4. Anal. Calcd. for C₂₈H₃₈O₁₈Se: C, 45.35; H, 5.17. Found: C, 45.30; H, 5.15. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₈O₁₈SeNa) 765.1121, found 765.1127.

Di(2,3,4-tri-O-acetyl-β-L-fucosyl) selenide (18)

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 1:1 to 2:3). Rf (hexane/ethyl acetate 1:1) 0.45. $[\alpha]_D$ +7.7 (c 0.90, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.29 (1H, bd, J = 2.8 Hz, H-4), 5.27 (1H, t, J = 10.0 Hz, H-2), 5.05 (1H, dd, J = 2.8 and 10.0 Hz, H-3), 5.02 (1H, d, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, d, J = 10.0 Hz, H-2), 5.05 (1H, dd, J = 2.8 and 10.0 Hz, H-3), 5.02 (1H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, d, J = 10.0 Hz, H-2), 5.05 (1H, dd, J = 2.8 Hz, H-3), 5.02 (1H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, dd, J = 2.8 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 2.17, 2.03, 1.93 (9H, 3 x s, 3 x -COCH₃), 1.21 (3H, dd, J = 10.0 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-5), 3.17 (20.3 Hz, H-1), 3.79 (1H, bq, J = 6.8 Hz, H-1)

6.8 Hz, CH₃-6). ¹³C NMR (100 MHz, CDCl₃) δ 170.4, 169.9, 169.4, 76.9, 74.4, 71.9, 70.2, 68.1, 20.6-20.5, 16.2. Anal. Calcd. for C₂₄H₃₄O₁₄Se: C, 46.09; H, 5.48. Found: C, 46.20; H, 5.40. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₄H₃₄O₁₄SeNa) 649.1011, found 649.1003.

Di(3,4,6-tri-O-acetyl-2-deoxy-2-acetamido-β-D-glucosyl) diselenide (19)

Purified as a foam by silica gel chromatography (eluent: dichlormethane/MeOH from 1:0 to 95:5). $[\alpha]_D$ - 11.3 (c 1.10, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.30 (1H, d, J = 9.6 Hz, NH-2), 5.30 (1H, t, J = 10.0 Hz, H-3), 5.12 (1H, d, H = 10.4 Hz, H-1), 5.02 (1H, t, J = 10.0 Hz, H-4), 4.36 (1H, dd, J = 5.2 and 12.4 Hz, H-6a), 4.15-4.00 (2H, overlapped signals, H-6b and H-2), 3.75 (1H, m, H-5), 2.09, 2.06 (x2), 1.99 (12H, 3 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 170.4 (x2), 169.3, 81.8, 76.9, 72.9, 68.3, 61.9, 55.0, 23.2, 20.8, 20.5 (x2). Anal. Calcd. for C₂₈H₄₀N₂O₁₆Se₂: C, 41.08; H, 4.93. Found: C, 41.00; H, 4.95. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₄₀N₂O₁₆Se₂Na) 843.0606, found 843.0615.

Di(2,3,6,2',3',4',6'-hepta-O-acetyl- β -D-lactosyl) diselenide (20)³

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 2:3 to 1:4). Rf (hexane/ethyl acetate 1:3) 0.54. $[\alpha]_D$ -48.4 (c 1.45, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.32 (1H, bd, J = 2.8 Hz, H-4'), 5.19 (1H, t, J = 9.2 Hz), 5.15-5.00 (3H, overlapped signals), 4.83 (1H, d, J = 10.0 Hz, H-1), 4.50 (1H, bd, J = 9.6 Hz, H-6a), 4.45 (1H, d, J = 7.6 Hz, H-1'), 4.15-3.95 (3H, overlapped signals), 3.88 (1H, bt, J = 6.8 Hz, H-5'), 3.85 (1H, t, J = 9.6 Hz, H-4), 3.70 (1H, m, H-5), 2.12 (x2), 2.02 (x4), 1.94 (21H, 7 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 169.5-168.7, 100.8, 79.4, 77.6, 75.7, 73.5, 72.0, 70.8, 70.4, 68.9, 66.4, 61.5, 60.5, 20.6-20.5. Anal. Calcd. for C₅₂H₇₀O₃₄Se₂: C, 44.71; H, 5.05. Found: C, 44.80 H, 5.00. MALDI HRMS m/z [M + Na]⁺ calc. for (C₅₂H₇₀O₃₄Se₂Na) 1421.1977, found 1421.1970.

Di(2,3,4,6-tetra-O-acetyl-α-D-mannosyl) diselenide (21)

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 2:3 to 1:4). Rf (hexane/ethyl acetate 3:7) 0.47. $[\alpha]_D$ + 5.5 (c 1.15, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.60 (1H, bd, J = 2.4 Hz, H-2), 5.31 (1H, bs, H-1), 5.28 (1H, t, J = 10.0 Hz, H-4), 5.13 (1H, dd, J = 2.4 and 10.0 Hz, H-3), 4.22 (2H, d, J = 3.6 Hz, H₂-6), 3.75 (1H, m, H-5), 2.19, 2.10, 2.04, 1.98 (12H, 4 x s, 4 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.8 (x2), 169.4 (COCH₃), 81.2, 77.5, 71.3, 70.3, 65.3, 62.0, 20.5. Anal. Calcd. for C₂₈H₃₈O₁₈Se₂: C, 40.99; H, 4.67. Found: C, 41.90; H, 4.60. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₈O₁₈Se₂Na) 845.0286, found 845.0281.

Di(2,3,4-tri-O-acetyl-β-L-fucosyl) diselenide (22)

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate from 1:1 to 2:3). Rf (hexane/ethyl acetate 1:1) 0.45. $[\alpha]_D$ + 2.5 (c 0.60, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.32 (1H, t, J

= 10.0 Hz, H-2), 5.25 (1H, bd, J = 3.2 Hz, H-4), 5.03 (1H, dd, J = 3.2 and 10.0 Hz, H-3), 4.95 (1H, d, J = 10.0 Hz, H-1), 3.87 (1H, bq, J = 6.4 Hz, H-5), 2.16, 2.05, 1.96 (9H, 3 x s, 3 x -COCH₃), 1.20 (3H, d, J = 6.4 Hz, CH₃-6). ¹³C NMR (100 MHz, CDCl₃) δ 170.5, 169.9, 169.6, 82.3, 74.4, 71.9, 70.3, 69.3, 20.8, 20.5 (x2), 16.2. Anal. Calcd. for C₂₄H₃₄O₁₄Se₂: C, 40.92; H, 4.86. Found: C, 40.80; H, 4.90. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₄H₃₄O₁₄Se₂Na) 729.0177, found 729.0185.

(2,3,4,6-tetra-O-acetyl-β-D-galactosyl)-(2,3,4,6-tetra-O-acetyl-β-D-glucosyl) selenide (23)

Purified as a foam by silica gel chromatography (eluent: hexane/ethyl acetate 2:3). Rf (hexane/ethyl acetate 2:3) 0.50. $[\alpha]_D$ - 21.7 (c 1.05, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.44 (1H, bd, J = 2.8 Hz, H-4 Gal), 5.29 (1H, t, J = 10.0 Hz, H-2 Gal), 5.18 (1H, t, J = 9.6 Hz, H-3 Glc), 5.20-5.00 (5H, overlapped signals; H-1, H-2 and H-4 Glc, H-1 and H-3 Gal), 4.24 (1H, dd, J = 5.2 and 11.6 Hz, H-6a Glc), 4.20-4.00 (3H, overlapped signals, H-6b Glc and H₂-6 Gal), 3.89 (1H, bt, J = 6.8 Hz, H-5 Gal), 3.67 (1H, m, H-5 Glc), 2.16, 2.09, 2.05, 2.04, 2.03 (x2), 2.02, 1.99 (24H, 8 x s, 8 x -COCH₃). ¹³C NMR (100 MHz, CDCl₃) δ 170.0 (x2), 169.5, 169.2, 76.2, 75.7, 73.6, 71.5, 70.8, 68.1, 67.9, 67.1, 62.0, 61.4, 20.5. Anal. Calcd. for C₂₈H₃₈O₁₈Se: C, 45.35; H, 5.17. Found: C, 45.30; H, 5.15. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₈O₁₈SeNa) 765.1121, found 765.1127.

(2,3,4,6-tetra-O-acetyl-β-D-galactosyl)-(3,4,6-tri-O-acetyl-2-deoxy-2-acetamido-β-D-glucosyl) selenide (25)

Purified as a foam by silica gel chromatography (eluent: ethyl acetate). Rf (ethyl acetate) 0.60. $[\alpha]_D$ -32.8 (c 1.55, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.83 (1H, d, J = 9.2 Hz, NH-2 GlcNAc), 5.44 (1H, bd, J = 2.8 Hz, H-4 Gal), 5.30 (1H, t, J = 10.0 Hz, H-2 Gal), 5.10-5.00 (5H, overlapped signals; H-1, H-3 and H-4 GlcNAc, H-1 and H-3 Gal), 4.24-4.05 (5H, overlapped signals; H-2, H₂-6 GlcNAc, H₂-6 Gal), 3.89 (1H, bt, J = 6.8 Hz, H-5 Gal), 3.62 (1H, m, H-5 Glc), 2.15, 2.07, 2.05, 2.03, 2.02, 2.00 (x2), 1.96 (24H, 7 x s, 8 x -COCH₃).

¹³C NMR (100 MHz, CDCl₃) δ 170.9-170.1, 169.1, 78.0, 77.3, 71.4, 68.2, 67.8, 67.3, 62.2, 61.5, 53.4, 22.9, 20.5. Anal. Calcd. for C₂₈H₃₉NO₁₇Se: C, 45.41; H, 5.31. Found: C, 45.50; H, 5.25. MALDI HRMS m/z [M + Na]⁺ calc. for (C₂₈H₃₉NO₁₇SeNa) 764.1281, found 764.1274.

Di(β-**D**-galactopyranosyl) selenide (26)¹

Purified as a white solid after filtration (see procedure of the Zemplen deacetylation). ¹H NMR (400 MHz, D₂O) δ 4.96 (1H, d, J = 10.0 Hz, H-1), 3.90 (1H, bd, J = 3.2 Hz, H-4), 3.72-3.55 (5H, overlapped signals, H-2, H-3, H-5 and H₂-6). ¹³C NMR (100 MHz, CDCl₃) δ 80,3, 80.2, 73.6, 70.2, 68.7, 61.1. Anal. Calcd.

for $C_{12}H_{22}O_{10}Se$: C, 35.56; H, 5.47. Found: C, 35.45; H, 5.50. MALDI HRMS m/z $[M + Na]^+$ calc. for $(C_{12}H_{22}O_{10}SeNa)$ 429.0276, found 429.0285.

Di(β-**D**-galactopyranosyl) diselenide (27)¹

Purified as an oil after selective solubilization with methanol (see procedure of the Zemplen deacetylation). ¹H NMR (400 MHz, D₂O) δ 4.78 (1H, d, J = 10.0 Hz, H-1), 3.87 (1H, bd, J = 3.2 Hz, H-4), 3.75 (1H, t, J = 10.0 Hz, H-2), 3.70-3.50 (4H, overlapped signals, H-3, H-5 and H₂-6). ¹³C NMR (100 MHz, CDCl₃) δ 83,5, 80.4, 73.5, 70.2, 68.7, 60.9. Anal. Calcd. for C₁₂H₂₂O₁₀Se₂: C, 29.76; H, 4.58. Found: C, 29.85; H, 4.55. MALDI HRMS m/z [M + Na]⁺ calc. for (C₁₂H₂₂O₁₀Se₂Na) 508.9441, found 508.9433.

References

- 1) André, S.; Kövér, K. E.; Gabius, H.-J.; Szilágyi, L. Bioorg. Med. Chem. Lett. 2015, 25, 931-935.
- 2) Wagner, G.; Nuhn, P. Arch. Pharm. 1964, 297, 461-473
- 3) Saravanan, V.; Porhiel, E.; Chandrasekaran, S. Tetrahedron Lett. 2003, 44, 2257-2260
- 4) Kim, C.; Lee, J.; Park, M.-S. Arch. Pharm. Res. 2015, 38, 659-665.

eb190116 1 1 C:\Bruker\TopSpin4.0.5\data\nmr BRI 33 1825 estratio AE

eb181003New400 67 1 C:\Bruker\TopSpin4.0.5\data\nmr

eb200601 10 1 C:\Bruker\TopSpin4.0.5\data\nmr BRI 50 crom 2 Gal2Se xOAc

eb190516 96 1 C:\Bruker\TopSpin4.0.5\data\nmr BRI 60 2340 vero

eb200512 22 1 C:\Bruker\TopSpin4.0.5\data\nmr

eb200512 12 1 C:\Bruker\TopSpin4.0.5\data\nmr

eb190516 1 1 C:\Bruker\TopSpin4.0.5\data\nmr

eb200524 4 1 C:\Bruker\TopSpin4.0.5\data\nmr BRI 59 col 3 crom Lac2Se2 xOAc

eb200918 3 1 C:\Bruker\TopSpin4.0.5\data\nmr BRI 197 1019 045 033 033 033 033 267 254 254 255 2567 2236 2236 2236 5.456 5.454 5.447 5.322 5.232 5.272 5.272 5.183 5.183 5.094 059 162 058 654 66 90 80 80 07 5.787 1.000 0.887 0.803 3.887 0.839 0.696 0.876 2.684 7 2 6 5 4 3 [ppm]

Experimental section for the biological activity

Culture conditions. Human T lymphoblastoid (Jurkat) and human melanoma WM266 cell lines were grown in RPMI medium supplemented with heat inactivated 10% fetal bovine serum (FBS), 2.5 mM glutamine, 100 U/ mL penicillin, and 100 μ g/mL streptomycin (Euroclone). Human adenocarcinoma cell line (HeLa) was grown in DMEM supplemented with 10% fetal bovine serum (FBS), 1% glutamine, 100 U/mL penicillin and 100 μ g/mL streptomycin (Euroclone, Milano, Italy). Cells were maintained in humidified air containing 5% CO₂, at 37 °C.

Antiproliferative Activity. Cells were plated at density of 10000 cells/well for Jurkat, 2000/well for WM266 and 1200 cells/well for HeLa, in 96 well microplates (Corning). After 24h incubation, cells were treated with increasing concentration of synthetized compounds previously solubilized in H₂O at 10 mM concentration. Cell proliferation was determined by using (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (CCK-8 Sigma Aldrich) for Jurkat cells and the 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assay (MTT, Sigma Aldrich) for HeLa and WM266 cells, after 48h treatment. Plates were then analyzed by using a microplate reader (Enspire, Perkin Elmer, USA) at 450 (CCK-8) or 570 nm (MTT). The results are presented as the percentage of proliferating cells respect to the control (vehicle treated cells) and are expressed as means \pm SE of, at least, two independent experiments performed in triplicate. The IC₅₀ values were calculated by GraphPad Prism software.

Results

In vitro antiproliferative activity

The anti-proliferative effect of synthetized compounds was evaluated on three human tumor cell lines of disparate histological origin, leukemia (Jurkat), cervical adenocarcinoma (HeLa), metastatic melanoma cells (WM266). Cells were treated with the molecules at rising concentrations from 7 to 500 μ M, for 48h. The digalactosyl selenide does not affect the proliferation of each cell line examined, also at concentration > 500 μ M. Differently, digalactosyl diselenide shows a dose-dependent inhibition of proliferation of all tested cell lines. In particular, digalactosyl diselenide, displays a significant effect on WM266 and Jurkat cell proliferation, with IC50 values of 54.7 and 56.0 μ M respectively, and a lower interference with the growth of HeLa cells (IC50=120 μ M).

Figure. Anti–proliferative assay of digalactosyl diselenide **27** on Jurkat, WM266 and HeLa cell lines. The cells were incubated in the presence of compound at the indicated concentrations at 37 °C for 48h. The results are presented as the percentage of proliferating cells with respect to the control (vehicle treated cells) and are expressed as means \pm SE.

Table: IC50 values

	IC50 (µM)		
Entry	WM266	Jurkat	HeLa
	54.7 ± 18	56.0 ± 24	120 ± 16