Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information for

Regioselective C5–H Direct Iodination of Indoles

Zhao-Yang Wang, Rui-Li Guo, Xing-Long Zhang, Meng-Yue Wang, Gang-Ni Chen and Yong-Qiang Wang*

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, School of Foreign Languages, Northwest University, Xi'an 710069, People's Republic of China.

Table of Content

1.	General information	S1
2.	Optimization of conditions for the synthesis of 5-iodo-1H-indole-3-carbaldehyde	S1
3.	General procedure	S2
4.	Characterization data for 3a-3ac	S3
5.	Procedures for synthetic application	S16
6.	Procedures for radical-trapping experiments	S17
7.	References	S18
8.	NMR spectra	S19
9.	X-ray crystal structure of compounds 3g and 3k	S51

1. General information

All reactions were carried out under air. All reagents were used as received unless otherwise noted. Flash chromatography was performed with silica gel (200-300 mesh). NMR spectra were recorded on a Bruker Ascend 400 spectrometer at 400 MHz (¹H NMR), 101 MHz (¹³C NMR), on a JEOL ECZ400R spectrometer at 101 MHz (¹³C NMR). ¹H NMR chemical shifts are reported in delta (δ) units, in parts per million (ppm) downfield from tetramethylsilane. ¹H NMR spectra was recorded with CDCl₃ (TMS, δ = 0.00 ppm) or DMSO-d₆ (δ = 2.50 ppm) as internal reference; ¹³C NMR spectra was recorded with CDCl₃ (δ = 77.1 ppm) or DMSO-d6 (δ = 39.6 ppm) as internal reference. Multiplicities are reported as follows: s = singlet, d = doublet, t = triplet, m = multiplet, br. s = broad singlet. Most of reagents bought from Adamas-beta. Infrared (IR) data were acquired on a Bruker Invenio-R FT-IR spectrometer. Absorbance frequencies are reported in reciprocal centimeters (cm⁻¹). Mass spectra were acquired on a Bruker S2 MicroTof-Q II mass spectrometer. X-ray crystal structure analyses were measured on Bruker Smart APEXIICCD instrument using Mo-K α radiation. The structures were solved and refined using the SHELXTL software package.

2. Optimization of conditions for the synthesis of

5-iodo-1H-indole-3-carbaldehyde

entry	lodine source	Acid (equiv.)	Solvent	Temp. (°C)	Yield (%) ^[b]
1 ^[c]	NIS	TFA	DCM	60	33
2	NIS	TFA	DCM	60	33

3	NIS	-	DCM	60	Trace
4	NIS	TfOH	DCM	60	61
5	NIS	HCI	DCM	60	25
6	NIS	AcOH	DCM	60	19
7	NIS	H_2SO_4	DCM	60	21
8	NIS	$BF_{3'}Et_2O$	DCM	60	63
9	NIS	FeCl₃	DCM	60	Trace
10	NIS	AICI ₃	DCM	60	Trace
11	NIS	SnCl ₄	DCM	60	Trace
12	I ₂	BF ₃ ·Et ₂ O	DCM	60	0
13	KI	BF ₃ ·Et ₂ O	DCM	60	0
14	IOAc	BF ₃ ·Et ₂ O	DCM	60	0
15	NIS	BF ₃ ·Et ₂ O	DCE	60	57
16	NIS	BF ₃ ·Et ₂ O	CH₃Cl	60	51
17	NIS	BF ₃ ·Et ₂ O	CH₃CN	60	0
18	NIS	BF ₃ ·Et ₂ O	DMSO	60	0
19	NIS	BF ₃ ·Et ₂ O	DMF	60	0
20	NIS	BF3 Et2O	DCM	40	61
21	NIS	BF ₃ ·Et ₂ O	DCM	r.t.	60
22	NIS	BF_3 ·Et ₂ O	DCM	0	17
23	NIS	BF ₃ ·Et ₂ O (0.5)	DCM	r.t.	47
24	NIS	BF ₃ :Et ₂ O (2)	DCM	r.t.	78
25	NIS	BF ₃ ·Et ₂ O (5)	DCM	r.t.	77

^[a]Reaction conditions: **1a** (0.5 mmol), **2** (0.5 mmol), acid (0.5 mmol), solvent (3 mL) and at ambient temperature and under air for 4 h. ^[b]Isolated yields. ^[c]Pd(OAc)₂ (10 mol %) was added.

3. General procedure

A 10 mL round-bottom flask was charged with indole derivatives (0.5 mmol), NIS (0.5 mmol) and

dichloromethane (3 mL). After BF_3 ·Et₂O (1.0 mmol) was added, and stirred at room temperature for 4 h under air. The reaction mixture was extracted with ethyl acetate, dried over Na₂SO₄, concentrated in vacuo and directly subjected for column chromatography to afford product.

4. Characterization data for 3a-3ac

5-iodo-1H-indole-3-carbaldehyde:¹ 178.1 mg, 78% yield; White solid; m. p. = 185 - 186 °C; Eluant: ethyl acetate/petroleum ether (1:2, R_f = 0.30). ¹H NMR (400 MHz, DMSO) δ 12.27 (s, 1H), 9.92 (s, 1H), 8.44 (s, 1H), 8.29 (d, *J* = 3.1 Hz, 1H), 7.53 (dd, *J* = 8.5, 1.4 Hz, 1H), 7.37 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 185.2, 138.9, 136.2, 131.6, 129.2, 126.7, 117.2, 115.0, 86.6; IR: 3239, 2924, 2804, 2749, 2360, 1650, 1435, 1386, 1285, 1232, 1124, 1088, 878, 789, 666, 608 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₆INNaO [M + Na]⁺: 293.9386; found 293.9385.

1-(5-iodo-1H-indol-3-yl)ethan-1-one:² 134.4 mg, 73% yield; White solid; m. p. = 133 - 134 °C; Eluant: ethyl acetate/petroleum ether (1:2, R_f = 0.30). ¹H NMR (400 MHz, DMSO) δ 12.08 (s, 1H), 8.52 (d, *J* = 1.6 Hz, 1H), 8.31 (s, 1H), 7.48 (dd, *J* = 8.5, 1.7 Hz, 1H), 7.33 (d, *J* = 8.5 Hz, 1H), 2.44 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 192.8, 135.8, 135.1, 130.8, 129.7, 127.8, 116.0, 114.6, 86.2, 27.2; IR: 3285, 2853, 2361, 1681, 1532, 1427, 1211, 1174, 1134, 1052, 880, 786, 737, 529 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₈INNaO [M + Na]⁺: 307.9543; found 307.9541.

methyl 5-iodo-1H-indole-3-carboxylate:³ 148.9 mg, 71% yield; Yellow solid; m. p. = 184 - 185 °C; Eluant: ethyl acetate/petroleum ether (1:2, R_f = 0.30). ¹H NMR (400 MHz, DMSO) δ 8.33 (s, 1H), 8.09 (s, 1H), 7.47 (d, *J* = 8.2 Hz, 1H), 7.35 (d, *J* = 8.4 Hz, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 164.5, 135.6, 133.4, 130.5, 128.8, 128.2, 115.0, 105.7, 85.9, 50.9; IR: 3273, 2923, 1680, 1446, 1357, 1194, 1177, 1057, 879, 767, 536 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₈INNaO₂ [M + Na]⁺: 323.9492; found 323.9490.

methyl 5-iodo-6-methyl-1H-indole-3-carboxylate: 120.9 mg, 74% yield; Yellow solid; m. p. = 194 – 195 °C; Eluant: ethyl acetate/petroleum ether (1:6, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 11.97 (s, 1H), 8.42 (s, 1H), 8.04 (d, *J* = 2.9 Hz, 1H), 7.47 (s, 1H), 3.80 (s, 3H), 2.46 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 140.0, 117.6, 115.2, 114.7, 112.2, 109.1, 98.8, 92.5, 82.8, 49.0, 30.7; IR: 3649, 2923, 2361, 1716, 1684, 1541, 1197, 1144, 1053, 810, 518, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₁₁H₁₁INO₂ [M + H]⁺: 315.9829; found 315.9821.

methyl 6-chloro-5-iodo-1H-indole-3-carboxylate: 130.8 mg, 69% yield; Yellow solid; m. p. = 198 – 199 °C; Eluant: ethyl acetate/petroleum ether (1:4, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.14 (s, 1H), 8.50 (s, 1H), 8.15 (s, 1H), 7.73 (s, 1H), 3.81 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 139.7, 117.6, 115.7, 113.1, 112.6, 109.5, 98.7, 92.7, 78.0, 49.1; IR: 3246, 1673, 1508, 1449, 1194, 1171,

1054, 914,771, 550, 419 cm⁻¹; HRMS (ESI) m/z calculated for $C_{10}H_7$ IClINNaO₂ [M + Na]⁺: 357.9102; found 357.9102.

methyl 6-bromo-5-iodo-1H-indole-3-carboxylate: ³ 115.9 mg, 63% yield; Yellow solid; m. p. = 205 – 206 °C; Eluant: ethyl acetate/petroleum ether (1:4, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.12 (s, 1H), 8.51 (s, 1H), 8.12 (d, J = 2.9 Hz, 1H), 7.87 (s, 1H), 3.81 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 139.3, 117.5, 115.4, 112.9, 109.6, 105.1, 101.0, 92.5, 82.0, 48.8; IR: 3649, 1709, 1508, 1360, 1220, 1092, 529 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₈BrINO₂ [M + H]⁺: 379.8778; found 379.8777.

ethyl 5-iodo-1H-indole-3-carboxylate: 163.4 mg, 70% yield; Yellow solid; m. p. = 142 - 143 °C; Eluant: ethyl acetate/petroleum ether (1:3, R_f = 0.30). ¹H NMR (400 MHz, DMSO) δ 12.10 (s, 1H), 8.34 (d, *J* = 1.5 Hz, 1H), 8.07 (s, 1H), 7.47 (dd, *J* = 8.5, 1.6 Hz, 1H), 7.34 (d, *J* = 8.5 Hz, 1H), 4.28 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (101 MHz, DMSO) δ 164.1, 135.6, 133.2, 130.5, 128.9, 128.2, 114.9, 106.0, 85.8, 59.3, 14.5; IR: 3276, 1672, 1526, 1473, 1180, 1136, 1049, 890, 808, 588, 420 cm⁻¹; HRMS (ESI) m/z calculated for C₁₁H₁₀INNaO₂ [M + Na]⁺: 337.9648; found 337.9646.

5-iodo-1H-indole-3-carbonitrile:⁴ 147.5 mg, 77% yield; White solid; m. p. = 190 – 191 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.35 (s, 1H), 8.25 (s, 1H), 7.95 (d, *J* = 1.3 Hz, 1H), 7.55 (dd, *J* = 8.6, 1.6 Hz, 1H), 7.40 (d, *J* = 8.6 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 135.5, 134.5, 131.7, 129.2, 126.8, 115.8, 115.4, 86.0, 83.7; IR: 3276, 2923, 2360, 2218, 1508, 1418, 1240, 883, 796, 611, 418 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₅IN₂Na [M + Na]⁺: 268.9570; found 268.9574.

5-iodo-2-methyl-1H-indole-3-carbaldehyde: 132.6 mg, 67% yield; Yellow solid; m. p. = 223 – 224 °C; Eluant: ethyl acetate/petroleum ether (1:2, R_f = 0.30). ¹H NMR (400 MHz, DMSO) δ 12.14 (s, 1H), 10.02 (s, 1H), 8.38 (s, 1H), 7.45 (d, J = 8.4 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 2.67 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 184.5, 149.3, 134.6, 130.7, 128.3, 128.1, 113.9, 112.9, 86.3, 11.5; IR: 3199, 2922, 2853, 2360, 1633, 1572, 1458, 1375, 1234, 870, 797, 635, 584, 434 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₈INNaO [M + Na]⁺: 307.9543; found 307.9542.

5-iodo-4-methyl-1H-indole-3-carbaldehyde: 121.4 mg, 74% yield; Yellow solid; m. p. = 196 – 197 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.34 (s, 1H), 9.88 (s, 1H), 8.28 (d, *J* = 3.2 Hz, 1H), 7.67 (d, *J* = 8.5 Hz, 1H), 7.12 (d, *J* = 8.5 Hz, 1H), 2.95 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 184.2, 141.4, 138.1, 134.2, 133.7, 124.2, 119.3, 112.4, 95.3, 27.8; IR: 3228, 2851, 2743, 2361, 1705, 1646, 1508, 1384, 1140, 1087, 970, 844, 793, 753, 606, 544, 501 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₉INO [M + H]⁺: 285.9723; found 285.9729.

7-iodo-4-methoxy-1H-indole-3-carbaldehyde: 131.9 mg, 91% yield; Yellow solid; m. p. = 208 – 209 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.13 (s, 1H), 10.31 (s, 1H), 7.98 (d, *J* = 3.1 Hz, 1H), 7.52 (d, *J* = 8.2 Hz, 1H), 6.64 (d, *J* = 8.2 Hz, 1H), 3.93 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 186.5, 154.4, 139.2, 132.3, 123.0, 119.3, 116.4, 105.0, 67.5, 55.7; IR: 3214, 2924, 1648, 1517, 1382, 1273, 1091, 972, 789, 636, 583, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₉INO₂ [M + H]⁺: 301.9672; found 301.9673.

4-fluoro-5-iodo-1H-indole-3-carbaldehyde:⁵ 136.5 mg, 67% yield; Yellow solid; m. p. = 208 – 209 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 9.98 (d, J = 2.8 Hz, 1H), 8.25 (s, 1H), 7.61 – 7.48 (m, 1H), 7.21 (d, J = 8.4 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 183.5, 154.7 (d, J = 246.4 Hz), 140.6 (d, J = 11.2 Hz), 137.1, 132.1, 116.3 (d, J = 6.6 Hz), 113.7 (d, J = 24.2 Hz), 111.7 (d, J = 3.6 Hz), 72.6 (d, J = 24.8 Hz); IR: 3283, 2955, 2360, 1647, 1622, 1121, 1097, 857, 780, 699,599, 546, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₆FINO [M + H]⁺: 289.9473; found 289.9471.

5-iodo-6-methyl-1H-indole-3-carbaldehyde: 143.8 mg, 77% yield; Yellow solid; m. p. = 228 – 229 °C; Eluant: ethyl acetate/petroleum ether (1:2, R_f = 0.30). ¹H NMR (400 MHz, DMSO) δ 12.25 (s, 1H), 9.88 (s, 1H), 8.53 (s, 1H), 8.25 (s, 1H), 7.51 (s, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ

185.0, 138.8, 137.4, 134.7, 130.4, 124.6, 117.0, 113.3,93.9, 28.1; IR: 2920, 2850, 2360, 1633, 1523, 1450, 1259, 1158, 1092, 953, 717, 424 cm⁻¹; HRMS (ESI) m/z calculated for $C_{10}H_9INNaO$ [M + Na]⁺: 307.9543; found 307.9536.

5-iodo-6-methoxy-1H-indole-3-carbaldehyde: 122.7 mg, 75% yield; Yellow solid; m. p. = 330 – 331 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.05 (s, 1H), 9.86 (s, 1H), 8.45 (s, 1H), 8.19 (d, J = 2.5 Hz, 1H), 7.08 (s, 1H), 3.86 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 185.0, 154.3, 138.0 (2C), 130.6, 120.2, 117.2, 95.2, 80.8, 56.5; IR: 3107, 3005, 2924, 2756, 2360, 1638, 1568, 1521, 1440, 1402, 1226, 1160, 1040, 876, 836, 727, 658, 584, 433 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₉INO₂ [M + H]⁺: 301.9672; found 301.9670.

6-fluoro-5-iodo-1H-indole-3-carbaldehyde: 140.0 mg, 73% yield; Yellow solid; m. p. = 185 – 186 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.28 (s, 1H), 9.90 (s, 1H), 8.47 (d, *J* = 6.3 Hz, 1H), 8.33 (s, 1H), 7.44 (d, *J* = 8.7 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 185.2, 157.5 (d, *J* = 235.9 Hz), 139.6, 137.1 (d, *J* = 11.5 Hz), 130.3, 130.3 (d, *J* = 3.2 Hz), 117.0, 99.6 (d, *J* = 29.1 Hz), 75.5 (d, *J* = 28.2 Hz); IR: 3365, 2921, 2851, 1699, 1624, 1524, 1472, 1360, 1149, 1099, 976, 833, 721, 667, 599, 532, 437 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₅FINNaO [M + Na]⁺: 311.9292; found 311.9289.

6-chloro-5-iodo-1H-indole-3-carbaldehyde: 119.1 mg, 71% yield; White solid; m. p. = 244 – 245 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.29 (s, 1H), 9.91 (s, 1H), 8.61 (s, 1H), 8.35 (s, 1H), 7.76 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 185.3, 140.0, 137.4, 131.5, 131.3, 125.2, 116.8, 113.2, 90.6; IR: 2955, 2922, 2852, 1637, 1576, 1541, 1457,1251, 820, 526, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₅ClINNaO [M + Na]⁺: 327.8997; found 327.8991.

6-bromo-5-iodo-1H-indole-3-carbaldehyde: 128.9 mg, 70% yield; Yellow solid; m. p. = 298 – 299 °C; Eluant: ethyl acetate/petroleum ether (1:2, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 12.27 (s, 1H), 9.91 (s, 1H), 8.63 (s, 1H), 8.33 (s, 1H), 7.91 (s, 1H); ¹³C NMR (101 MHz, DMSO) δ 185.3, 139.8, 137.6, 131.5, 125.6, 122.4, 116.8, 116.5, 93.5; IR: 3213, 2921, 2852, 1638, 1522, 1249, 1092, 1021, 811, 776, 686, 595, 518, 421 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₆BrINO [M + H]⁺: 349.8672; found 349.8662.

5-iodo-7-methyl-1H-indole-3-carbaldehyde: 102.8 mg, 47% yield; Yellow solid; m. p. = 208 – 209 °C; Eluant: ethyl acetate/petroleum ether (1:2, R_f = 0.40). ¹H NMR (400 MHz, DMSO) δ 12.32 (s, 1H), 9.91 (s, 1H), 8.29 (d, *J* = 3.2 Hz, 1H), 8.26 (s, 1H), 7.38 (s, 1H), 2.47 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 185.2, 138.5, 135.9, 131.9, 126.8, 126.3, 124.8, 117.6, 86.8, 16.3; IR: 3179, 2920, 2360, 638, 1526, 1449, 1386, 1221, 1170, 1128, 866, 782, 611, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₉INO [M + H]⁺: 285.9723; found 285.9712.

7-fluoro-5-iodo-1H-indole-3-carbaldehyde:¹⁰ 100.9 mg, 63% yield; Yellow solid; m. p. = 185 - 186°C; Eluant: ethyl acetate/petroleum ether (1:2, R_f = 0.40). ¹H NMR (400 MHz, DMSO) δ 12.80 (s, 1H), 9.96 (s, 1H), 8.33 (s, 1H), 7.71 (d, *J* = 8.3 Hz, 1H), 7.54 (dd, *J* = 8.2, 5.5 Hz, 1H); ¹³C NMR (101 MHz, DMSO) δ 185.4, 148.4 (d, *J* = 243.2 Hz), 139.2, 131.6, 128.0 (d, *J* = 4.8 Hz), 125.0 (d, *J* = 15.3 Hz), 118.9, 118.8 (d, *J* = 3.8 Hz), 74.1 (d, *J* = 21.1 Hz); IR: 3111, 2958, 2360, 1619, 1525, 1452, 1271, 1138, 799, 687, 664, 539, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₉H₅FINNaO [M + Na]⁺: 311.9292; found 311.9295.

5-iodo-1-methyl-1H-indole-3-carbaldehyde:⁶ 124.8 mg, 79% yield; Yellow solid; m. p. = 130 - 131°C; Eluant: ethyl acetate/petroleum ether (1:7, R_f = 0.30). ¹H NMR (400 MHz, CDCl₃) δ 9.91 (s, 1H), 8.64 (d, *J* = 1.4 Hz, 1H), 7.59 (dd, *J* = 7.6, 2.6 Hz, 2H), 7.10 (d, *J* = 8.6 Hz, 1H), 3.84 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.2, 139.4, 137.1, 132.6, 130.9, 127.4, 117.2, 111.8, 87.3, 33.9; IR: 2921, 1655, 1508, 1466, 1370, 1075, 1028, 802, 731, 611, 587, 420 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₉INO [M + H]⁺: 285.9723; found 285.9719.

5-iodo-1-(methylsulfonyl)-1H-indole-3-carbaldehyde: 127.2 mg, 77% yield; White solid; m. p. = 203 – 204 °C; Eluant: ethyl acetate/petroleum ether (1:8, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 10.07 (s, 1H), 8.62 (s, 1H), 8.51 (d, *J* = 1.5 Hz, 1H), 7.79 (d, *J* = 1.7 Hz, 1H), 7.74 (d, *J* = 8.7 Hz, 1H), 3.69 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 186.9, 139.1, 134.2, 134.1, 130.1, 127.9, 119.5, 115.6, 89.9, 41.8; IR: 3122, 2924, 1670, 1541, 1441, 1362, 1330, 1233, 1173, 1124, 970, 784, 744, 581, 534, 507, 424 cm⁻¹; HRMS (ESI) m/z calculated for C₁₀H₉INO₃S [M + H]⁺: 349.9342; found 349.9340.

5-iodo-1-(phenylsulfonyl)-1H-indole-3-carbaldehyde: 128.9 mg, 73% yield; Yellow solid; m. p. = 217 – 218 °C; Eluant: ethyl acetate/petroleum ether (1:5, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 10.04 (s, 1H), 8.89 (s, 1H), 8.42 (s, 1H), 8.11 (d, *J* = 7.5 Hz, 2H), 7.86 – 7.71 (m, 3H), 7.65 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 185.0, 137.2, 136.4, 135.2, 135.1, 134.6, 131.6, 129.9, 128.4, 127.2, 121.5, 115.1, 89.8; IR: 2955, 2921, 2360, 1734, 1683, 1541, 1473, 1232, 1129, 968, 784, 731, 684, 594, 575, 553, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₁₅H₁₁INO₃S [M + H]⁺: 411.9499; found 411.9500.

1-acetyl-5-iodo-1H-indole-3-carbaldehyde: 143.8 mg, 70% yield; White solid; m. p. = 190 - 191 °C; Eluant: ethyl acetate/petroleum ether (1:8, R_f = 0.30). ¹H NMR (400 MHz, CDCl₃) δ 10.08 (s, 1H), 8.64 (s, 1H), 8.16 (d, *J* = 8.8 Hz, 1H), 8.01 (s, 1H), 7.72 (dd, *J* = 8.8, 1.3 Hz, 1H), 2.73 (s, 3H); (101 MHz, CDCl₃) δ 185.2, 168.4, 135.6 (2C), 135.3, 130.9, 128.1, 121.7, 118.3, 90.1, 23.9; IR: 2923, 2853, 2360, 1772, 1681, 1654, 1542, 1438, 1397, 1338, 1213, 1134, 1011, 787, 649, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₁₁H₉INO₂ [M + H]⁺: 313.9672; found 313.9670.

1-benzyl-5-iodo-1H-indole-3-carbaldehyde:⁷ 150.7 mg, 69% yield; Yellow liquid; Eluant: ethyl acetate/petroleum ether (1:9, $R_f = 0.30$). ¹H NMR (400 MHz, CDCl₃) δ 9.90 (s, 1H), 8.67 (d, J = 1.1 Hz, 1H), 7.62 (s, 1H), 7.51 (dd, J = 8.6, 1.5 Hz, 1H), 7.34 (dd, J = 8.3, 2.2 Hz, 3H), 7.17 – 7.12 (m, 2H), 7.05 (d, J = 8.6 Hz, 1H), 5.30 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 184.3, 138.8, 136.6, 134.9, 132.6, 130.9, 129.2, 128.6, 127.6, 127.2, 117.5, 112.4, 87.3 , 51.1; IR: 3649, 1707, 1652, 1529, 1441, 1385, 1355, 1220, 1164, 1027, 764, 724, 696, 609, 529, 422 cm⁻¹; HRMS (ESI) m/z calculated for C₁₆H₁₃INO [M + H]⁺: 362.0036; found 362.0026.

5-iodo-1-tosyl-1H-indole-3-carbaldehyde:⁸ 166.3 mg, 85% yield; White solid; m. p. = 230 - 231 °C; Eluant: ethyl acetate/petroleum ether (1:5, R_f = 0.30). ¹H NMR (400 MHz, DMSO) δ 10.04 (s, 1H), 8.87 (s, 1H), 8.42 (d, *J* = 1.3 Hz, 1H), 7.98 (d, *J* = 8.4 Hz, 2H), 7.79 (d, *J* = 8.7 Hz, 1H), 7.72 (dd, *J* = 8.7, 1.5 Hz, 1H), 7.43 (d, *J* = 8.2 Hz, 2H), 2.32 (s, 3H); ¹³C NMR (101 MHz, DMSO) δ 186.7, 146.8, 138.9, 134.5, 133.7, 133.2, 130.7, 130.1, 128.0, 127.3, 120.4, 115.5, 90.3, 21.2; IR: 2923, 2852,

2361, 1717, 1683, 1541, 1457, 1437, 1376, 1178, 1130, 1105, 967, 783, 665, 581, 538, 419 cm⁻¹; HRMS (ESI) m/z calculated for $C_{16}H_{13}INO_3S$ [M + H]⁺: 425.9655; found 425.9636.

5-iodo-6-methyl-1-tosyl-1H-indole-3-carbaldehyde: 132.7 mg, 87% yield; White solid; m. p. = $206 - 207 \,^{\circ}$ C; Eluant: ethyl acetate/petroleum ether (1:5, R_f = 0.30). ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.71 (s, 1H), 8.12 (s, 1H), 7.85 - 7.79 (m, 3H), 7.30 (d, *J* = 8.2 Hz, 2H), 2.56 (s, 3H), 2.38 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.0, 146.4, 139.2, 136.2, 135.6, 134.3, 132.5, 130.5, 127.2, 126.1, 121.3, 113.6, 97.2, 29.2, 21.8; IR: 2922, 2362, 1683, 1558, 1541, 1457, 1177, 1108, 887, 685, 666, 582, 541, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₁₇H₁₅INO₃S [M + H]⁺: 439.9812; found 439.9800.

5-iodo-6-methoxy-1-tosyl-1H-indole-3-carbaldehyde: 112.7 mg, 75% yield; White solid; m. p. = 106 - 107 °C; Eluant: ethyl acetate/petroleum ether (1:6, R_f = 0.30). ¹H NMR (400 MHz, CDCl₃) δ 10.00 (s, 1H), 8.65 (s, 1H), 8.08 (s, 1H), 7.80 (d, *J* = 8.3 Hz, 2H), 7.40 (s, 1H), 7.30 (d, *J* = 8.2 Hz, 2H), 3.96 (s, 3H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.1, 156.8, 146.5, 136.4, 135.3, 134.3, 132.9, 130.5, 127.1, 121.6, 121.6, 95.7, 84.1, 56.8, 21.8; IR: 2838, 2360, 1676, 1618, 1542, 1494, 1434, 1378, 1287, 1217, 1177, 1100, 1030, 982, 813, 673, 580, 541 cm⁻¹; HRMS (ESI) m/z calculated for C₁₇H₁₅INO₄S [M + H]⁺: 455.9761; found 455.9764.

6-fluoro-5-iodo-1-tosyl-1H-indole-3-carbaldehyde: 130.5 mg, 81% yield; Yellow solid; m. p. = 190 – 191 °C; Eluant: ethyl acetate/petroleum ether (1:6, $R_f = 0.30$). ¹H NMR (400 MHz, CDCl₃) δ 10.02 (s, 1H), 8.64 (d, *J* = 6.2 Hz, 1H), 8.19 (s, 1H), 7.82 (d, *J* = 8.4 Hz, 2H), 7.68 (d, *J* = 8.3 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 184.9, 159.7 (d, *J* = 243.5 Hz), 146.8, 136.7 (d, *J* = 3.2 Hz), 135.5 (d, *J* = 11.2 Hz), 134.0, 132.8 (d, *J* = 2.7 Hz), 130.7, 127.3, 124.4 (d, *J* = 1.9 Hz), 121.1, 100.9 (d, *J* = 31.5 Hz), 78.6 (d, *J* = 27.8 Hz), 21.8; IR: 3126, 2924, 2360, 1675, 1596, 1542, 1459, 1418, 1381, 1176, 1113, 1086, 1010, 901, 666, 583, 541, 438 cm⁻¹; HRMS (ESI) m/z calculated for C₁₆H₁₂FINO₃S [M + H]⁺: 443.9561; found 443.9555.

1-(5-iodo-1-tosyl-1H-indol-3-yl)ethan-1-one:² 140.9 mg, 81% yield; White solid; m. p. = 197 – 198 °C; Eluant: ethyl acetate/petroleum ether (1:5, $R_f = 0.30$). ¹H NMR (400 MHz, CDCl₃) δ 8.30 (s, 1H), 8.10 (s, 1H), 8.07 (d, *J* = 8.4 Hz, 1H), 7.82 (d, *J* = 8.3 Hz, 2H), 7.63 (dd, *J* = 8.4, 1.1 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 2H), 2.55 (s, 3H), 2.40 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 193.2, 146.4, 135.8, 134.4, 134.0, 132.2, 130.5, 127.2, 127.0, 124.7, 122.1, 121.4, 90.4, 27.84, 21.79; IR: 3750, 2921, 1670, 1541, 1418, 1171, 1090, 973, 815, 669, 576, 535, 419 cm⁻¹; HRMS (ESI) m/z calculated for C₁₇H₁₄INNaO₃S [M + Na]⁺: 461.9631; found 461.9614.

5-phenyl-1-tosyl-1H-indole-3-carbaldehyde:⁹ 51 mg, 89% yield; White solid; m. p. = 198 - 199 °C; Eluant: ethyl acetate/petroleum ether (1:4, R_f = 0.30). ¹H NMR (400 MHz, CDCl₃) δ 10.12 (s, 1H), 8.47 (d, *J* = 1.5 Hz, 1H), 8.25 (s, 1H), 8.00 (d, *J* = 8.7 Hz, 1H), 7.88 (d, *J* = 8.4 Hz, 2H), 7.68 - 7.59 (m, 3H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.36 (d, *J* = 7.4 Hz, 1H), 7.32 (d, *J* = 8.2 Hz, 2H), 2.39 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 185.4, 146.3, 140.7, 138.7, 136.8, 134.7, 134.47, 130.46, 128.9, 127.6, 127.5, 127.3, 127.0, 125.9, 122.6, 121.0, 113.5, 21.8; IR: 3360, 2956, 2920, 2850, 1646, 1469, 1177, 974, 580, 457, 421 cm⁻¹; HRMS (ESI) m/z calculated for C₂₂H₁₈NO₃S [M + H]⁺: 376.1002; found 376.1014.

tert-butyl (E)-3-(3-formyl-1-tosyl-1H-indol-5-yl)acrylate: 53 mg, 91% yield; Yellow liquid; Eluant: ethyl acetate/petroleum ether (1:4, $R_f = 0.30$). ¹H NMR (400 MHz, CDCl₃) δ 10.07 (s, 1H), 8.39 (s, 1H), 8.23 (s, 1H), 7.91 (d, *J* = 8.7 Hz, 1H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.64 (d, *J* = 16.0 Hz, 1H), 7.53 (dd, *J* = 8.7, 1.2 Hz, 1H), 7.29 (d, *J* = 8.2 Hz, 2H), 6.41 (d, *J* = 16.0 Hz, 1H), 2.36 (s, 3H), 1.53 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ 185.2, 166.2, 146.5, 143.0, 137.0, 135.9, 134.2, 132.0, 130.5, 127.3, 126.8, 126.0, 122.4, 122.3, 120.7, 113.6, 80.6, 28.2, 21.7; IR: 3588, 3004, 1709, 1638, 1220, 1093, 978, 902, 529, 441, 428 cm⁻¹; HRMS (ESI) m/z calculated for C₂₃H₂₃NNaO₄S [M + Na]⁺: 432.1240; found 432.1258.

ethyl 5-(2,2-diphenylvinyl)-1H-indole-3-carboxylate: 34 mg, 43% yield; Yellow liquid; Eluant: ethyl acetate/petroleum ether (1:5, $R_f = 0.30$). ¹H NMR (400 MHz, DMSO) δ 11.74 (s, 1H), 8.00 (d, J = 2.6 Hz, 1H), 7.89 (d, J = 8.3 Hz, 1H), 7.25 (dt, J = 30.9, 7.2 Hz, 7H), 7.07 (d, J = 7.4 Hz, 4H), 7.00

(d, J = 8.7 Hz, 2H), 4.26 (q, J = 7.1 Hz, 2H), 1.31 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, DMSO) δ 164.4, 149.5, 142.0, 134.7, 132.7, 128.5, 127.9, 125.9, 125.2, 123.6, 120.3, 111.8, 106.9, 58.9, 52.3, 30.6, 14.4. IR: 3638, 3070, 2953, 2852, 1708, 1649, 1530, 1325, 1228, 1121, 1065, 877, 839, 641 cm⁻¹; HRMS (ESI) m/z calculated for C₂₅H₂₁NNaO₂ (M + Na⁺): 390.1465; found 390.1460.

5. Procedures for synthetic application

To a mixture of **3y** (63 mg, 0.15 mmol), sodium carbonate (31 mg, 0.29 mmol), phenylboronic acid (26 mg, 0.21 mmol) and Pd(PPh₃)₄ (17 mg, 0.015 mmol) in 1, 4-dioxane: water (4:1) 2 mL was taken under argon atmosphere in a sealed tube vial. The reaction mixture was stirred at 100 °C for 12 h in oil bath. The reaction mixture was extracted with ethyl acetate, dried over Na₂SO₄, concentrated via rotavapor and subjected for column chromatography to afford product **4** (51 mg, 89%) as white solid.

To a mixture of **3y** (63 mg, 0.15 mmol), potassium carbonate (41 mg, 0.3 mmol), tert-butylacrylate (57 mg, 0.45 mmol) and Pd(PPh₃)₄ (17 mg, 0.015) in DMA 1 mL was taken under argon atmosphere in a sealed tube vial. The reaction mixture was stirred at 100 °C for 12 h in oil bath. The reaction mixture was extracted with ethyl acetate, dried over Na₂SO₄, concentrated via rotavapor and subjected for column chromatography to afford product **5** (53 mg, 91%) as yellow liquid.

6. Procedures for radical-trapping experiments

A 10 mL round bottomed flask equipped with a stirring bar was charged with **1b**, **1g** or **1h** (0.5 mmol), **2a** (0.5 mmol), and DCM (3 mL) followed by sequential addition of three radical-trappingreagents, TEMPO (1.5 mmol, 3.0 equiv), BHT (1.5 mmol, 3.0 equiv) or 1,1-diphenylethylene (1.5 mmol, 3.0 equiv), respectively. Then BF₃:Et₂O (1.0 mmol) was added, and stirred at room temperature under air. No product **3b**, **3g** and **3h** were detected after 12 h (eq. 1, 2 and 3). But an adduct of ethyl 1H-indole-3-carboxylate and 1,1-diphenylethylene **6** was detected in the reaction mixture (eq.4).

7. References

- Heda, L. C.; Sharma, R.; Pareek, C.; Chaudhari, P. B. Synthesis and Antimicrobial Activity of Some Derivatives of 5-Substituted Indole Dihydropyrimidines. *E-J. Chem.* 2009, 6, 770-774.
- Huggins, W. M.; Barker, W. T.; Baker, J. T.; Hahn, N. A.; Melander, R. J.; Melander, C. Meridianin D Analogues Display Antibiofilm Activity against MRSA and Increase Colistin Efficacy in Gram-Negative Bacteria. ACS Med. Chem. Lett. 2018, 9, 702-707.
- 3. Yamada, K.; Kanbayashi, Y.; Tomioka, S.; Somei, M. Synthesis of Analogs of Wasabi Phytoalexin (Methyl 1-Methoxyindole-3-carboxylate). *Heterocycles* 2002, **57**, 1627-1634.
- 4. Wang, X.; Makha, M.; Chen, S. W.; Zheng, H.; Li. Y. GaCl3-Catalyzed C-H Cyanation of Indoles with N-Cyanosuccinimide. *J. Org. Chem.* 2019, **84**, 6199-6206.
- Hogendorf, A. S.; Hogendorf, A.; Popiołek-Barczyk, K.; Ciechanowska, A.; Mika, J.; Satała, G.; Walczak, M.; Latacz, G.; Handzlik, J.; Kiec-Kononowicz, K.; Ponimaskin, E.; Schade, S.; Zeug, A.; Bijata, M.; Kubicki, M.; Kurczab, R.; Lenda, T.; Staron, J.; Bugno, R.; Duszynska, B.; Pilarski, B.; Bojarski, A. J. Fluorinated indole-imidazole conjugates: Selective orally bioavailable 5-HT 7 receptor low-basicity agonists, potential neuropathic painkillers. *Eur. J. Org. Chem.* 2019, 170, 261-275.
- Shigeno, M.; Tohara, I.; Nozawa-Kumada, K.; Yoshinori, K. Direct C-2 Carboxylation of 3-Substituted Indoles Using a Combined Brønsted Base Consisting of LiO-tBu/CsF/18-crown-6. *Eur. J. Org. Chem.* 2020, 1987-1991.
- 7. Xu, H. D. Substituent Enabled Divergent Synthesis of N-Heterocycles: a Metal Carbene Approach Involving Intramolecular Carbene Interception. ChemInform 2015, **46**, 1154-1158.
- 8. Kaur, J.; Islam, N.; Kumar, A.; Bhardwaj, V. K.; Chimni, S. S. Organocatalytic enantioselective synthesis of C3 functionalized indole derivatives. *Tetrahedron* 2016, **72**, 8042-8049.
- S. Gandhi, B. Baire, Unusual Formation of Cyclopenta[b]indoles from 3-Indolylmethanols and Alkynes, *J. Org. Chem.* 2019, 84, 3904–3918.
- 10 A. Hogendorf, A. Hogendorf, G. Satala, R. Kurczab, R. Bugno, J. Staron, T. Lenda, A. J. Bojarski, Imidazoly-substituted Indole Derivatives Binding 5-HT7 Serotonin Receptor and Pharmaceutical Compositions Thereof, European Patent Application, EP 3272745 A1, 2018.

8. NMR spectra

¹H NMR spectra of compound **3a**

¹H NMR spectra of compound **3b**

¹³C NMR spectra of compound **3b**

¹³C NMR spectra of compound **3c**

¹H NMR spectra of compound **3d**

¹³C NMR spectra of compound **3d**

¹H NMR spectra of compound **3e**

¹³C NMR spectra of compound **3e**

¹H NMR spectra of compound **3f**

¹H NMR spectra of compound **3g**

¹³C NMR spectra of compound **3g**

S26

¹H NMR spectra of compound **3i**

S27

¹H NMR spectra of compound **3**j

¹³C NMR spectra of compound **3**j

¹H NMR spectra of compound **3k**

¹³C NMR spectra of compound **3k**

¹H NMR spectra of compound **3m**

¹³C NMR spectra of compound **3m**

¹H NMR spectra of compound **3n** -20000 -12.05 8.45 8.19 8.18 8.18 --7.08 -3.86 -2.50 -24000 -22000 -20000 о СН₃ -18000 -16000 -14000 -12000 -10000 -8000 ſ -6000 -4000 -2000 -0 1.01 ⊣ 1.09 ⊣ 1.00-T 1.06⊣ 3.03 ---2000 14 13 12 11 10 9 8 5 4 3 2 1 0 -1 ¹³C NMR spectra of compound **3n** --154.25 --138.03 --130.58 -56.49 740.23 740.02 39.81 39.39 38.97 -2500 -2000 о СН₃ -1500 -1000 -500 -0 210 200 190 180 170 160 150 140 130 120 110 100 90 fl (ppm) 80 70 60 50 40 30 20 10 0 -10

S32

¹H NMR spectra of compound **3o**

¹³C NMR spectra of compound **30**

¹H NMR spectra of compound **3p**

¹³C NMR spectra of compound **3p**

¹H NMR spectra of compound **3q**

¹H NMR spectra of compound **3r**

¹³C NMR spectra of compound **3r**

¹H NMR spectra of compound **3s**

¹³C NMR spectra of compound **3s**

¹H NMR spectra of compound **3t**

¹³C NMR spectra of compound **3t**

¹H NMR spectra of compound **3u**

¹³C NMR spectra of compound **3u**

¹H NMR spectra of compound **3v**

^{13}C NMR spectra of compound 3v

¹H NMR spectra of compound **3w**

¹³C NMR spectra of compound **3w**

¹H NMR spectra of compound **3x**

¹³C NMR spectra of compound **3x**

¹H NMR spectra of compound **3y**

¹³C NMR spectra of compound **3y**

¹H NMR spectra of compound **3z**

¹³C NMR spectra of compound **3z**

¹H NMR spectra of compound **3aa**

¹³C NMR spectra of compound **3aa**

¹H NMR spectra of compound **3ab**

¹³C NMR spectra of compound **3ab**

¹H NMR spectra of compound **3ac**

¹³C NMR spectra of compound **3ac**

¹H NMR spectra of compound **4**

¹³C NMR spectra of compound **4**

¹H NMR spectra of compound **5**

¹³C NMR spectra of compound 5

¹H NMR spectra of compound **6**

S50

9. X-ray crystal structure of compounds 3g and 3k

X-ray Crystal Structure of ethyl 5-iodo-1H-indole-3-carboxylate (**3g**) (**CCDC:2052806**)

X-ray Crystal Structure of 7-iodo-4-methoxy-1H-indole-3-carbaldehyde (3k) (CCDC:2052807)

