Visible-light-Driven, Fluoroalkylthiocyanation of Alkenes via Electron Donor-Accepter Complexes

Zebiao Li^{a,b,†}, Shan Wang^{a,†}, Yumei Huo^a, Bing Wang^b, Jun Yan^b, and Quanping Guo^{a a,*}

^a Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000 (China).

^b Changzhou Pharmaceutical Factory Co., LTD. Changzhou, China

Supporting Information

Table of Content:

1.	General Information	1
2.	Optimization of the reaction conditions	1
3.	General procedure for the fluoroalkylthiocyanation of alkenes	3
4.	Synthetic Applications	3
5.	The Mechanistic Study.	4
6.	References.	7
7.	Characterization of products	8
8.	NMR spectra of the products	22

1. General Information

Unless otherwise statement, all the reactions were carried out under argon atmosphere. All solvents purified and dried according to standard methods prior to use. ¹H NMR, ¹³C NMR, and ¹⁹F NMR spectra were recorded on a Bruker instrument (300 MHz, 75MHz, and 282 MHz) spectrometer in CDCl₃ using tetramethylsilane (TMS) as the internal standard unless otherwise noted. Data for ¹H NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad, q = quartet, coupling constant(s) in Hz integration). Data for ¹³C NMR and ¹⁹F NMR reported in terms of chemical shift (δ , ppm). HRMS obtained by the ESI ionization sources.

2. Optimization of the reaction conditions

			Cu cat. (10%mol)		SCN	
	+ C.E.I +		MS <mark>NCS (3, 3.0 eq</mark> u	iiv)	⊂C₄F9	
1.0 eq	uiv 3.0 equiv	violet 3.0 equiv	t LED (24-W, 390-4 dry CH ₃ CN, Ar, 4h	10nm)		
Entry	Cu cat.	Yield (%) ^b	Entry	Cu cat.	Yield (%) ^b	
1	Cul	31%	5	Cu(OTf) ₂	32%	
2	CuBr	70%	6	Cu(OAc) ₂	33%	
3	CuCl	87%	7	Cu(acac) ₂	48%	
4	Cu(CH ₃ CN) ₄ PF ₆	23%	8	CuF_2	25%	

Table S1. Cu Catalysts Screening.

^a Unless otherwise noted, the reactions were carried out by using **2a** (0.1 mmol), **1a** (3.0 equiv), **3** (3 equiv), K₃PO₄ (3 equiv), CH₃CN (1.0 mL), Cu catalyst (10 mol %), under Ar, and stirred at rt for 4 h under 24-W violet LED irradiation. ^b ¹H NMR yields with anisole internal standard. ^c isolated yield.

Table S2. Electron donor Screening.

			CuCl (10%n	nol)	SCN	
	+ C ₄ F _a l +	electron donor -	TMS <mark>NCS</mark> (3, 3.0	equiv)	- C ₄ F ₉	
	-4-9		violet LED (24-W, 3	90-410nm)		
1.0 equiv	3.0 equiv	3.0 equiv	dry CH ₃ CN, Ar	r, 4h		
Entry	electron donor	Yield (%) ^b	Entry	electron donor	Yield (%) ^b	
1	DIPEA	0	6	Cs ₂ CO ₃	2%	
2	Et ₃ N	0	7	K ₂ CO ₃	51%	
3	iPr ₂ NH	10%	8	Na ₂ CO ₃	52%	
4	TMG	0	9	K ₃ PO ₄	87%	
5	t-BuOLi	0	10	KHCO ₃	48%	

^a0.1mmol scale. ^{b1}H NMR yields with anisole internal standard.

Table S3. Solvents Screening.

1.0 equiv	+ C₄F₉I + K ₂ 3.0 equiv 3.0	PO4 TMSNCS (3, 3.0 ec violet LED (24-W, 390 equiv solvent, Ar, 4h	410nm) SCN C ₄ Fg
=	Entry	Solvent	Yield (%)b
_	1	CH ₃ CN	87%
	2	DMF	0
	3	DMSO	0
_	4	DCM	10%

^a0.1mmol scale. ^{b 1}H NMR yields with anisole internal standard

Table S4. Reactions under different wavelengths photo irradiation.

	\sim	CEL	+ K PO	CuC TMS <mark>NCS</mark>	l (10%mol) 6 (3, 3.0 equiv)	SCN C4F9
1.0 eq	luiv	3.0 equiv	3.0 equiv	dry C	H ₃ CN, Ar, 4 h hv	
	Entry	,		hν	Yield (%)	0
-	1		390-	410 nm	87%	
	2		254	1 nm	41%	
	3		blue	e LED	0	
-	4		whit	e LED	10%	_
	^a 0.1mm	ol scale. b	¹ H NMR yields	with anisole i	nternal standard	

Table S5. Control experiment

			CuCl (10	%mol) SCN	
	+ C ₄ F ₉ I + k	K₃PO₄	TMS <mark>NCS (3</mark> ,	3.0 equiv)	C ₄ F ₉
-	1.0 equiv 3.0 equiv 3.0	viole) equiv	et LED (24-W stand.	r, 390-410nm) cond." ^a	
		oquiv			
Entry	Change from the "stand. cond."	Yield(%) ^b	Entry	Change from the "stand. cond."	Yield(%) ^b
1	10% K ₃ PO ₄	0	10	La(OTf)3 instead of CuCl	23
2	20% K ₃ PO ₄	0	11	Ni(OTf) ₂ instead of CuCl	22
3	50% K ₃ PO ₄	0	12	Al(OTf) ₃ instead of CuCl	22
4	1.0 equiv K ₃ PO ₄	trace	13	AICl ₃ instead of CuCl	29
5	3.0 equiv K ₃ PO ₄	87	14	BF ₃ •OEt ₂ instead of CuCl	12
6	50% PPh ₃ instead of K_3PO_4	0	15	without CuCl	0
7	3.0 equiv PPh ₃ instead of K ₃ PO ₄	0	16	without K ₃ PO ₄	0
8	3.0 equiv H ₂ O was added	0	17	without light	0
9	0.5 equiv H_2O was added	6	18	2.0 equiv TEMPO was added	0
	0.5 equiv n ₂ O was added	0			e e
10	Fe(OTf) ₃ instead of CuCl	19	19	2.0 equiv BHT was added	0

^a Standerd condition, the reactions were carried out by using **2a** (0.1 mmol), **1a** (3.0 equiv), **3** (3 equiv), K₃PO₄ or other donor (3 equiv), solvent (1.0 mL), Lewis acid (10 mol %), under Ar, and stirred at rt for 4 h under 24-W violet LED irradiation. ^{b 1}H NMR yields with anisole internal standard.

3. General procedure for the fluoroalkylthiocyanation of alkenes

In a dried 10 ml glass test tube, CuCl (0.02 mmol, 2.8 mg), K_3PO_4 (0.6 mmol, 127 mg) were dissolved in CH₃CN (2.0 mL) under Ar atmosphere. Then styrene substrate **2** (0.2 mmol), perfluoroalkyl iodide **1** (IR_f, 0.6 mmol) and TMSNCS (**3**, 0.6 mmol, 78 mg) were added in turn. The glass test tube was transferred to a violet LED photoreactor (24 W, 390-410 nm) stirring for 4 h. After 4 h, the reaction was quenched by H₂O, extracted by EtOAc, dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified by column chromatography to afford the desired product.

4. Synthetic Applications

4a (0.2 mmol, 79.1 mg), TMSCF₃ (0.4 mmol, 56.9 mg) and Cs₂CO₃ (0.4 mmol, 65.2 mg) were added into the solution of CH₃CN (5 ml) in a 10 ml round bottom flask equipped with a stir bar at room temperature under Ar atmosphere for 8 h. After 8 h, the reaction was quenched by H₂O, extracted by EtOAc, dried over anhydrous sodium sulfate, concentrated in vacuo, and the residue was purified by column chromatography to afford the product **6**.

4a (0.2 mmol, 79.1 mg) and LiAlH₄ (0.5 mmol, 19 mg) were added into the solution of THF (5 ml) in a 10 ml round bottom flask equipped with a stir bar at room temperature for 5 h. After 5 h, the reaction was concentrated in vacuo and the residue was purified by column chromatography to afford the product 7.

4a (0.2 mmol, 79.1 mg), NaN₃ (0.5 mmol, 32.4 mg) and ZnBr (0.2 mmol, 45 mg) were dissolved in iPrOH/H₂O (1:1, 10 ml) in 25 ml round bottom flask equipped with a stir bar at room temperature under Ar atmosphere, and then refluxed for 8 h. After 8 h, the reaction was cooled to room temperature, concentrated in vacuo and the residue was purified by column chromatography to afford the product **8**.

5. The Mechanistic Study.

5.1 Radical Trapping Experiments.

Discussion: In order to gain some mechanistic insights, radical trapping experiments were carried out. The reaction was completely shut down by 2,2,6,6-tetramethylpiperidin-1-oxyl (TMEPO) and butylated hydroxytoluene (BHT), respectively (eqns 1 and 2). Notably, when TMEPO was added, the radical trapping product **9** was detected by HRMS, which indicated the formation of fluoroalkyl radical (eqn 1). These results suggested that a radical pathway might be involved. The

control experiment showed that no desired product **4a** was detected without CuCl, K_3PO_4 , or light irradiation (Table 1, entries 15-17), indicating that the Cu salt, K_3PO_4 , and light were all indispensable for the reaction. Furthermore, when the reaction was carried out in the absence of TMSNCS, the iodofluoroalkylation product (**4aa**) was not detected, which suggested that the ATRA pathway might not be involved in the aromatic alkenes reaction.

Figure S1. a) 0.1 M for each species in CH₃CN. Images showed the appearance of a yellow color upon the mixing of IC_4F_9 (**1a**) with K₃PO₄. b) UV-vis absorption spectra of the substrates in CH₃CN at concentrations of 0.1 M.

Disscussion: We first tested the -PO₄³⁻ anion for its ability to induce the formation of an EDA complex with perfluorobutyl iodide (IC₄F₉, **1a**) by UV/vis absorption spectroscope. When K₃PO₄ and **1a** were mixed in CH₃CN and stirred at room temperature for 1 h, an obviously yellow color was appeared (Scheme 1a). Meanwhile, the optical absorption spectrum of the mixture showed a significant bathochromic shift to visible spectral region, and a new absorption peak (λ_{max}) appeared at about 390nm (Scheme 1b). Under the same conditions, the mixture of **2a and** K₃PO₄ (**2a**+K₃PO₄) **or 1a** and **2a** (**1a**+**2a**) did not show bathochromic shift. These results suggested that the combination of K₃PO₄ and IC₄F₉ formed a new photoactive EDA complex.

5.3 Proposed mechanism.

EDA complex-driven photoinitiation

Figure S2. Proposed mechanism for aryl alkenes.

Disscussion: Based on the mechanistic investigations and previous reports,¹ a plausible mechanism was proposed (Figure S2). Firstly, K_3PO_4 and IR_f generate the colored EDA complex. Then, a visible-light-promoted electron transfer leads to the formation of the electron-deficient fluoroalkyl radical **A** through the reductive cleavage of the C–I bond within R_fI and K_3PO_4 . The electrophilic fluoroalkyl radical is next trapped by the alkene and forms the benzylic intermediate **C**, which oxidized by PO_4^{2-} anion **B** to generate the carbocation species **D**, the carbocation intermediate **D** attracted by nucleophilic SCN anion to yield the desired product.

EDA complex-driven photoinitiation

Figure S3. Proposed mechanism for unactivated alkenes.

Disscussion: For unactivated alkenes (Figure S3), firstly, K_3PO_4 and IR_f generate the colored EDA complex. Then, a visible-light-promoted electron transfer leads to the formation of the electron-deficient fluoroalkyl radical **A** through the reductive cleavage of the C–I bond within R_fI and K_3PO_4 . The electrophilic fluoroalkyl radical is next trapped by the alkyl alkene and forms the

radical intermediate E, which would undergo a radical chain mechanism and obtain the iodoperfluoroalkylation product through ATRA pathway.²

5.4 Measurement the wavelength of the LED light.

We also measured the wavelength of the LED light by ourselves (recorded on an AVANTES[®] AvaSpec-ULS2048 spectrometer instrument). The result was shown as follow:

6. References.

- (a) R. Foster, Electron donor-acceptor complexes, *J. Phys. Chem.*, 1980, 84, 2135. (b) S. V. Rosokha, and J. K. Kochi, Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex, *Acc. Chem. Res.*, 2008, 41, 641. (c) C. G. S. Lima, T. de M. Lima, M. Duarte, I. D. Jurberg, M. W. Paixão, Organic synthesis enabled by light-irradiation of EDA complexes: theoretical background and synthetic applications, *ACS Catal.*, 2016, 6, 1389. (d) S. V. Rosokha, J. K. Kochi, Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex, *Acc. Chem. Res.*, 2008, 41, 641. (e) G. E. M. Crisenza, D. Mazzarella, and P. Melchiorre, Synthetic methods driven by the photoactivity of electron donor–acceptor complexes, *J. Am. Chem. Soc.*, 2020, 142, 5461.
- (2) (a) C. –J. Wallentin, J. D. Nguyen, P. Finkbeiner, C. R. J. Stephenson, Visible light-mediated atom transfer radical addition via oxidative and reductive quenching of photocatalysts, *J. Am. Chem. Soc.*, 2012, **134**, 8875; (b) R. Beniazza, R. Atkinson, C. Absalon, F. Castet, S. A. Denisov, N. D. McClenaghan, D. Lastécouerès, J.-M. Vincent, Benzophenone vs. copper/benzophenone in light-promoted atom transfer radical additions (ATRAs): highly effective iodoperfluoroalkylation of alkenes/alkynes and mechanistic studies, *Adv. Synth. Catal.* 2016, **358**, 2949; (c) Y. Wang, J. Wang, G.-X. Li, G. He, Chen, G. Halogen-bond-promoted photoactivation of perfluoroalkyl iodides: a photochemical protocol for perfluoroalkylation reactions, *Org. Lett.*, 2017, **19**, 1442.

7. Characterization of products

1-methyl-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 67.2 mg, yield:85%, light yellow liquid. ¹**H NMR** (300 MHz, CDCl₃) δ 7.20–7.29 (m, 4H), 4.77 (dd, J = 6.0 Hz, 7.8Hz, 1H), 2.92–3.12 (m, 2H), 2.37 (s, 3H); ¹³**C NMR** (75 MHz, CDCl₃) δ 139.90, 133.40, 130.10, 127.05, 110.42, 45.29, 36.56 (t, J = 21.0 Hz), 21.17; ¹⁹**F NMR** (282 MHz, CDCl₃) δ -81.05— -81.14 (m, 3F), -111.85— -114.27 (m, 2F), -124.23— -124.29 (m, 2F), -125.92— -126.03 (m, 2F); **HRMS (EI):** C₁₄H₁₀F₉NS+Na⁺ Calcd: 418.0288, Found: 418.0276.

(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 67.9 mg, yield:89%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.37–7.45 (m, 5H), 4.77 (dd, J = 6.3 Hz, 8.1Hz, 1H), 2.95–3.12 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 136.46, 129.76, 129.48, 127.16, 110.25, 45.31, 36.42 (d, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.03 (m, 3F), -111.88— -112.93 (m, 1F), -113.11— -114.15 (m, 1F), -124.23 (dd, J = 3.1 Hz, 7.3Hz 2F), -125.94 (d, J = 3.7 Hz 2F); HRMS (EI): C₁₃H₈F₉NS+Na⁺ Calcd: 404.0131, Found: 404.0145.

1-(tert-butyl)-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 76.1 mg, yield:87%, white solid, mp 43 – 45°C. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.26–7.32 (m, 2H), 4.77 (t, J = 6.9 Hz, 1H), 2.95–3.11 (m, 2H), 1.32 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 152.97, 133.37, 126.82, 126.40, 110.51, 45.14, 36.55, 34.77, 31.17; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.03— -81.11 (m, 3F), -112.95— -112.23 (m, 2F), -124.17— -124.44 (m, 2F), -125.68— - 126.03 (m, 2F); HRMS (EI): C₁₇H₁₆F₉NS+Na⁺ Calcd: 460.0757, Found: 460.0758.

1-bromo-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 72.7 mg, yield:79%, yellow liquid. ¹**H NMR** (300 MHz, CDCl₃) δ 7.57 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 4.75 (dd, J = 6.6 Hz, 7.8 Hz, 1H), 2.92–3.08 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 135.53, 132.72, 128.77, 124.00, 109.78, 44.65, 36.42 (t, J = 21.0 Hz); ¹⁹**F NMR** (282 MHz, CDCl₃) δ - 80.95— -81.03 (m, 3F), -111.61— -114.04 (m, 2F), -124.13— -124.20 (m, 2F), -125.86— - 125.97 (m, 2F); **HRMS (EI):**C₁₃H₇BrF₉NS+Na⁺Calcd:481.9237, Found: 481.9321.

1-fluoro-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 66.2 mg, yield:83%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.35–7.39 (m, 2H), 7.08–7.17 (m, 2H), 4.78 (dd, J = 6.6 Hz, 7.8 Hz, 1H), 2.93–3.09 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.17 (d, J = 249.0 Hz), 132.34 (d, J = 3.0 Hz), 129.13 (d, J = 8.3 Hz), 116,74 (t, J = 10.5 Hz), 109.98, 44.60, 36.61 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.01— -81.11 (m, 3F), -110.56 (s, 1F), -110.68— -113.22 (m, 1F), -114.08— -114.19 (m, 1F),-124.18— -124.29 (m, 2F), -125.90— -126.02 (m, 2F); HRMS (EI): C₁₃H₇F₁₀NS+Na⁺ Calcd: 422.0037, Found: 422.0042.

4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)-1,1'-biphenyl, 70.4 mg, yield:77%, yellow solid, mp 84-88°C. ¹H NMR (300 MHz, CDCl₃) δ 7.57–7.63 (m, 4H), 7.43–7.48 (m, 4H), 7.34–7.41 (m, 1H), 4.82 (dd, J = 6.3 Hz, 7.5 Hz, 1H), 2.93–3.21 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 142.68, 139.82, 135.31, 128.93, 128.10, 127.94, 127.62, 127.13, 110.30, 45.16, 36.53 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.01 (m, 3F), -111.71— -112.80 (s, 1F), -113.05— -114.12 (m, 1F), -124.18 (t, J = 2.8 Hz, 2F), -125.90 (d, J = 3.7 Hz); HRMS (EI): C₁₉H₁₂F₉NS+Na⁺ Calcd: 480.0444, Found: 480.0454.

1-(4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)phenyl)ethan-1-one, 72.8 mg, yield:86%, white solid, mp 46–49°C. ¹H NMR (300 MHz, CDCl₃) δ 8.03 (d, *J* = 8.4 Hz, 2H), 7.52 (d, *J* = 8.1 Hz, 2H), 4.82 (t, *J* = 6.6 Hz, 1H), 2.97–3.11 (m, 2H), 2.63 (s, 3H); ¹³C NMR (75 MHz, CDCl₃)

δ 196.99, 141.39, 137.96, 129.39, 127.52, 109.67, 44.60, 36.24 (t, J = 21.0 Hz), 26.64; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.03— -81.11 (m, 3F), -111.61— -114.01 (m, 2F), -124.16— -124.25 (m, 2F), -125.92— -126.03 (m, 2F); HRMS (EI):C₁₅H₁₀F₉NOS+Na⁺Calcd: 446.0237, Found: 446.0232.

1-methoxy-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 69.1 mg, yield:84%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.28–7.38 (m, 2H), 6.93–7.04 (m, 2H), 5.08 (dd, J = 6.3 Hz, 7.8 Hz, 1H), 3.91 (s, 3H), 2.90–3.24 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 156.37, 135.19, 130.84, 127.91, 124.85, 121.05, 111.29, 55.91, 40.83, 35.48 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.96— -81.06 (m, 3F), -113.60— -113.83 (s, 2F), -124.27— -124.38 (m, 2F), -125.85— -125.98 (m, 2F); HRMS (EI): C₁₄H₁₀F₉NOS+Na⁺ Calcd: 434.0237, Found: 434.0247.

1-methoxy-3-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 67.4 mg, yield:83%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.34 (t, J = 7.8 Hz, 1H), 6.89–6.98 (m, 3H), 4.73 (dd, J = 6.3 Hz, 7.8 Hz, 1H), 3.83 (s, 3H), 2.88–3.16 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 160.14, 137.92, 130.59, 119.21, 114.85, 113.07, 110.32, 55.35, 45.26, 36.58 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.01— -81.11 (m, 3F), -111.98— -113.26 (s, 1F), -114.15— - 114.27 (m, 1F), -124.19— -124.30 (m,2F), -125.88— -126.06 (m, 2F); HRMS (EI): C₁₄H₁₀F₉NOS+Na⁺ Calcd: 434.0237, Found: 434.0245.

1,2-dimethoxy-4-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 64.1 mg, yield:73%, white solid, mp 50-54°C. ¹H NMR (300 MHz, CDCl3) δ 6.89 (s, 2H), 6.84 (s, 1H), 5.16 (dd, J = 3.6 Hz, 9.6Hz, 1H), 3.91 (d, J = 9.6 Hz 6H), 2.41–2.86 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 149.60, 149.56, 135.70, 130.24, 118.21, 111.37, 108.56, 55.98 (d, J = 4.5 Hz), 54.09,

39.18(t, J = 21.0 Hz), 18.37; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.05— -81.13 (m, 3F), -113.15— -115.40 (m, 2F), -124.40— -124.52 (m, 2F), -125.90— -126.02 (m, 2F); HRMS (EI):C₁₅H₁₂F₉NO₂S+Na⁺Calcd: 464.0343, Found: 464.0337.

1-chloro-3-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 73.1 mg, yield:88%, yellow liquid. ¹**H NMR** (300 MHz, CDCl₃) δ 7.35–7.42 (m, 3H), 7.26–7.31 (m, 1H), 4.72 (t, J = 7.2 Hz, 1H), 2.92–3.08 (m, 2H); ¹³**C NMR** (75 MHz, CDCl₃) δ 138.48, 135.38, 130.78, 130.04, 127.39, 125.33, 109.71, 44.54, 36.45 (t, J = 21.0 Hz); ¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.95— -81.04 (m, 3F), -113.73— -114.01 (m, 2F), -124.10— -124.18 (m, 2F), -125.86— -125.97 (m, 2F); **HRMS (EI):**C₁₃H₇ClF₉NS+Na⁺Calcd: 437.9742, Found: 437.9736.

1-chloro-2-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)benzene, 71.5 mg, yield:86%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.45–7.50 (m, 2H), 7.35–7.41 (m, 2H), 5.24 (t, J = 7.2 Hz, 1H), 3.00–3.14 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 134.10, 133.27, 130.72, 130.55, 127.81, 109.82, 41.02, 35.58 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.95— -81.04 (m, 3F), -113.25 (d, J = 11.6 Hz, 2F), -124.19— -124.28 (m, 2F), -125.85— -125.96 (m, 2F); HRMS (EI):C₁₃H₇ClF₉NS+Na⁺Calcd: 437.9742, Found: 437.9736.

(4,4,5,5,6,6,7,7,7-nonafluoro-2-thiocyanatoheptan-2-yl)benzene, 51.3 mg, yield:65%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.50–7.54 (m, 2H), 7.39–7.46 (m, 3H), 3.29–3.46 (m, 1H), 2.90–3.08 (m, 1H), 2.28 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.21, 129.32, 129.16, 125.91, 110.60, 56.31, 41.77 (t, *J* = 19.5 Hz), 26.65 (d, *J* = 4.5 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -81.06 (s, 3F), -108.28— -109.36 (m, 1F), -111.97— -113.03 (m, 1F), -124.32— -124.37 (m, 2F), -125.67— -125.80 (m, 2F); HRMS (EI):C₁₄H₁₀F₉NS+Na⁺Calcd: 418.0361, Found: 418.0363.

(3,3,4,4,5,5,6,6,6-nonafluoro-2-methyl-1-thiocyanatohexyl)benzene, 59.3 mg, yield:75%, white liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.30–7.37 (m, 5H), 4.90 (d, *J* = 3.9 Hz, 1H), 2.86–3.01 (m, 2H), 1.28 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 136.45, 128.24, 128.13, 128.00, 126.60, 109.62, 51.35 (d, *J* = 5.3 Hz), 41.02 (t, *J* = 20.3 Hz), 8.29 (d, *J* = 4.5 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.89 (t, *J* = 95.9 Hz 3F), -111.25— -112.41 (m, 1F), -116.43— -117.56 (m, 1F), -120.95— -122.33 (m, 2F), -124.58— -127.42 (m, 2F); HRMS (EI):C₁₃H₇ClF₉NS+Na⁺Calcd: 418.0288, Found: 418.0282.

(8R,9S,13S,14S)-13-methyl-3-(3,3,4,4,5,5,6,6,6-nonafluoro-1-thiocyanatohexyl)-

6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one, 94.8 mg, yield:85%, white liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.33 (d, J = 8.1 Hz, 1H), 7.09–7.17 (m, 2H), 4.74 (t, J = 6.9 Hz, 1H), 2.93–3.11 (m, 4H), 1.96–2.57 (m, 7H), 1.43–1.72 (m, 6H), 1.40 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.62, 137.85, 133.87, 127.67 (d, J = 5.3 Hz), 126.46, 124.33 (d, J = 4.5 Hz), 110.49, 50.46, 47.91, 45.17, 44.34, 37.82, 36.76, 36.53, 36.23, 35.81, 31.52, 29.31, 26.24, 25.53, 21.56, 13.80; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.98— -81.06 (m, 3F), -111.96— -114.18 (m, 2F), -124.17— -124.27 (m, 2F), 125,86— -125.97 (m, 2F); HRMS (EI):C₂₅H₂₄F₉NOS+Na⁺Calcd: 580.1333, Found: 580.1327.

2-(4,4,5,5,6,6,8,8,8-nonafluoro-2-iodooctyl)isoindoline-1,3-dione, 72.5 mg, yield:68%, yellow liquid, ¹H NMR (300 MHz, CDCl₃) δ 7.89–7.92 (m, 2H), 7.76–7.80 (m, 2H), 4.67–4.78 (m,1H), 4.18 (dd, J = 8.7 Hz, 5.4Hz, 1H), 3.99 (dd, J = 6.9 Hz, 7.5Hz, 1H), 2.84–3.02 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 167.65, 134.43, 131.56, 123.71, 45.83 (d, J = 2.3 Hz), 39.25 (d, J = 21.8 Hz), 13.14; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.07 — -81.15 (m, 3F), -111.78— -114.66 (m, 2F), -

124.44—-124.55 (m, 2F), -125.59—-126.07 (m, 2F); **HRMS (EI)**:C₁₅H₉F₉INO₂+Na⁺Calcd: 555.9432, Found: 555.9426.

tert-butyl((12,12,13,13,14,14,15,15,15-nonafluoro-10-iodopentadecyl)oxy)diphenylsilane,

113.2 mg, yield:75%, yellow liquid, ¹H NMR (300 MHz, CDCl₃) δ 7.79–7.92 (m, 1H), 7.50–7.71 (m, 4H), 7.20–7.44 (m, 5H), 4.28–4.38 (m, 1H), 3.67 (t, J = 6.6 Hz, 2H), 2.69–2.97 (m, 2H), 1.71–1.85 (m, 2H), 1.52–1.60 (m, 3H), 1.28–1.36 (m, 11H), 1.06 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 135.62, 135.52, 134.21, 129.92, 129.50, 127.83, 127.78, 127.59, 64.08 (d, J = 12.0 Hz), 41.61 (t, J = 20.3 Hz), 40.35, 32.55 (d, J = 6.0 Hz), 29.75, 29.61, 29.50, 29.32, 28.51 (d, J = 1.5 Hz), 26.76 (t, J = 8.3 Hz), 25.76 (d, J = 1.5 Hz), 20.76, 19.22 (d, J = 3.8 Hz) ¹⁹F NMR (282 MHz, CDCl₃) δ - 81.10— -81.17 (m, 3F), -111.27— -115.53 (m, 2F), -122.75— -124.66 (m, 2F), -125.63— - 126.08 (m, 2F); HRMS (EI): C₃₁H₄₀F₉IOSi+Na⁺Calcd: 777.1647, Found: 777.1642.

12,12,13,13,14,14,15,15,15-nonafluoro-10-iodopentadecyl 4-methylbenzenesulfonate, 95.2 mg, yield:71%, yellow liquid, ¹**H NMR** (300 MHz, CDCl₃) δ 7.72 (d, J = 8.1 Hz, 2H), 7.28 (d, J = 8.1 Hz, 2H), 4.20–4.30 (m, 1H), 3.95 (t, J = 6.3 Hz, 2H), 2.62–2.93 (m, 2H), 2.38 (s, 3H), 1.66–1.77 (m, 2H), 1.51–1.59(m, 3H), 1.17–1.22(m, 11H); ¹³**C NMR** (75 MHz, CDCl₃) δ 144.64, 133.20, 129.80, 127.88, 70.66, 41.53 (t, J = 19.5 Hz), 40.25, 29.52, 29.24, 29.19, 28.85, 28.80, 28.42, 25.30, 21.63, 20.83; ¹⁹**F NMR** (282 MHz, CDCl₃) δ -80.99– -81.06 (m, 3F), -111.43– -112.51 (m, 1F), -114.42– -115.48 (m, 1F), -124.53– -124.65 (m, 2F), -125.85– -126.00(m, 2F); **HRMS (EI)**: C₂₂H₂₈F₉IO₃S+Na⁺Calcd: 693.0558, Found: 693.0552.

12,12,13,13,14,14,15,15,15-nonafluoro-10-iodopentadecyl diphenylphosphinate, 108.9 mg, yield:76%, yellow liquid, ¹**H NMR** (300 MHz, CDCl₃) δ 7.78–7.86 (m, 4H), 7.28–7.55 (m, 6H), 4.30–4.36 (m, 1H), 4.03 (q, *J* = 6.6 Hz, 2H), 2.75–2.95 (m, 2H), 1.68–1.85 (m, 3H), 1.35–1.54 (m, 2H), 1.29 (s, 11H); ¹³**C NMR** (75 MHz, CDCl₃) δ 132.58, 132.08, 132.04, 131,68, 131.55, 130.77,

128.57, 128.40, 64.96 (d, J = 6.0 Hz), 41.50 (t, J = 21.0 Hz), 40.26, 30.51 (d, J = 6.0 Hz), 29.52, 29.32, 29.24, 29.04, 28.43, 25.56, 20.78; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.05— -81.12 (m, 3F), -111.52— -112.58 (m, 1F), -114.43— -115.49 (m, 1F), -124.61— -124.68 (m, 2F), -125.93— -126.03 (m, 2F); HRMS (EI): C₂₇H₃₁F₉IO₂P+Na⁺Calcd: 739.0860, Found: 739.0855.

ethyl 2,2-difluoro-4-(4-fluorophenyl)-4-thiocyanatobutanoate, 52.2 mg, yield:86%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.39(m, 2H), 7.07–7.13(m, 2H), 4.69 (dd, J = 6.3 Hz, 2.1 Hz, 1H), 4.17 (q, J = 7.2 Hz, 2H), 2.88–3.14 (m, 2H), 1.30 (t, J = 6.9 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 164.75, 162.81, 161.44, 132.46 (d, J = 3.0 Hz), 129.46 (d, J = 8.3 Hz), 116.36 (d, J = 21.8 Hz), 113.84, 110.26, 63.49, 45.53 (d, J = 4.5 Hz), 40.20 (t, J = 24.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -102.89 (dd, J = 266.8 Hz, 252.6 Hz, 2F), -110.77 (s, 1F); HRMS (EI):C₁₃H₁₂F₃NS+Na⁺Calcd: 326.0439, Found: 326.0433.

ethyl 4-(4-bromophenyl)-2,2-difluoro-4-thiocyanatobutanoate, 61.9 mg, yield:85%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.55 (d, J = 8.7 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H), 4.65 (dd, J = 6.3 Hz, 1.8 Hz, 1H), 4.18 (q, J = 7.2 Hz, 2H), 2.92–3.07 (m, 2H), 1.31(t, J = 7.2 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 135.69, 132.47, 129.10, 123.77, 110.99, 63.55, 45.57 (t, J = 4.5 Hz), 39.94 (t, J = 24.0 Hz), 13.79; ¹⁹F NMR (282 MHz, CDCl₃) δ -102.97 (dd, J = 265.1 Hz, 160.7 Hz, 2F); HRMS (EI):C₁₃H₁₂BrF₂NO₂S+Na⁺Calcd: 385.9638, Found: 385.9632

1-fluoro-4-(3,3,4,4,5,5,5-heptafluoro-1-thiocyanatopentyl)benzene, 62.2 mg, yield:89%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.39 (m, 2H), 7.09–7.15 (m, 2H), 4.79 (dd, *J* = 4.8 Hz, 4.2Hz, 1H), 2.88–3.17 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.17 (d, *J* = 248.3 Hz), 132.19 (d, *J* = 14.1 Hz), 129.10 (d, *J* = 31.0 Hz), 116.60 (d, *J* = 81.8 Hz), 109.97, 45.96, 34.35 (d, *J* =

18.0 Hz); ¹⁹**F** NMR (282 MHz, CDCl₃) δ -75.91— -76.04 (m, 3F), -77.00— -77.14 (m, 3F), -110.47, -185.26— -185.36 (m, 1F); **HRMS (EI)**:C₁₂H₇F₈NS+Na⁺Calcd: 372.0069, Found: 372.0064.

1-chloro-3-(3,3,4,4,5,5,5-heptafluoro-1-thiocyanatopentyl)benzene, 62.8 mg, yield:86%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.39 (m, 3H), 7.25–7.29 (m, 1H), 4.72 (dd, J = 5.4 Hz, 3.3Hz, 1H), 2.87–3.16 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 138.37, 135.34, 130.74, 130.04, 127.36, 125.25, 109.70, 45.87, 34.12 (d, J = 18.8 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ - 76.02— -76.12 (m, 3F), -76.93— -77.03 (m, 3F), -185.17— -185.28 (m, 1F); HRMS (EI):C₁₂H₇ClF₇NS+Na⁺Calcd: 387.9774, Found: 387.9768.

1-bromo-4-(3,3,4,4,5,5,5-heptafluoro-1-thiocyanatopentyl)benzene, 70.5 mg, yield:86%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, J = 8.4 Hz 2H), 7.25 (d, J = 8.4 Hz, 2H), 4.73 (dd, J = 5.1 Hz, 3.9Hz, 1H), 2.87–3.17 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 135.38, 132.69, 128.72, 124.01, 109.79, 45.99, 34.09 (d, J = 18.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ - 75.90— -76.03 (m, 3F), -76.99— -77.11 (m, 3F), -185.42— -185.52 (m, 1F); HRMS (EI):C₁₂H₇BrF₇NS+Na⁺Calcd: 431.9268, Found: 431.9263.

1-(3,3,4,4,5,5,5-heptafluoro-1-thiocyanatopentyl)-4-methylbenzene, 59.4 mg, yield:86%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.20–7.27 (m, 4H), 4.78 (dd, J = 4.8 Hz, 3.9 Hz, 1H), 2.88–3.20 (m, 2H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.93, 133.24, 130.09, 127.03, 110.42, 46.67, 34.29 (d, J = 18.0 Hz), 21.22; ¹⁹F NMR (282 MHz, CDCl₃) δ -75.93— -76.05 (m, 3F), -76.99— -77.12 (m, 3F), -185.42— -185.52 (m, 1F); HRMS (EI):C₁₃H₁₀F₇NS+Na⁺Calcd: 368.0320, Found: 368.0314

(8R,98,138,148)-3-(3,3,4,4,5,5,5-heptafluoro-1-thiocyanatopentyl)-13-methyl-

6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one, 85.3 mg, yield:84%, white liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.33 (d, J = 8.1 Hz, 1H), 7.08–7.16 (m, 2H), 4.75 (dd, J = 5.4 Hz, 3.0Hz, 1H), 2.91–3.20 (m, 4H), 1.96–2.57 (m, 7H), 1.43–1.69 (m, 6H), 0.92 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.62, 137.80, 133.77, 127.63 (d, J = 5.3 Hz), 126.42, 124.28 (d, J = 5.3 Hz), 110.49, 50.45, 47.90, 46.53, 44.33, 37.80, 35.81, 34.28, 34.03, 31.52, 29.31, 26.25, 25.52, 21.56, 13.80; ¹⁹F NMR (282 MHz, CDCl₃) δ -76.02— -76.14 (m, 3F), -76.92— -77.05 (m, 3F), -185.51— -185.57 (m, 1F); HRMS (EI):C₂₄H₂₄F₇NOS+Na⁺Calcd: 530.1365, Found: 530.1359.

1-fluoro-4-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-thiocyanatooctyl)benzene, 83.9 mg, yield:84%, white solid, mp 72-75°C. ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.41 (m, 2H), 7.09–7.16 (m, 2H), 4.80 (dd, J = 6.6 Hz, 7.5Hz, 1H), 2.93–3.09 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.18 (d, J = 249.0 Hz), 132.36 (d, J = 3.8 Hz), 129.14 (d, J = 8.3 Hz), 116,61 (d, J = 21.8 Hz), 109.99, 44.63, 36.70 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.82— -80.90 (m, 3F), -110.57 (s, 1F), -111.58— -113.97 (m, 2F), -121.80— -121.98 (m, 2F), -122.90— -123.29 (m, 2F), -123.30— -123.37 (m, 2F), -126.18— -126.31 (m, 2F); HRMS (EI):C₁₅H₇F₁₄NS+Na⁺Calcd: 521.9973, Found: 521.9968.

1-chloro-3-(3,3,4,4,5,5,6,6,7,7,8,8-dodecafluoro-1-thiocyanatononyl)benzene, 91.8 mg, yield:89%, white solid, mp 67–69°C. ¹H NMR (300 MHz, CDCl₃) δ 7.34–7.39 (m, 3H), 7.27–7.31 (m, 2H), 4.72 (t, *J* = 7.2 Hz, 1H), 2.93–3.08 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 138.56, 135.53, 130.74, 129.99, 127.39, 125.33, 109.76, 44.52, 36.45 (t, *J* = 21.0 Hz); ¹⁹F NMR (282

MHz, CDCl₃) δ -80.97— -81.05 (m, 3F), -111.62— -112.67 (m, 1F), -112.84— -113.87 (m, 1F), -121.86— -121.95 (m, 2F), -123.00— -123.04 (m, 2F), -123.29— -123.41 (m, 2F), -126.28— -126.42 (m, 2F); **HRMS (EI)**:C₁₅H₇ClF₁₃NS+Na⁺Calcd: 537.9678, Found: 537.9672.

1-bromo-4-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-thiocyanatooctyl)benzene, 94.1 mg, yield:84%, yellow solid, mp 57—59°C. ¹H NMR (300 MHz, CDCl₃) δ 7.57 (d, J = 8.7 Hz, 2H), 7.27 (d, J = 8.4 Hz, 2H), 4.75 (dd, J = 6.6 Hz, 1.2Hz, 1H), 2.93–3.08 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 135.54, 132.72, 128.77, 123.99, 109.81, 44.67, 36.34 (d, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.81 (t, J = 9.9 Hz, 3F), -111.39— -112.44 (m, 1F), -112.78— -113.83 (m, 1F), -121.77— -121.85 (m, 2F), -122.87— -122.93 (m, 2F), -123.21— -123.33 (m, 2F), -126.14— -126.27 (m, 2F); HRMS (EI):C₁₅H₇BrF₁₃NS+Na⁺Calcd: 581.9173, Found: 581.9167.

1-methyl-4-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-thiocyanatooctyl)benzene, 86.2 mg, yield:87%, white solid, mp 66—69°C. ¹H NMR (300 MHz, CDCl₃) δ 7.25 (q, J = 8.4 Hz 4H), 4.77 (dd, J = 6.3 Hz, 1.5 Hz, 1H), 2.93–3.08 (m, 2H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.91, 133.38, 130.11, 127.05, 110.44, 45.31, 36.78 (d, J = 21.0 Hz), 21.22; ¹⁹F NMR (282 MHz, CDCl₃) δ -81.83 (t, J = 10.2 Hz, 3F), -111.61— -112.71 (m, 1F), -112.96— -114.04 (m, 1F), -121.79— -121.88 (m, 2F), -122.94 (d, J = 3.7 Hz 2F), -123.27— -123.38 (m, 2F), -126.17— -126.28 (m, 2F); HRMS (EI):C₁₆H₁₀F₁₃NS+Na⁺Calcd: 518.0224, Found: 518.0219.

(8R,9S,13S,14S)-13-methyl-3-(3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-thiocyanatooctyl)-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one, 113.1 mg, yield:86%, white solid, mp 137 -140° C. ¹H NMR (300 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 1H), 7.09–7.17 (m, 2H), 4.74 (t, J = 6.6 Hz, 1H), 2.93–3.11 (m, 4H), 1.96–2.57 (m, 7H), 1.43–1.72 (m, 6H), 0.92 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.62, 137.85, 133.90, 127.67 (d, J = 5.3 Hz), 126.46, 124.33 (d, J = 4.5 Hz), 110.49, 50.46, 47.91, 45.21, 44.35, 37.82, 36.59, 35.80, 31.52, 29.31, 26.24, 25.53, 21.56, 13.79; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.83 (t, J = 9.9 Hz, 3F), -111.74—-112.77 (m, 1F), -112.93— -114.01 (m, 1F), -121.80 (t, J = 10.7 Hz, 2F), -122.92 (d, J = 3.7 Hz, 2F), -123.25— -123.31 (m, 2F), -126.15— -126.28 (m, 2F); HRMS (EI):C₂₇H₂₄F₁₃NOS+Na⁺Calcd: 680.1269, Found: 680.1263.

1-(tert-butyl)-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-

thiocyanatodecyl)benzene, 112.2 mg, yield:88%, white solid, mp 87–89°C. ¹H NMR (300 MHz, CDCl₃) δ 7.42–7.45 (m, 2H), 7.29–7.32 (m, 2H), 4.77 (t, *J* = 6.6 Hz, 1H), 2.90–3.12 (m, 2H), 1.32 (s, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 152.95, 133.39, 126.81, 126.38, 110.50, 45.14, 36.50 (d, *J* = 21.8 Hz), 34.74, 31.13; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.82 (t, *J* = 9.6 Hz, 3F), -112.73—112.85 (m, 1F), -112.97— -113.18 (m, 1F), -121.61(d, *J* = 7.9 Hz, 2F), -121.97 (t, *J* = 7.3 Hz, 4F), -122.79 (d, *J* = 3.1 Hz, 2F), -123.27 (d, *J* = 13.5 Hz, 2F), -126.14— -126.26 (m, 2F); HRMS (EI): C₂₁H₁₆F₁₇NS+Na⁺ Calcd: 660.0630, Found: 660.0650.

(8R,9S,13S,14S)-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluoro-1-thiocyanatodecyl)-13-methyl-6,7,8,9,11,12,13,14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one, 124.2 mg, yield:82%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.34 (d, J = 8.1 Hz, 1H), 7.10–7.17 (m, 2H), 4.74 (t, J = 6.9 Hz, 1H), 2.56–3.08 (m, 4H), 1.97–2.54 (m, 7H), 1.43–1.97 (m, 6H), 0.93 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 141.61, 137.84, 133.91, 127.67 (d, J = 5.3 Hz), 126.46, 124.33 (d, J = 5.3 Hz), 110.48, 50.46, 47.90, 45.18, 44.34, 37.82, 36.61, 35.80, 31.52, 29.30, 26.24, 25.53, 21.55, 13.78; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.83— -80.91 (m, 3F), -112.67— -112.78 (m, 1F), -112.94— -113.05 (m, 1F), -121.63 (d, J = 7.9 Hz, 2F), -121.98 (d, J = 7.6 Hz, 4F), -122.82 (s, 2F), -123.82 (s, 2F), -126.17— -126.28 (m, 2F); HRMS (EI):C₂₉H₂₄F₁₇NOS+Na⁺Calcd: 780.1250, Found: 780.1199

1-fluoro-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henicosafluoro-1-

thiocyanatododecyl)benzene, 100.7 mg, yield:72%, white solid, mp 61–63°C. ¹H NMR (300 MHz, CDCl₃) δ 7.36–7.41 (m, 2H), 7.12 (t, J = 8.4 Hz, 2H), 4.78(t, J = 7.2 Hz, 1H), 2.93–3.07 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.18 (d, J = 249.0 Hz), 132.36 (d, J = 3.0 Hz), 129.13 (d, J = 8.3Hz), 116.60 (d, J = 21.8 Hz), 109.97, 44.64, 36.71 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.80— -80.96 (m, 3F), -110.59 (d, J = 14.1 Hz, 1F), -111.52— -112.58 (m, 1F), -112.88— -113.98 (m, 1F), -121.79 (d, J = 62.0 Hz 10F), -122.84 (s, 2F), -123.27 (s, 2F), -126.27 (d, J = 8.5 Hz 2F); HRMS (EI):C₁₉H₇F₂₂NS+Na⁺Calcd: 721.9846, Found: 721.9840.

1-chloro-3-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henicosafluoro-1thiocyanatododecyl)benzene, 111.65 mg, yield:78%, white solid, mp 69-73°C. ¹H NMR (300 MHz, CDCl₃) δ 7.35-7.40 (m, 3H), 7.26-7.31 (m, 1H), 4.72(t, J = 6.9 Hz, 1H), 2.93-3.08 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 138.50, 135.38, 130.77, 130.04, 127.39, 125.32, 109.70, 44.57, 36.40 (d, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.77— -80.84 (m, 3F), -111.47— -112.53 (m, 1F), -112.75— -113.81 (m, 1F), -121.72 (d, J = 70.5 Hz 10F), -122.78 (s, 2F), -123.18 (s, 2F), -126.19 (s, 2F); HRMS (EI):C₁₉H₇ClF₂₁NS+Na⁺Calcd: 737.9550, Found: 737.9545.

1-bromo-4-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henicosafluoro-1-

thiocyanatododecyl)benzene, 117.1 mg, yield:77%, yellow solid, mp 98-100°C. ¹H NM R (300 MHz, CDCl₃) δ 7.58 (d, J = 8.4 Hz, 2H), 7.28 (d, J = 7.2 Hz, 2H), 4.73 (t, J = 6.9 Hz, 1H), 2.93–3.08 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 135.54, 132.74, 128.78, 124.01, 109.81, 44.70, 36.53 (t, J = 21.0 Hz); ¹⁹F NMR (282 MHz, CDCl₃) δ -80.70— -80.77 (m, 3F), -111.32— -112.37 (m, 1F), -112.75— -113.81 (m, 1F), -121.80 (s, 10F), -122.73 (s, 2F), -123.18 (s, 2F), -126.14 (s, 2F); HRMS (EI):C₁₉H₇BrF₂₁NS+Na⁺Calcd: 781.9045, Found: 781.9039.

1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-henicosafluoro-1-thiocyanatododecyl)-4methylbenzene, 104.3 mg, yield:75%, white solid, mp 97-102°C. ¹H NMR (300 MHz, CDCl₃) δ 7.27 (d, J = 8.4 Hz 2H), 7.22 (d, J = 8.1 Hz, 2H), 4.77 (t, J = 6.3 Hz, 1H), 2.93–3.11 (m, 2H), 2.37 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 139.90, 133.43, 130.10, 127.05, 110.41, 45.32, 36.66 (d, J = 20.3 Hz), 21.17; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.92 (t, J = 9.9Hz, 3F), -111.67— -112.74 (m, 1F), -113.00— -114.07 (m, 1F), -121.81 (d, J = 68.2 Hz 10F), -122.86 (s, 2F), -123.32 (s, 2F), -126.29 (s,2F); HRMS (EI):C₂₀H₁₀F₂₁NS+Na⁺Calcd: 718.0096, Found: 718.0091.

(3,3,4,4,5,5,6,6,6-nonafluoro-1-(p-tolyl)hexyl)(trifluoromethyl)sulfane, 53.4 mg, yield:61%, yellow liquid. ¹H NMR (300 MHz, CDCl₃) δ 7.24 (dd, J = 8.4 Hz, 5.4 Hz, 4H), 4.75 (dd, J = 5.4 Hz, 3.3 Hz, 1H), 2.80–2.97 (m, 2H), 2.35 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 138.75, 135.03, 131.84, 129.86, 127.76, 127.02, 41.74, 37.68 (t, J = 20.3 Hz), 21.10; ¹⁹F NMR (282 MHz, CDCl₃) δ -40.65 (s, 3F), -81.12— -81.20 (m, 3F), -111.75— -112.77 (m, 1F), -113.74— -114.80 (m, 1F), -124.51— -124.56 (m, 2F), -126.02— -126.12 (m, 2F).

1,2-bis(3,3,4,4,5,5,6,6,6-nonafluoro-1-(p-tolyl)hexyl)disulfane,1,2-bis(3,3,4,4,5,5,6,6,6-nonafluoro-1-(p-tolyl)hexyl)disulfane, 125.4 mg, yield:85%, yellow solid, mp 79-81°C. ¹H NMR (300 MHz, CDCl₃) δ 7.08-7.17 (m, 4H), 6.98-7.06 (m, 4H), 3.64-3.74 (m, 2H), 2.54-2.80 (m, 4H), 2.28 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 137.49, 137.43, 134.33, 128.58, 128.53, 126.77, 126.64, 45.38, 45.06, 34.53, 34.25, 34.18, 33.97, 20.11, 20.09; ¹⁹F NMR (282 MHz, CDCl₃) δ -80.06— -81.13 (m, 3F), -111.01— -112.08 (m, 2F), -113.17— -114.33 (m, 2F), -124.34— -124.43 (m, 4F), -124.44— -126.07 (m, 4F); HRMS (EI):C₂₆H₂₀F₁₈S₂+Na⁺Calcd: 761.0617, Found: 761.0611.

5-((3,3,4,4,5,5,6,6,6-nonafluoro-1-(p-tolyl)hexyl)thio)-2H-tetrazole, 60.5 mg, yield:69%, white solid, mp 82–85°C. ¹H NMR (300 MHz, CDCl₃) δ 7.25 (d, *J* = 7.8 Hz 3H), 7.13 (d, *J* = 7.8 Hz, 2H), 5.18 (dd, *J* = 5.1 Hz, 4.2 Hz, 1H), 2.84–3.19 (m, 2H), 2.32 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 153.96, 138.92, 134.95, 129.83, 127.21, 44.78, 36.73 (t, *J* = 20.3 Hz), 21.15; ¹⁹FNMR (282 MHz, CDCl₃) δ -81.03— -81.09 (m, 3F), -111.35— -112.40 (m, 1F), -113.40— -114.45 (m, 1F), -124.34— -124.41 (m, 2F), -125.90— -126.03 (m, 2F); HRMS (EI):C₁₄H₁₁F₉N₄S+H⁺Calcd: 439.0633, Found: 439.0639.

8. NMR spectra of the products

4e, ¹H NMR (300 MHz, CDCl₃)

4i, ¹H NMR (300 MHz, CDCl₃)

4k, ¹H NMR (300 MHz, CDCl₃)

40, ¹H NMR (300 MHz, CDCl₃)

5b, ¹H NMR (300 MHz, CDCl₃)

5d, ¹H NMR (300 MHz, CDCl₃)

5h, ¹H NMR (300 MHz, CDCl₃)

5i, 13C NMR (75 MHz, CDCl₃)

5p, ¹H NMR (300 MHz, CDCl₃)

