Supporting Information

Electrochemical oxidative synthesis of 1,3,4-thiadiazoles from isothiocyanates and hydrazones

Zhongxiao Ma,^a Xiao Hu,^a Yanni Li,^a Deqiang Liang,^{*a} Ying Dong,^b Baoling Wang,^a and Weili Li^a

 ^a School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
 ^b College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China

E-mail: liangdq695@nenu.edu.cn, ldq@kmu.edu.cn

Table of Contents

I. General considerations	S3
II. Optimization of reaction conditions	S4
III. Experimental details	S6
1. General procedure for the synthesis of hydrazone substrates 2	S6
2. General procedure for the electrosynthesis of 2-amino-1,3,4-thiadiazoles 3	S8
3. Procedure for the gram-scale synthesis	S8
4. General procedure for the synthesis of thiosemicarbazides 4a,j	S9
5. Procedures for stoichiometric DDQ-mediated syntheses	S10
6. General procedure for quenching experiments	S10
IV. Spectroscopic investigations and DFT caclulations	S11
1. Cyclic voltammetry studies	S11
2. UV-Vis spectroscopic measurements	S13
3. Reaction kinetic profiles	S14
4. Hydrogen detection tests	S15
5. Electricity on-off experiments	S16
6. DFT caclulations	S16
V. Spectral data of products	S23
VI Conjes of ¹ H ¹⁹ F ¹³ C and DEPT NMR spectra	\$35

I. General considerations

Unless otherwise stated, commercially available chemicals were used without treatment. Solvents were degassed by bubbling Ar for 30 minutes before use. Reactions were monitored by Thin Layer Chromatography (TLC) using silica gel F254 plates. Products were purified by column chromatography over 300-400 mesh silica gel under a positive pressure of air. ¹H NMR, ¹⁹F NMR, ¹³C NMR and DEPT NMR spectra were recorded at 25 °C on a Bruker AscendTM 400 spectrometer using TMS as internal standard. High-resolution mass spectra (HRMS) were obtained using a Bruker microTOF II Focus spectrometer (ESI). UV-Vis measurements were carried out on a UV-2450 UV-Visible spectrophotometer (Shimadzu, Japan) or a UV-3600 Plus UV-VIS-NIR spectrophotometer (Shimadzu, Japan). Cyclic voltammetry studies were carried out on a CHI600E electrochemical workstation (Shanghai CH Instruments Co., China). Electrolysis was performed using a DJS-292B dual display potentiostat (Shanghai Xinrui Instruments Co., China, Figure S1).

Figure S1 Electrochemical setup

II. Optimization of reaction conditions

	Ph <mark>NCS</mark> - 1a	+ H ₂ N N Ph 2a	undivided cel 50 °C, 10 mA, 3	→ Ph	NHPh H + H ₂ 3a	
entry	anode	cathode	electrolyte	mediator	solvent	yield (%)
1	C cloth	Pt	nBu ₄ NBF ₄	none	CH ₃ CN/H ₂ O ^b	trace
2	C cloth	Pt	nBu ₄ NBF ₄	TEMPO	CH ₃ CN/H ₂ O ^b	trace
3	C cloth	Pt	nBu ₄ NBF ₄	NHPI	CH ₃ CN/H ₂ O ^b	trace
4	C cloth	Pt	nBu ₄ NBF ₄	Cp ₂ Fe	CH ₃ CN/H ₂ O ^b	31
5	C cloth	Pt	nBu4NBF4	TBAI	CH ₃ CN/H ₂ O ^b	0
6	C cloth	Pt	nBu ₄ NBF ₄	TBAB	CH ₃ CN/H ₂ O ^b	21
7	C cloth	Pt	<i>n</i> Bu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	56
8	C cloth	Pt	nBu4NBF4	DDQ	CH ₃ CN/HFIP ^b	43
9	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH_3CN/TFE^b	31
10	C cloth	Pt	nBu4NBF4	DDQ	CH ₃ CN/MeOH ^b	41
11	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/HOAc ^b	31
12	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/TFA ^b	23
13	C cloth	Pt	nBu4NBF4	DDQ	CH ₃ CN	30
14	C cloth	Pt	nBu ₄ NBF ₄	DDQ	HFIP	16
15	C cloth	Pt	nBu ₄ NBF ₄	DDQ	TFE	31
16	C cloth	Pt	nBu ₄ NBF ₄	DDQ	MeOH	14
17	C cloth	Pt	nBu ₄ NBF ₄	DDQ	DCE/H_2O^b	trace
18	C cloth	Pt	nBu4NBF4	DDQ	PhCF ₃ /H ₂ O ^b	0
19	C cloth	Pt	nBu ₄ NBF ₄	DDQ	acetone/H ₂ O ^b	trace
20	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH_3NO_2/H_2O^b	0
21	C cloth	Pt	nBu ₄ NBF ₄	DDQ	THF/H_2O^b	19
22	C cloth	Pt	nBu ₄ NBF ₄	DDQ	$\mathbf{DMF}/\mathbf{H}_{2}\mathbf{O}^{b}$	52
23	C cloth	Pt	nBu4NBF4	DDQ	DMA/H_2O^b	35
24	C cloth	Pt	nBu ₄ NBF ₄	DDQ	$DMSO/H_2O^b$	27
25	C cloth	Pt	nBu ₄ NBF ₄	DDQ	$HFIP/H_2O^b$	12
26	C cloth	Pt	nBu4NBF4	DDQ	TFE/H_2O^b	30
27	C cloth	Pt	nBu ₄ NBF ₄	DDQ	MeOH/H ₂ O ^b	38
28	C cloth	Pt	nBu4NBF4	DDQ	CH ₃ CN/H ₂ O ^c	34
29	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH_3CN/H_2O^d	50
30	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^e	47
31	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^f	38
32	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^g	38
33	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^h	30

Table S1 Optimization of reaction conditions^a

34	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ⁱ	trace
35	C cloth	Pt	nBu ₄ NBF ₄	DDQ	MeOH/H ₂ O ^d	34
36	C cloth	Pt	nBu ₄ NBF ₄	DDQ	MeOH/H ₂ O ^e	34
37	C cloth	Pt	LiClO ₄	DDQ	CH ₃ CN/H ₂ O ^b	51
38	C cloth	Pt	Et ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	50
39	C cloth	Pt	<i>n</i> Bu ₄ NPF ₆	DDQ	CH ₃ CN/H ₂ O ^b	52
40	C cloth	Pt	nBu ₄ NOAc	DDQ	CH ₃ CN/H ₂ O ^b	0
41	C cloth	Pt	nBu ₄ NClO ₄	DDQ	CH ₃ CN/H ₂ O ^b	44
42 ^j	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	20
43 ^{<i>k</i>}	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	0
44 ¹	C cloth	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	0
45	Pt	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	29
46	graphite felt	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	47
47	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	59
48	graphite rod	stainless steel	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	46
49	graphite rod	Ni	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	44
50	graphite rod	Ni foam	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	50
51	graphite rod	Cu foam	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	37
52	graphite rod	C cloth	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	22
53	graphite rod	graphite felt	nBu4NBF4	DDQ	CH ₃ CN/H ₂ O ^b	44
54	graphite rod	graphite rod	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	56
55	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	50
56	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	45
57	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	54
58	graphite rod	Pt	nBu4NBF4	DDQ	CH ₃ CN/H ₂ O ^b	13
59	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^{b,m}	58
60 ⁿ	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	48
61°	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	40
62 ^p	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	51
63	graphite rod	Pt	nBu ₄ NBF ₄	DDQ ^q	CH ₃ CN/H ₂ O ^b	49
64	graphite rod	Pt	nBu ₄ NBF ₄	DDQ ^r	CH ₃ CN/H ₂ O ^b	36
65	graphite rod	Pt	nBu ₄ NBF ₄	DDQ ^s	CH ₃ CN/H ₂ O ^b	35
66	graphite rod	Pt	none	DDQ	CH ₃ CN/H ₂ O ^b	36
67	graphite rod	Pt	<i>n</i> Bu ₄ NBF ₄ ^{<i>t</i>}	DDQ	CH ₃ CN/H ₂ O ^b	38
68	graphite rod	Pt	<i>n</i> Bu ₄ NBF ₄ ^{<i>u</i>}	DDQ	CH ₃ CN/H ₂ O ^b	58
69 ^v	graphite rod	Pt	<i>n</i> Bu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	43
70 °	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	61
71 ^{<i>x</i>}	graphite rod	Pt	nBu4NBF4	DDQ	CH ₃ CN/H ₂ O ^b	60
72 ^y	graphite rod	Pt	<i>n</i> Bu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	62
73 ^z	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	56
74 ^{aa}	graphite rod	Pt	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	54
75 ^{ab}	-	-	nBu ₄ NBF ₄	DDQ	CH ₃ CN/H ₂ O ^b	0

^{*a*} Reaction conditions: Undivided cell, electrodes (15 mm \times 15 mm), constant current electrolysis at 10 mA, **1a** (0.5 mmol), **2a** (0.75 mmol), mediator (0.1 mmol),

supporting electrolyte (0.5 mmol), solvents (12.0 mL), Ar, 50 °C, 3 h. ^b 9:1, v/v. ^c 15:1, v/v. ^d 12:1, v/v. ^e 7:1, v/v. ^f 4:1, v/v. ^g 2:1, v/v. ^h 1:1, v/v. ⁱ 1:2, v/v. ^j Trifluoroacetic acid (1.0 equiv) was added as an additive. ^k KOAc (1.0 equiv) was added as an additive. ^l K₂CO₃ (1.0 equiv) was added as an additive. ^m 6.0 mL. ⁿ 2.0 equiv of **2a** were used. ^o 1.2 equiv of **2a** were used. ^p The reaction was run with 0.5 mmol of **2a** and 0.75 mmol of **1a**. ^q 10 mol%. ^r 30 mol%. ^s 40 mol%. ^t 0.5 equiv. ^u 1.5 equiv. ^v The reaction was run at room temperature. ^w **The reaction was run at 35** °C. ^x The reaction was run at 65 °C. ^y **The reaction time was 2.7 h**. ^z The reaction time was 3.5 h. ^{aa} The reaction was run under air atmosphere. ^{ab} No electricity.

III. Experimental details

1. General procedure for the synthesis of hydrazone substrates 2¹

A conical flask, equipped with a dropping funnel and a magnetic stirring bar, was charged with hydrazine hydrate (12.0 mmol, 1.2 equiv), then a solution of aldehyde (10.0 mmol) in methanol (25.0 mL) was added dropwise for 30 min. The mixture was stirred at room temperature for 1 h. After the aldehyde was consumed as indicated by TLC, methanol and the extra hydrazine were removed under reduced pressure at 25 °C. Water (30.0 mL) was added and the mixture was extracted with dichloromethane (3×20 mL). The combined extracts were washed with brine and dried with anhydrous sodium sulfate. Solvent was removed by rotary evaporation at 25 °C to provide the desired hydrazones **2**, which were used directly without further purification.

2p, (2-methylbenzylidene)hydrazine, yellow oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.93 (s, 1H), 7.98 (d, *J* = 7.4 Hz, 1H), 7.41 (ddd, *J* = 7.3, 7.3, 1.5 Hz, 1H), 7.31 (ddd, *J* = 7.6, 3.7, 3.7 Hz, 2H), 2.54 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 160.4, 139.0, 132.2, 131.6, 131.5, 127.7, 126.7, 19.8. HRMS (ESI-TOF) Calcd for C₈H₁₁N₂⁺ ([M+H]⁺) 135.0917. Found 135.0925.

¹ D. Cao, P. Pan, H. Zeng and C.-J. Li, *Chem. Commun.*, 2019, **55**, 9323–9326.

2q, (4-(*tert*-butyl)benzylidene)hydrazine, yellow solid: mp 199–200 °C. ¹H NMR (400 MHz, Pyridine- d_5) δ 8.92 (s, 1H), 8.00 (d, J = 7.9 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 1.24 (s, 9H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 161.6, 154.6, 132.1, 128.6, 126.0, 34.8, 30.9. HRMS (ESI-TOF) Calcd for C₁₁H₁₇N₂⁺ ([M+H]⁺) 177.1386. Found 177.1389.

2r, (3-fluoro-4-methoxybenzylidene)hydrazine, yellow solid: mp 204–205 °C. ¹H NMR (400 MHz, Pyridine- d_5) δ 8.80 (d, J = 1.4 Hz, 1H), 7.94 (dd, J = 12.1, 2.0 Hz, 1H), 7.63 (ddd, J = 8.5, 1.5, 1.5 Hz, 1H), 7.06 (dd, J = 8.5, 8.5 Hz, 1H), 3.75 (s, 3H). ¹³C{¹H} NMR (100 MHz, Pyridine- d_5) δ 160.5 (d, J = 2.7 Hz), 152.5 (d, J = 246.2 Hz), 150.4 (d, J = 10.9 Hz), 127.8 (d, J = 6.6 Hz), 126.5 (d, J = 3.1 Hz), 114.7 (d, J = 19.0 Hz), 113.5 (d, J = 2.0 Hz), 55.9. ¹⁹F NMR (376 MHz, Pyridine- d_5) δ -134.27 – -134.32 (m, 1F). HRMS (ESI-TOF) Calcd for C₈H₁₀FN₂O⁺ ([M+H]⁺) 169.0772. Found 169.0770.

2v, (3-chlorobenzylidene)hydrazine, yellow oil. ¹H NMR (400 MHz, DMSO-*d*₆) δ 8.73 (s, 1H), 7.94 (dd, *J* = 1.8, 1.8 Hz, 1H), 7.86 (ddd, *J* = 7.6, 1.4, 1.4 Hz, 1H), 7.61 (ddd, *J* = 8.0, 2.2, 1.3 Hz, 1H), 7.56 (dd, *J* = 7.8, 7.8 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 161.2, 136.2, 134.2, 131.7, 131.4, 128.3, 127.4. HRMS (ESI-TOF) Calcd for C₇H₈ClN₂⁺ ([M+H]⁺) 155.0371. Found 155.0359.

2ab, methyl 4-(hydrazonomethyl)benzoate, yellow solid: mp 191–192 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.59 (d, *J* = 8.4 Hz, 2H), 7.23 (s, 2H), 3.84 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.5, 141.7, 136.4, 130.0, 128.1, 125.4, 52.5. HRMS (ESI-TOF) Calcd for C₉H₁₁N₂O₂⁺ ([M+H]⁺) 179.0815.

Found 179.0814.

2. General procedure for the electrosynthesis of 2-amino-1,3,4-thiadiazoles 3

A custom-made undivided cell, equipped with a magnetic stirring bar, a graphite rod anode (Ø 6 mm) and a platinum plate cathode (15 mm \times 15 mm \times 0.3 mm, carefully polished until shining), was charged under argon sequentially with hydrazone 2 (1.5 equiv, 0.75 mmol), electrolyte nBu4NBF4 (1.0 equiv, 0.5 mmol), aryl isothiocyanate 1 (0.5 mmol), degassed CH₃CN (8.8 mL), and water (1.2 mL), followed by the addition of a solution of DDQ (20 mol%, 0.1 mmol) in CH₃CN (2.0 mL). The mixture was electrolyzed with stirring using a constant current of 10.0 mA at 35 °C (oil bath) for 2.7 h (2 F/mol); then it was quenched with water (60.0 mL) and extracted with CH₂Cl₂ (50.0 mL) four times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether-ethyl acetate-dichloromethane-triethylamine 60:5:12:1) afford = to 2-amino-1,3,4-thiadiazoles 3.

3. Procedure for the gram-scale synthesis

A 100-mL two-necked flask, equipped with a magnetic stirring bar, a graphite rod anode (Ø 6 mm) and a platinum plate cathode (15 mm \times 15 mm \times 0.3 mm, carefully polished until shining), was charged under argon sequentially with benzaldehyde hydrazone 2a (1.5 equiv, 12.0 mmol, 1.44 g), electrolyte nBu4NBF4 (1.0 equiv, 8.0 mmol, 2.63 g), phenyl isothiocyanate 1a (8.0 mmol, 0.96 mL), degassed CH₃CN (62.0 mL), and water (8.0 mL), followed by the addition of a solution of DDQ (20 mol%, 1.6 mmol, 0.36 g) in CH₃CN (10.0 mL). The mixture was electrolyzed with stirring using a constant current of 10.0 mA at 35 °C (oil bath) for 44 h (2 F/mol, Figure S2); then it was quenched with water (200.0 mL) and extracted with CH₂Cl₂ (150.0 mL) four times. The residue obtained after evaporation of the solvent was purified by (petroleum column chromatography on silica gel ether-ethyl acetate-dichloromethane-triethylamine 60:5:12:1) afford the = to 2-amino-1,3,4-thiadiazole 3a.

Figure S2 Setup for the gram-scale synthesis

4. General procedure for the synthesis of thiosemicarbazides 4a,j

A custom-made undivided cell, equipped with a magnetic stirring bar, was charged sequentially with hydrazone 2 (1.5 equiv, 0.75 mmol), degassed CH₃CN (10.8 mL), and water (1.2 mL), followed by the addition of aryl isothiocyanate 1 (0.5 mmol). The mixture was stirred at 35 °C (oil bath) for 2.0 h; then it was quenched with water (60.0 mL) and extracted with CH₂Cl₂ (50.0 mL) four times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate–dichloromethane–triethylamine = 60:5:12:1) to afford the thiosemicarbazides **4a** and **4j**.

4a, 2-benzylidene-*N*-phenylhydrazine-1-carbothioamide, ² white solid: mp 190–191 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.75 (brs, 1H), 10.11 (s, 1H), 8.14 (s, 1H), 7.89 – 7.86 (m, 2H), 7.52 (d, *J* = 7.1 Hz, 2H), 7.42 (p, *J* = 3.5 Hz, 3H), 7.37 (t, *J* = 7.8 Hz, 2H), 7.21 (t, *J* = 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 176.4, 143.7, 139.3, 134.2, 130.7, 129.2, 128.6, 128.0, 126.4, 126.0. HRMS (ESI-TOF) Calcd for C₁₄H₁₄N₃S⁺ ([M+H]⁺) 256.0903. Found 256.0905.

² M. Bonizzoni, L. Fabbrizzi, A. Taglietti and F. Tiengo, Eur. J. Org. Chem., 2006, 3567–3574.

4j, 2-benzylidene-*N*-(4-fluorophenyl)hydrazine-1-carbothioamide, white solid: mp 190–191 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 11.89 (s, 1H), 10.14 (s, 1H), 8.20 (s, 1H), 7.92 (dd, J = 6.6, 2.9 Hz, 2H), 7.58 (dd, J = 8.8, 5.1 Hz, 2H), 7.45 – 7.42 (m, 3H), 7.21 (dd, J = 8.8, 8.8 Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 176.9, 160.15 (d, J = 242.1 Hz), 143.5, 135.89 (d, J = 2.9 Hz), 134.5, 130.5, 129.1, 128.64 (d, J = 8.3 Hz), 128.1, 115.17 (d, J = 22.4 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -116.98 – -117.05 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₄H₁₃FN₃S⁺ ([M+H]⁺) 274.0809. Found 274.0816.

5. Procedures for stoichiometric DDQ-mediated syntheses

From 1a and 2a: A custom-made undivided cell, equipped with a magnetic stirring bar, was charged under argon sequentially with hydrazone 2a (1.5 equiv, 0.75 mmol, 90 mg), isothiocyanate 1a (0.5 mmol, 68 mg), degassed CH₃CN (8.8 mL), and water (1.2 mL), followed by the addition of a solution of DDQ (1.2 equiv, 136 mg) in CH₃CN (2.0 mL). The mixture was stirred at 35 °C (oil bath) for 2.7 h; then it was quenched with saturated aqueous Na₂S₂O₃ (2.0 mL) and saturated aqueous NaHCO₃ (60.0 mL), and extracted with CH₂Cl₂ (50.0 mL) four times. No 1,3,4-thiadiazole product 3a was detected by TLC.

From **4a**: A custom-made undivided cell, equipped with a magnetic stirring bar, was charged under argon sequentially with thiosemicarbazide **4a** (0.5 mmol, 128 mg) and DDQ (1.2 equiv, 136 mg), followed by the addition of degassed CH₃CN (10.8 mL) and water (1.2 mL). The mixture was stirred at 35 °C (oil bath) for 2.7 h; then it was quenched with saturated aqueous Na₂S₂O₃ (2.0 mL) and saturated aqueous Na₁CO₃ (60.0 mL), and extracted with CH₂Cl₂ (50.0 mL) four times. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate–dichloromethane–triethylamine = 60:5:12:1) to afford the 2-amino-1,3,4-thiadiazole **3a**.

6. General procedure for quenching experiments

A custom-made undivided cell, equipped with a magnetic stirring bar, a graphite rod anode (\emptyset 6 mm) and a platinum plate cathode (15 mm × 15 mm × 0.3 mm, carefully

polished until was charged under argon shining), sequentially with 2-benzylidene-N-(4-fluorophenyl)hydrazine-1-carbothioamide 4j (0.5 mmol, 137 mg), electrolyte nBu4NBF4 (1.0 equiv, 0.5 mmol), a quencher (2.0 equiv, 1.0 mmol), degassed CH₃CN (8.8 mL), and water (1.2 mL), followed by the addition of a solution of DDQ (20 mol%, 0.1 mmol) in CH₃CN (2.0 mL). The mixture was electrolyzed with stirring using a constant current of 10.0 mA at 35 °C (oil bath) for 2.7 h (2 F/mol), and the yield of product **3i** formed was determined by ¹⁹F NMR analysis based on a 4,4'-difluoro-1,1'-biphenyl internal standard.

IV. Spectroscopic investigations and DFT caclulations

1. Cyclic voltammetry studies

General procedure: Cyclic voltammetries were performed in a three-electrode cell at room temperature. The working electrode was a platinum disk electrode, and the counter electrode was a platinum wire. The reference was an Ag/AgCl electrode submerged in a saturated aqueous KCl solution, and separated from reactions by a salt bridge. 10 mL of CH₃CN/H₂O (9:1, v/v) or CH₃CN solution containing 1.0 mmol nBu₄NBF₄ was poured into the electrochemical cell. The scan rate was 0.05 V/s, ranging from 0 V to 1.8 V.

Figure S3 Cyclic voltammograms of 1a, 2a and 3a (10⁻³ M in CH₃CN/H₂O (9:1, v/v))

No obvious oxidation wave was observed in the cyclic voltammogram of intermediate 4a in aqueous CH₃CN in the region of 0.0–1.8 V vs. Ag/AgCl (Figure S4).

Figure S4 Cyclic voltammograms of 4a and DDQ (10⁻³ M in CH₃CN/H₂O (9:1, v/v))

Upon mixed with DDQ, the peak current diminished and the potential increased. Furthermore, the oxidation wave of DDQ disappeared (Figure S5).

Figure S5 Cyclic voltammograms of **4a** (10⁻³ M **in CH₃CN**) and mixtures of **4a** (10⁻³ M **in CH₃CN**) and DDQ

2. UV-Vis spectroscopic measurements

The following UV-Vis absorption spectra were collected on a UV-2450 UV-Visible spectrophotometer (Shimadzu, Japan). A significant bathochromic shift was observed.

Figure S6 UV-vis spectra of 4a, DDQ, 3a and an equimolar mixture of 4a and DDQ (10⁻⁵ M in CH₃CN/H₂O (9:1, v/v))

The following UV-Vis absorption spectra were collected on a UV-3600 Plus UV-VIS-NIR spectrophotometer (Shimadzu, Japan). A significant bathochromic shift was observed.

Figure S7 UV-vis spectra of 4a, DDQ, 3a and an equimolar mixture of 4a and DDQ (10⁻⁴ M in CH₃CN/H₂O (9:1, v/v))

3. Reaction kinetic profiles

4,4'-Difluoro-1,1'-biphenyl (1 equiv) was added as an internal standard to the reaction mixture before electrolysis. 0.1 mL of the crude reaction solution was taken out each time via a syringe and was subjected to ¹⁹F NMR analysis.

4-FPhNCS standard + $2a$ conditions $3j$ (R1)					
time (h)	yield of 3j (%)	yield of 4j (%)	yield of 4-FPhNCS (%)		
0	0 (not determined)	0 (not determined)	100 (not determined)		
0.5	13.4	75.9	10		
1	27.7	60.7	-		
1.5	47.3	47.3	-		
2	68.8	25.9	-		
2.5	91.3	8.9	-		
2.7	95.5	0	-		
3	83.0	-	-		
3.5	63.4	-	-		
4	36.6	-	-		

Table S2 Kinetic profiles of reaction R1

Table S3 Kinetic profiles of reaction R2

time (h)	yield of 3j (%)	yield of 4j (%)
0	0 (not determined)	100 (not determined)
0.5	32.7	67.2
1	48.2	50.0
1.5	64.3	33.0
2	80.5	19.5
2.5	94.1	5.9
2.7	96.8	3.2
3	93.7	0
3.5	89.7	-
4	82.5	-

Figure S8 Reaction kinetic profiles

4. Hydrogen detection tests

The hydrogen detection tests were conducted with a H_2 detector (XLA-BX-H2, Figure S9), which was connected with a model reaction under standard conditions by a syringe with pumping off. The detector readings were recorded (Table S4), which reached 910 ppm within 7 min.

		0	-					
time (min)	1	2	3	4	5	6	7	
concentration (ppm)	610	675	710	765	813	854	910	

Table S4 Readings of the H₂ detector

Figure S9 Setup for hydrogen detection tests

5. Electricity on-off experiments

4,4'-Difluoro-1,1'-biphenyl (1 equiv) was added as an internal standard to the reaction mixture before electrolysis. 0.1 mL of the crude reaction solution was taken out each time via a syringe and was subjected to ¹⁹F NMR analysis.

	5	1	\mathcal{O}	J	\mathcal{O}	
time (min)	40	80	120	160	200	240
yield (%)	37.5	36.6	58.9	58.9	83.1	83.0

Table S5 Electricity on-off experiments using 4j as the starting material

6. DFT caclulations

All calculations were performed using the Gaussian 16 package.³ Geometries were optimised and harmonic frequencies were performed at the M062X/6-31g(d) level.⁴ The solvation effects on the structures and molecular properties were accounted using

³ Gaussian 16, Revision A.03, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016.

⁴ Y. Zhao and D. G. Truhlar, *Theor. Chem. Acc.*, 2008, **120**, 215–241.

the integral-equation-formalism polarizable continuum model (IEF-PCM),⁵ and the dielectric constant for 90% acetonitrile/water solvent, $\varepsilon = 39.95473$, were used for all calculations. Harmonic vibration frequencies and the intrinsic reaction coordinates (IRC)^{6,7} were computed at the same level (IEF-PCM/M062X/6-31g(d)) to characterize the stationary points and the reaction path, respectively.

4a 4a	
0 1	_
S 1.04604900 1.60890600 -0.322	72000
C 0.99289600 -0.03995900 0.002	276600
C -2.39720900 -0.91817000 0.221	84200
Н -2.28181400 -1.97345400 0.495	33600
C -3.76675600 -0.40869300 0.090	60500
C -4.02562400 0.92679100 -0.248	19800
C -4.83611800 -1.28229200 0.3114	42300
C -5.33513200 1.37339800 -0.362	02300
Н -3.19212100 1.60072500 -0.418	63100
C -6.14839600 -0.83110500 0.196	29400
Н -4.63709900 -2.31806100 0.573	87000
C -6.39989800 0.49651100 -0.140	18600
Н -5.53063700 2.40837300 -0.624	21400
Н -6.97217300 -1.51601800 0.369	60200
Н -7.42205700 0.85037400 -0.230	19700
N -1.38637900 -0.16031300 0.024	58300
C 3.44826900 -0.44846700 0.068	35900
C 3.94100300 0.55312700 0.900	501600
C 4.30836000 -1.14259100 -0.781	27900
C 5.29396100 0.87231200 0.867	760500
Н 3.26525500 1.06947200 1.57	784000

⁵ J. Tomasi, B. Mennucci and R. Cammi, *Chem. Rev.*, 2005, **105**, 2999–3094.

⁶ C. Gonzalez and H. B. Schlegel, *J. Phys. Chem.*, 1990, 94, 5523–5527.
⁷ C. Gonzalez and H. B. Schlegel, *J. Chem. Phys.*, 1989, 90, 2154–2161.

5.66486300	-0.82732900	-0.80108300
3.91178100	-1.92239100	-1.42480200
6.15968000	0.18516000	0.01666500
5.67547800	1.65409200	1.51656100
6.33083200	-1.37125800	-1.46307800
7.21539500	0.43529600	-0.00369400
2.08280900	-0.84106800	0.11186000
1.92964800	-1.84429400	0.09766000
-0.16784000	-0.73430200	0.17293100
-0.12880300	-1.71772500	0.43880600
	5.66486300 3.91178100 6.15968000 5.67547800 6.33083200 7.21539500 2.08280900 1.92964800 -0.16784000 -0.12880300	5.66486300-0.827329003.91178100-1.922391006.159680000.185160005.675478001.654092006.33083200-1.371258007.215395000.435296002.08280900-0.841068001.92964800-1.84429400-0.16784000-0.73430200-0.12880300-1.71772500

02			
C	4.35932400	1.34582000	-0.20497500
С	3.42716400	0.29845900	-0.20175600
С	3.86097800	-1.01668200	-0.00533300
С	5.21626800	-1.26201100	0.20383000
С	6.14248200	-0.22314600	0.21412700
С	5.70615900	1.08462900	0.00264000
Н	4.01796900	2.36484900	-0.36510200
Н	3.15364700	-1.83302300	-0.02353100
Н	5.54624800	-2.28498200	0.35449800
Н	7.19470900	-0.42887800	0.38002100
Н	6.41495800	1.90624200	0.00158500
N	2.09087900	0.66022900	-0.45659500
Н	1.97150700	1.58022300	-0.87265000
С	0.91215100	0.06555200	-0.15817000
S	0.67253500	-1.39281400	0.63344200
С	-2.28385300	0.94359600	0.21048600
С	-3.64807200	0.42741900	0.08863500
С	-3.95519600	-0.63686300	-0.77004700
С	-4.65924100	1.01955000	0.85158800

-5.26189400	-1.09493000	-0.86349300
-3.16285600	-1.09679300	-1.35294200
-5.96834600	0.55672100	0.75533000
-4.41733000	1.84298600	1.51799200
-6.27014200	-0.49905400	-0.10164700
-5.49884400	-1.91926200	-1.52820100
-6.75027100	1.01905900	1.34861200
-7.29039200	-0.86166700	-0.17653000
-0.10882300	0.91123000	-0.58227200
-1.31230600	0.45446300	-0.45505800
-2.09486900	1.76044600	0.91137000
	-5.26189400 -3.16285600 -5.96834600 -4.41733000 -6.27014200 -5.49884400 -6.75027100 -7.29039200 -0.10882300 -1.31230600 -2.09486900	-5.26189400-1.09493000-3.16285600-1.09679300-5.968346000.55672100-4.417330001.84298600-6.27014200-0.49905400-5.49884400-1.91926200-6.750271001.01905900-7.29039200-0.86166700-0.108823000.91123000-1.312306000.45446300-2.094869001.76044600

02			
С	-4.34530700	0.83575900	-0.49220400
С	-3.19111000	0.31906200	0.10512800
С	-3.21195600	-0.95198800	0.68380400
С	-4.38070800	-1.70706700	0.63185800
С	-5.52947900	-1.20239700	0.02746700
С	-5.50849100	0.07636900	-0.52734000
Н	-4.32119800	1.82767400	-0.93430600
Н	-2.33341700	-1.33914500	1.18489800
Н	-4.39121900	-2.69459400	1.08181900
Н	-6.43595300	-1.79759100	-0.00534500
Н	-6.39801600	0.48485000	-0.99575800
Ν	-2.05370000	1.15543300	0.14020600
Н	-2.23437600	2.15602000	0.14176300
С	-0.74191100	0.86184600	0.06368800
S	-0.07183600	-0.69699900	-0.10119300
С	1.80197300	0.75124000	-0.58333200
С	3.12036300	0.18578200	-0.28048000
С	3.73476900	0.41615700	0.95706600

3.75740300	-0.61461000	-1.23442600
4.97923700	-0.13820200	1.22676700
3.22918700	1.03406900	1.69273400
5.00036300	-1.17522000	-0.95815800
3.27486500	-0.79605600	-2.19126700
5.61235700	-0.93553400	0.27096600
5.45735200	0.04564300	2.18344800
5.49188800	-1.79508700	-1.70075600
6.58306400	-1.37077400	0.48649200
0.04211400	1.98852000	0.15592300
1.32515400	1.77377500	0.12408700
1.44720300	0.64568500	-1.61097200
	3.75740300 4.97923700 3.22918700 5.00036300 3.27486500 5.61235700 5.45735200 5.49188800 6.58306400 0.04211400 1.32515400 1.44720300	3.75740300-0.614610004.97923700-0.138202003.229187001.034069005.00036300-1.175220003.27486500-0.796056005.61235700-0.935534005.457352000.045643005.49188800-1.795087006.58306400-1.370774000.042114001.988520001.325154001.773775001.447203000.64568500

02			
С	4.25319400	0.70927600	-0.08192100
С	2.95322500	0.24651100	-0.30897100
С	2.69233200	-1.12602700	-0.32826100
С	3.72709500	-2.02411600	-0.07901700
С	5.02124300	-1.56854600	0.15838100
С	5.28068700	-0.19838000	0.14459300
Н	4.44775000	1.77764400	-0.07435700
Н	1.70019700	-1.49311400	-0.56691600
Н	3.51725900	-3.08874400	-0.09165300
Н	5.82366800	-2.27457700	0.34389500
Н	6.28639900	0.16916800	0.32090300
Ν	1.94326800	1.19958800	-0.55640200
Н	2.22747100	2.07611100	-0.98285100
С	0.65228800	1.18433000	-0.16201900
S	-0.07370400	-0.05371100	0.84521100
С	-1.63137900	0.95974100	0.80464600
С	-2.81250400	0.16036100	0.30463300

С	-2.94120100	-0.11309200	-1.05951400
С	-3.77243000	-0.31340100	1.19684000
С	-4.02096400	-0.85556800	-1.52410800
Н	-2.19282200	0.26401600	-1.75223600
С	-4.85398100	-1.06084300	0.73182800
Н	-3.67551200	-0.09644100	2.25745800
С	-4.97927400	-1.33212800	-0.62787000
Н	-4.11810400	-1.06267500	-2.58521000
Н	-5.59817100	-1.42652100	1.43225600
Н	-5.82211300	-1.91145200	-0.99155300
Ν	-0.14652100	2.18655700	-0.50573800
Ν	-1.36875400	2.13102700	-0.03484200
Н	-1.82270500	1.29704300	1.83033700

С	3.28615800	0.63388500	0.70068700
С	3.34823300	-0.73648400	0.19716500
С	4.47304400	-1.19303100	-0.48171300
С	5.50629900	-0.31176400	-0.78326700
С	5.42676700	1.05138600	-0.40152700
Н	4.49246200	-2.22231100	-0.82507800
Н	6.36848400	-0.66258000	-1.33994300
Н	6.24325300	1.72040000	-0.65457400
Ν	2.18592800	-1.47029600	0.28573000
S	1.29754400	1.05919200	0.07091800
С	1.14070400	-0.69221300	0.23604300
Н	-0.15167100	-2.26454200	0.29968700
С	-2.33441800	-1.11033200	0.11229000
Н	-2.38852500	-2.20247600	0.17581100
С	-3.60027500	-0.37991200	-0.01019500
С	-3.63926200	1.01936000	-0.09091800

С	-4.79678000	-1.10315000	-0.04862100
С	-4.85678300	1.67608900	-0.20813400
Н	-2.70918900	1.57801600	-0.06036700
С	-6.01632000	-0.44138500	-0.16598300
Н	-4.76915700	-2.18790700	0.01321200
С	-6.04877200	0.94850800	-0.24604200
Н	-4.88050200	2.75951600	-0.27027000
Н	-6.93920200	-1.01170900	-0.19504300
Н	-6.99835300	1.46622900	-0.33766700
Ν	-0.09749100	-1.24727400	0.26068400
Ν	-1.21314500	-0.49417700	0.14254400
Н	2.96979500	0.72064300	1.74257700
С	4.36586100	1.52168100	0.32549000
Н	4.34811600	2.54606000	0.68260600

0 2			
С	3.09860900	0.69911600	0.56180800
С	3.34243500	-0.73829900	0.17223800
С	4.59977700	-1.15463100	-0.21897100
С	5.59441900	-0.20886700	-0.48744900
С	5.28700600	1.18675700	-0.45727100
Н	4.77055900	-2.21215400	-0.39590800
Н	6.57531500	-0.53325500	-0.81537100
Н	6.03707800	1.89273700	-0.80198100
Ν	2.22355300	-1.53465000	0.19278900
S	1.29921900	0.95872300	0.18420600
С	1.14653500	-0.80964100	0.19324200
Н	-0.15943100	-2.37580700	0.09048300
С	-2.32443600	-1.15716100	0.00664100
Н	-2.40382200	-2.24835700	-0.03895100
С	-3.57137300	-0.38814900	-0.04554800

С	-3.57858200	1.01277700	0.01498800
С	-4.78387200	-1.07640500	-0.15947100
С	-4.78056900	1.70536600	-0.03858100
Н	-2.63676900	1.54494900	0.10422900
С	-5.98754800	-0.37866400	-0.21274900
Н	-4.78093900	-2.16223700	-0.20673600
С	-5.98843000	1.01263700	-0.15252200
Н	-4.77977000	2.78979500	0.00873000
Н	-6.92288600	-0.92193400	-0.30134400
Н	-6.92565800	1.55849900	-0.19399600
Ν	-0.08947000	-1.36089100	0.14821400
Ν	-1.18792100	-0.57537100	0.10169800
Н	3.13543900	0.77809400	1.66299000
С	4.08239400	1.65076900	-0.03412500
Н	3.86205000	2.71285500	-0.01172400

V. Spectral data of products

3a, *N*,5-diphenyl-1,3,4-thiadiazol-2-amine,⁸ white solid: mp 206–207 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.57 (s, 1H), 7.88 – 7.86 (m, 2H), 7.66 (d, *J* = 8.0 Hz, 2H), 7.52 (h, *J* = 3.6 Hz, 3H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.03 (t, *J* = 7.3 Hz, 1H). ¹H NMR (400 MHz, CDCl₃) δ 9.65 (brs, 1H), 7.88 (dd, *J* = 7.5, 1.9 Hz, 2H), 7.49 – 7.40 (m, 7H), 7.14 (t, *J* = 7.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.5, 158.0, 140.9, 130.74, 130.72, 129.7, 129.6, 127.2, 122.6, 118.0. ¹³C{¹H} NMR (100 MHz, CDCl₃) δ 166.1 (br), 157.9 (br), 140.3, 130.7, 130.1, 129.7, 129.0, 127.0, 123.7, 118.4. HRMS (ESI-TOF) Calcd for C₁₄H₁₂N₃S⁺ ([M+H]⁺) 254.0746. Found 254.0759.

⁸ S. J. Singh, S. Rajamanickam, A. Gogoi and B. K. Patel, *Tetrahedron Lett.*, 2016, 57, 1044–1047

3b, 5-phenyl-*N*-(*p*-tolyl)-1,3,4-thiadiazol-2-amine, ⁹ pale yellow solid: mp 179–180 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.46 (s, 1H), 7.87 – 7.83 (m, 2H), 7.56 – 7.47 (m, 5H), 7.18 (d, *J* = 8.2 Hz, 2H), 2.28 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.7, 157.7, 138.6, 131.6, 130.8, 130.6, 130.0, 129.7, 127.2, 118.1, 20.8. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃S⁺ ([M+H]⁺) 268.0903. Found 268.0901.

3c, 5-phenyl-*N*-(*o*-tolyl)-1,3,4-thiadiazol-2-amine,⁸ pale yellow solid: mp 140–141 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 9.66 (s, 1H), 7.86 – 7.81 (m, 3H), 7.52 – 7.46 (m, 3H), 7.25 (dd, *J* = 9.6, 7.4 Hz, 2H), 7.08 (dd, *J* = 7.3, 7.3 Hz, 1H), 2.51 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 167.0 (br), 157.9 (br), 139.6 (br), 131.2, 131.0, 130.5, 130.0, 129.7, 127.2, 127.1, 124.8, 122.2, 18.4. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃S⁺ ([M+H]⁺) 268.0903. Found 268.0888.

3d, *N*-(4-(*tert*-butyl)phenyl)-5-phenyl-1,3,4-thiadiazol-2-amine, white solid: mp 224–225 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.46 (s, 1H), 7.86 – 7.84 (m, 2H), 7.57 – 7.47 (m, 5H), 7.39 (d, *J* = 8.7 Hz, 2H), 1.28 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.8, 157.7, 145.1, 138.5, 130.8, 130.6, 129.7, 127.2, 126.2, 117.9, 34.4, 31.7. HRMS (ESI-TOF) Calcd for C₁₈H₂₀N₃S⁺ ([M+H]⁺) 310.1372. Found 310.1375.

3e, 5-phenyl-N-(4-(trifluoromethoxy)phenyl)-1,3,4-thiadiazol-2-amine, yellowish

⁹ U. Salar, M. Taha, N. H. Ismail, K. M. Khan, S. Imran, S. Perveen, A. Wadood, M. Riaz, *Bioorg. Med. Chem.*, 2016, **24**, 1909–1918.

solid: mp 220–221 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.77 (s, 1H), 7.88 – 7.86 (m, 2H), 7.78 (d, *J* = 9.0 Hz, 2H), 7.55 – 7.49 (m, 3H), 7.38 (d, *J* = 8.5 Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.3, 158.6, 143.0 (q, *J* = 1.7 Hz), 140.1, 130.8, 130.6, 129.8, 127.3, 122.5, 120.7 (q, *J* = 255.3 Hz), 119.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -57.11 – -57.12 (m, 3F). HRMS (ESI-TOF) Calcd for C₁₅H₁₁F₃N₃OS⁺ ([M+H]⁺) 338.0569. Found 338.0580.

3f, *N*-(4-methoxyphenyl)-5-phenyl-1,3,4-thiadiazol-2-amine,¹⁰ pale yellow solid: mp 175–176 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.33 (s, 1H), 7.85 – 7.82 (m, 2H), 7.56 (d, *J* = 9.0 Hz, 2H), 7.54 – 7.47 (m, 3H), 6.96 (d, *J* = 9.0 Hz, 2H), 3.75 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 165.2, 157.3, 155.2, 134.5, 130.9, 130.5, 129.7, 127.1, 119.9, 114.8, 55.7. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃OS⁺ ([M+H]⁺) 284.0852. Found 284.0856.

3g, *N*-(4-bromophenyl)-5-phenyl-1,3,4-thiadiazol-2-amine, ¹¹ yellowish solid: mp 223–224 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.72 (s, 1H), 7.88 – 7.85 (m, 2H), 7.65 (d, *J* = 8.5 Hz, 2H), 7.55 – 7.51 (m, 5H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.1, 158.5, 140.2, 132.3, 130.9, 130.6, 129.8, 127.3, 119.9, 113.8. HRMS (ESI-TOF) Calcd for C₁4H₁₁BrN₃S⁺ ([M+H]⁺) 331.9852. Found 331.9854.

3h, *N*-(4-chlorophenyl)-5-phenyl-1,3,4-thiadiazol-2-amine, yellowish solid: mp 222–223 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.71 (s, 1H), 7.88 – 7.85 (m, 2H), 7.71 (d, *J* = 8.9 Hz, 2H), 7.55 – 7.48 (m, 3H), 7.42 (d, *J* = 8.9 Hz, 2H). ¹³C{¹H} NMR

¹⁰ S.-J. Yang, S.-H. Lee, H.-J. Kwak and Y.-D. Gong, J. Org. Chem., 2013, 78, 438–444.

¹¹ E. E. Oruç, S. Rollas, F. Kandemirli, N. Shvets and A. S. Dimoglo, *J. Med. Chem.*, 2004, **47**, 6760–6767.

(100 MHz, DMSO-*d*₆) δ 164.2, 158.5, 139.8, 130.8, 130.6, 129.8, 129.4, 127.3, 125.9, 119.5. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃S⁺ ([M+H]⁺) 288.0357. Found 288.0359.

3i, *N*-(3-chlorophenyl)-5-phenyl-1,3,4-thiadiazol-2-amine, white solid: mp 198–199 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.76 (s, 1H), 7.96 (dd, *J* = 2.1, 2.1 Hz, 1H), 7.89 – 7.87 (m, 2H), 7.56 – 7.51 (m, 3H), 7.47 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.39 (dd, *J* = 8.0, 8.0 Hz, 1H), 7.08 (dd, *J* = 7.8, 1.2 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.1, 158.8, 142.2, 134.0, 131.2, 130.9, 130.6, 129.8, 127.3, 122.0, 117.4, 116.4. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃S⁺ ([M+H]⁺) 288.0357. Found 288.0353.

3j, *N*-(4-fluorophenyl)-5-phenyl-1,3,4-thiadiazol-2-amine,¹⁰ yellowish solid: mp 204–205 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.59 (s, 1H), 7.87 – 7.84 (m, 2H), 7.72 – 7.66 (m, 2H), 7.55 – 7.47 (m, 3H), 7.25 – 7.19 (m, 2H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.6, 158.1, 157.8 (d, *J* = 238.6 Hz), 137.4 (d, *J* = 2.2 Hz), 130.74, 130.68, 129.7, 127.2, 119.7 (d, *J* = 7.8 Hz), 116.2 (d, *J* = 22.4 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -120.96 – -121.03 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₄H₁₁FN₃S⁺ ([M+H]⁺) 272.0652. Found 272.0653.

3k, 5-phenyl-*N*-(4-(trifluoromethyl)phenyl)-1,3,4-thiadiazol-2-amine, yellowish solid: mp 250–251 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.99 (brs, 1H), 7.89 – 7.86 (m, 4H), 7.72 (d, *J* = 8.4 Hz, 2H), 7.55 – 7.51 (m, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 163.9, 159.3, 144.1, 131.0, 130.5, 129.8, 127.4, 126.9 (q, *J* = 3.9 Hz), 125.0 (q, *J* = 271.1 Hz), 122.2 (q, *J* = 32.0 Hz), 117.7. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.00 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₅H₁₁F₃N₃S⁺ ([M+H]⁺) 322.0620. Found 322.0633.

31, ethyl 4-((5-phenyl-1,3,4-thiadiazol-2-yl)amino)benzoate, white solid: mp 208–209 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.97 (s, 1H), 7.97 (d, *J* = 8.9 Hz, 2H), 7.90 – 7.88 (m, 2H), 7.79 (d, *J* = 8.9 Hz, 2H), 7.56 – 7.49 (m, 3H), 4.29 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 165.8, 163.8, 159.3, 144.9, 131.1, 131.0, 130.5, 129.8, 127.4, 123.2, 117.3, 60.8, 14.7. HRMS (ESI-TOF) Calcd for C₁₇H₁₆N₃O₂S⁺ ([M+H]⁺) 326.0958. Found 326.0956.

3m, 5-phenyl-*N*-(pyridin-3-yl)-1,3,4-thiadiazol-2-amine, yellow solid: mp 226–227 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.77 (s, 1H), 8.80 (d, *J* = 2.7 Hz, 1H), 8.25 – 8.21 (m, 2H), 7.89 – 7.87 (m, 2H), 7.56 – 7.49 (m, 3H), 7.42 (dd, *J* = 8.3, 4.7 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.2, 159.0, 143.3, 139.7, 137.7, 130.9, 130.6, 129.8, 127.3, 124.6, 124.4. HRMS (ESI-TOF) Calcd for C₁₃H₁₁N₄S⁺ ([M+H]⁺) 255.0699. Found 255.0687.

3n, *N*-(4-fluorophenyl)-5-(*p*-tolyl)-1,3,4-thiadiazol-2-amine, yellowish solid: mp 210–211 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 7.74 (d, *J* = 8.2 Hz, 2H), 7.70 – 7.66 (m, 2H), 7.32 (d, *J* = 7.9 Hz, 2H), 7.21 (dd, *J* = 8.9, 8.9 Hz, 2H), 2.37 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.3, 158.1, 157.8 (d, *J* = 238.6 Hz), 140.6, 137.5 (d, *J* = 2.1 Hz), 130.3, 128.0, 127.2, 119.6 (d, *J* = 7.8 Hz), 116.1 (d, *J* = 22.4 Hz), 21.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -121.10 – -121.15 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₅H₁₃FN₃S⁺ ([M+H]⁺) 286.0809. Found 286.0812.

30, 5-(*p*-tolyl)-*N*-(4-(trifluoromethyl)phenyl)-1,3,4-thiadiazol-2-amine, yellowish solid: mp 215–216 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.94 (s, 1H), 7.87 (d, *J* = 8.5 Hz, 2H), 7.77 (d, *J* = 8.0 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.33 (d, *J* = 7.9 Hz, 2H), 2.37 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 163.5, 159.3, 144.2, 140.9, 130.3, 127.8, 127.3, 126.9 (q, *J* = 3.7 Hz), 125.0 (q, *J* = 271.1 Hz), 122.1 (q, *J* = 31.8 Hz), 117.7, 21.4. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -59.98 (s, 3F). HRMS (ESI-TOF) Calcd for C₁₆H₁₃F₃N₃S⁺ ([M+H]⁺) 336.0777. Found 336.0792.

3p, *N*-phenyl-5-(*o*-tolyl)-1,3,4-thiadiazol-2-amine, pale yellow solid: mp 168–169 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.50 (s, 1H), 7.67 (d, *J* = 7.4 Hz, 2H), 7.62 (d, *J* = 7.1 Hz, 1H), 7.42 – 7.31 (m, 5H), 7.03 (dd, *J* = 7.4, 7.4 Hz, 1H), 2.53 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.9, 157.3, 141.0, 136.7, 131.9, 130.6, 130.1, 129.8, 129.6, 126.9, 122.5, 118.0, 21.7. HRMS (ESI-TOF) Calcd for C₁₅H₁₄N₃S⁺ ([M+H]⁺) 268.0903. Found 268.0907.

3q, 5-(4-(*tert*-butyl)phenyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine,⁸ white solid: mp 178–179 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 7.78 (d, *J* = 8.4 Hz, 2H), 7.66 (d, *J* = 7.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.37 (dd, *J* = 8.5, 7.3 Hz, 2H), 7.03 (dd, *J* = 7.3, 7.3 Hz, 1H), 1.31 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.3, 158.0, 153.5, 141.0, 129.6, 128.1, 127.0, 126.5, 122.5, 117.9, 35.1, 31.4. HRMS (ESI-TOF) Calcd for C₁₈H₂₀N₃S⁺ ([M+H]⁺) 310.1372. Found 310.1372.

3r, 5-(3-fluoro-4-methoxyphenyl)-N-phenyl-1,3,4-thiadiazol-2-amine, white solid: mp

250–251 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 7.73 (dd, J = 12.2, 2.2 Hz, 1H), 7.66 – 7.62 (m, 3H), 7.39 – 7.35 (m, 2H), 7.30 (dd, J = 8.7, 8.7 Hz, 1H), 7.03 (dd, J = 7.4, 7.4 Hz, 1H), 3.91 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.4, 156.8 (d, J = 2.8 Hz), 151.9 (d, J = 245.2 Hz), 149.2 (d, J = 10.5 Hz), 141.0, 129.6, 124.3 (d, J = 3.2 Hz), 123.6 (d, J = 7.1 Hz), 122.5, 118.0, 114.8 (d, J = 2.2 Hz), 144.2 (d, J = 20.1 Hz), 56.7. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -134.26 – -134.32 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₅H₁₃FN₃OS⁺ ([M+H]⁺) 302.0758. Found 302.0760.

3s, *N*-(4-(5-(phenylamino)-1,3,4-thiadiazol-2-yl)phenyl)acetamide, white solid: mp 227–228 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.51 (s, 1H), 10.23 (s, 1H), 7.80 (d, *J* = 8.7 Hz, 2H), 7.73 (d, *J* = 8.8 Hz, 2H), 7.66 (d, *J* = 7.3 Hz, 2H), 7.37 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.02 (dddd, *J* = 7.4, 7.4, 1.1, 1.1 Hz, 1H), 2.09 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 169.1, 164.0, 157.9, 141.5, 141.1, 129.6, 127.9, 125.3, 122.4, 119.6, 117.9, 24.6. HRMS (ESI-TOF) Calcd for C₁₆H₁₅N₄OS⁺ ([M+H]⁺) 311.0961. Found 311.0957.

3t, 5-(4-bromophenyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine,⁹ yellowish solid: mp 210–211 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.61 (s, 1H), 7.82 (d, *J* = 8.6 Hz, 2H), 7.72 (d, *J* = 8.6 Hz, 2H), 7.65 (d, *J* = 7.8 Hz, 2H), 7.38 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.04 (dd, *J* = 7.4, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.8, 156.9, 140.8, 132.7, 129.9, 129.6, 129.0, 123.9, 122.7, 118.0. HRMS (ESI-TOF) Calcd for C₁₄H₁₁BrN₃S⁺ ([M+H]⁺) 331.9852. Found 331.9853.

3u, 5-(4-chlorophenyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine,⁸ yellowish solid: mp 228–229 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.59 (s, 1H), 7.88 (d, *J* = 8.6 Hz, 2H),

7.66 (d, J = 7.4 Hz, 2H), 7.58 (d, J = 8.6 Hz, 2H), 7.37 (dd, J = 8.5, 7.2 Hz, 2H), 7.04 (dd, J = 7.3, 7.3 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.9, 156.8, 140.9, 135.1, 129.8, 129.64, 129.62, 128.8, 122.7, 118.0. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃S⁺ ([M+H]⁺) 288.0357. Found 288.0358.

3v, 5-(3-chlorophenyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine, pale yellow solid: mp 182–183 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.63 (s, 1H), 7.92 – 7.90 (m, 1H), 7.85 – 7.79 (m, 1H), 7.66 (d, *J* = 7.5 Hz, 2H), 7.59 – 7.52 (m, 2H), 7.38 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.04 (dd, *J* = 7.4, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 165.1, 156.5, 140.8, 134.4, 132.7, 131.7, 130.4, 129.7, 126.4, 126.0, 122.7, 118.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃S⁺ ([M+H]⁺) 288.0357. Found 288.0365.

3w, 5-(2-chlorophenyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine, pale yellow solid: mp 218–219 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.58 (s, 1H), 8.11 – 8.07 (m, 1H), 7.68 – 7.66 (m, 3H), 7.57 – 7.50 (m, 2H), 7.38 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.04 (dddd, *J* = 7.3, 7.3, 1.1, 1.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.2, 153.3, 140.9, 132.0, 131.3, 131.0, 129.7, 129.4, 128.3, 122.7, 118.1. HRMS (ESI-TOF) Calcd for C₁₄H₁₁ClN₃S⁺ ([M+H]⁺) 288.0357. Found 288.0355.

3x, 5-(4-fluorophenyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine,¹¹ white solid: mp 214–215 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 7.95 – 7.90 (m, 2H), 7.66 (d, *J* = 7.3 Hz, 2H), 7.40 – 7.34 (m, 4H), 7.03 (dddd, *J* = 7.4, 7.4, 1.1, 1.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.6, 163.5 (d, *J* = 248.1 Hz), 156.9, 140.9, 129.6, 129.5 (d, *J* = 8.8 Hz), 127.4 (d, *J* = 3.1 Hz), 122.6, 118.0, 116.8 (d, *J* = 22.1 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -110.43 – -110.51 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₄H₁₁FN₃S⁺ ([M+H]⁺) 272.0652. Found 272.0651.

3y, 5-(4-fluorophenyl)-*N*-(4-(trifluoromethyl)phenyl)-1,3,4-thiadiazol-2-amine, white solid: mp 268–269 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.95 (s, 1H), 7.93 (dd, *J* = 8.5, 5.3 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 8.4 Hz, 2H), 7.36 (dd, *J* = 8.6, 8.6 Hz, 2H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.0, 163.7 (d, *J* = 248.4 Hz), 158.1, 144.1, 129.6 (d, *J* = 8.7 Hz), 127.1 (d, *J* = 3.2 Hz), 126.9 (q, *J* = 3.9 Hz), 125.0 (q, *J* = 271.1 Hz), 122.3 (q, *J* = 32.1 Hz), 117.7, 116.8 (d, *J* = 22.1 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -60.04 (s, 3F), -110.02 – -110.08 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₅H₁₀F₄N₃S⁺ ([M+H]⁺) 340.0526. Found 340.0529.

3z, 5-(2-fluorophenyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine,⁸ white solid: mp 206–207 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.58 (s, 1H), 8.18 (ddd, J = 7.7, 7.7, 1.8 Hz, 1H), 7.67 (d, J = 7.5 Hz, 2H), 7.58 (dddd, J = 8.6, 7.2, 5.5, 1.8 Hz, 1H), 7.47 – 7.37 (m, 4H), 7.04 (dddd, J = 7.3, 7.3, 1.1, 1.1 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.0 (d, J = 4.7 Hz), 158.6 (d, J = 249.0 Hz), 150.2 (d, J = 7.8 Hz), 140.9, 132.6 (d, J = 8.6 Hz), 129.6, 128.4 (d, J = 2.4 Hz), 125.8 (d, J = 3.2 Hz), 122.7, 118.6 (d, J = 12.0 Hz), 118.1, 116.9 (d, J = 21.7 Hz). ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -113.09 – -113.16 (m, 1F). HRMS (ESI-TOF) Calcd for C₁₄H₁₁FN₃S⁺ ([M+H]⁺) 272.0652. Found 272.0652.

3aa, *N*-phenyl-5-(4-(trifluoromethyl)phenyl)-1,3,4-thiadiazol-2-amine, white solid: mp 232–233 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.68 (s, 1H), 8.08 (d, *J* = 8.0 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.67 (d, *J* = 8.0 Hz, 2H), 7.39 (dd, *J* = 7.8, 7.8 Hz, 2H), 7.05 (dd, *J* = 7.4, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 165.4, 156.4, 140.8, 134.5 (d, *J* = 1.0 Hz), 130.3 (q, *J* = 32.1 Hz), 129.7, 127.8, 126.7 (q, *J* = 3.8 Hz), 124.4 (d, *J* = 272.3 Hz), 122.9, 118.2. ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ -61.29

(s, 3F). HRMS (ESI-TOF) Calcd for $C_{15}H_{11}F_3N_3S^+$ ([M+H]⁺) 322.0620. Found 322.0627.

3ab, methyl 4-(5-(phenylamino)-1,3,4-thiadiazol-2-yl)benzoate, yellow solid: mp 214–215 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.68 (s, 1H), 8.08 (d, *J* = 8.5 Hz, 2H), 8.01 (d, *J* = 8.5 Hz, 2H), 7.67 (d, *J* = 7.3 Hz, 2H), 7.39 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.05 (dddd, *J* = 7.3, 7.3, 1.1, 1.1 Hz, 1H), 3.89 (s, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.1, 165.3, 156.8, 140.8, 134.9, 131.0, 130.5, 129.7, 127.4, 122.8, 118.2, 52.8. HRMS (ESI-TOF) Calcd for C₁₆H₁₄N₃O₂S⁺ ([M+H]⁺) 312.0801. Found 312.0800.

3ac, *N*-phenyl-5-(pyridin-2-yl)-1,3,4-thiadiazol-2-amine, ¹² pale yellow solid: mp 219–220 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.64 (s, 1H), 8.64 (ddd, *J* = 4.9, 1.4, 1.4 Hz, 1H), 8.15 (ddd, *J* = 8.0, 1.1, 1.1 Hz, 1H), 7.98 (ddd, *J* = 7.7, 7.7, 1.7 Hz, 1H), 7.67 (d, *J* = 7.4 Hz, 2H), 7.49 (ddd, *J* = 7.5, 4.9, 1.2 Hz, 1H), 7.38 (dd, *J* = 8.5, 7.3 Hz, 2H), 7.04 (dd, *J* = 7.4, 7.4 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 166.0, 160.1, 150.3, 149.5, 140.8, 138.1, 129.6, 125.4, 122.7, 119.9, 118.1. HRMS (ESI-TOF) Calcd for C₁₃H₁₁N₄S⁺ ([M+H]⁺) 255.0699. Found 255.0692.

3ad, *N*-phenyl-5-(thiophen-2-yl)-1,3,4-thiadiazol-2-amine,¹³ pale yellow solid: mp 175–176 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.53 (s, 1H), 7.67 (dd, *J* = 5.1, 1.2 Hz, 1H), 7.60 – 7.57 (m, 2H), 7.53 (dd, *J* = 3.7, 1.2 Hz, 1H), 7.36 (dd, *J* = 8.6, 7.3 Hz, 2H), 7.17 (dd, *J* = 5.1, 3.7 Hz, 1H), 7.03 (ddd, *J* = 7.4, 7.4, 1.2, 1.2 Hz, 1H). ¹³C{¹H}

¹² A. Bharti, P. Bharati, N. K. Singh and M. K. Bharty, J. Coord. Chem., 2016, 69, 1258–1271.

¹³ H. Muğlu, H. Yakan, H. A. Shouaib, J. Mol. Struct., 2020, **1203**, 127470.

NMR (100 MHz, DMSO-*d*₆) δ 164.2, 152.5, 140.7, 132.6, 129.7, 129.3, 129.1, 128.8, 122.9, 118.1. HRMS (ESI-TOF) Calcd for C₁₂H₁₀N₃S₂⁺ ([M+H]⁺) 260.0311. Found 260.0313.

3ae, 5-(*tert*-butyl)-*N*-phenyl-1,3,4-thiadiazol-2-amine, pale yellow solid: mp 194–195 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.54 (d, *J* = 7.5 Hz, 2H), 7.31 (dd, *J* = 8.6, 7.3 Hz, 2H), 6.97 (dd, *J* = 8.1, 6.8 Hz, 1H), 1.34 (s, 9H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 170.1, 164.6, 141.2, 129.5, 122.3, 117.8, 36.0, 30.9. HRMS (ESI-TOF) Calcd for C₁₂H₁₆N₃S⁺ ([M+H]⁺) 234.1059. Found 234.1055.

3af, 5-cyclohexyl-*N*-phenyl-1,3,4-thiadiazol-2-amine, white solid: mp 188–189 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.22 (s, 1H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.31 (dd, *J* = 8.5, 7.3 Hz, 2H), 6.97 (dd, *J* = 7.3, 7.3 Hz, 1H), 2.94 (tt, *J* = 11.1, 3.6 Hz, 1H), 1.97 (dd, *J* = 10.5, 4.8 Hz, 2H), 1.73 (dt, *J* = 12.5, 3.3 Hz, 2H), 1.66 – 1.61 (m, 1H), 1.48 – 1.29 (m, 4H), 1.22 (ddt, *J* = 15.5, 12.1, 6.0 Hz, 1H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 165.9, 164.1, 141.1, 129.6, 122.3, 117.7, 39.3, 33.4, 25.71, 25.66. HRMS (ESI-TOF) Calcd for C₁₄H₁₈N₃S⁺ ([M+H]⁺) 260.1216. Found 260.1214.

3ag, 5-cyclopropyl-*N*-phenyl-1,3,4-thiadiazol-2-amine, white solid: mp 153–154 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.18 (s, 1H), 7.52 (d, *J* = 7.5 Hz, 2H), 7.31 (dd, *J* = 8.5, 7.2 Hz, 2H), 6.97 (dd, *J* = 7.3, 7.3 Hz, 1H), 2.27 (tt, *J* = 8.3, 4.9 Hz, 1H), 1.15 – 1.03 (m, 2H), 0.94 – 0.83 (m, 2H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 163.5, 163.3, 141.1, 129.6, 122.3, 117.6, 11.3, 10.2. HRMS (ESI-TOF) Calcd for C₁₁H₁₂N₃S⁺ ([M+H]⁺) 218.0746. Found 218.0747.

3ah, 5-pentyl-*N*-phenyl-1,3,4-thiadiazol-2-amine,¹⁴ white solid: mp 157–158 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.57 – 7.53 (m, 2H), 7.32 (ddd, *J* = 8.6, 7.3, 2.0 Hz, 2H), 6.98 (ddd, *J* = 7.3, 7.3, 1.2 Hz, 1H), 2.87 (t, *J* = 7.5 Hz, 2H), 1.64 (p, *J* = 7.3 Hz, 2H), 1.28 (h, *J* = 3.7 Hz, 4H), 0.86 – 0.82 (m, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.6, 160.8, 141.1, 129.6, 122.3, 117.7, 30.9, 29.6, 29.2, 22.1, 14.2. HRMS (ESI-TOF) Calcd for C₁₃H₁₈N₃S⁺ ([M+H]⁺) 248.1216. Found 248.1222.

3ai, *N*-phenyl-5-propyl-1,3,4-thiadiazol-2-amine, white solid: mp 186–187 °C. ¹H NMR (400 MHz, DMSO-*d*₆) δ 10.23 (s, 1H), 7.59 (d, *J* = 7.4 Hz, 2H), 7.33 (dd, *J* = 8.6, 7.3 Hz, 2H), 6.98 (dddd, *J* = 7.3, 7.3, 1.2, 1.2 Hz, 1H), 2.88 (t, *J* = 7.4 Hz, 2H), 1.69 (h, *J* = 7.4 Hz, 2H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆) δ 164.4, 160.1, 141.3, 129.5, 122.0, 117.6, 31.6, 23.0, 13.8. HRMS (ESI-TOF) Calcd for C₁₁H₁₄N₃S⁺ ([M+H]⁺) 220.0903. Found 220.0906.

¹⁴ E. N. W. Howe, N. Busschaert, X. Wu, S. N. Berry, J. Ho, M. E. Light, D. D. Czech, H. A. Klein, J. A. Kitchen and P. A. Gale, *J. Am. Chem. Soc.*, 2016, **138**, 8301–8308.

f1 (ppm)

S36

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $${\rm f1}$ (ppm)$

f1 (ppm)

S64

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

f1 (ppm)

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

S85

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

DEPT 90 and DEPT 135

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

3af, ¹H NMR

f1 (ppm)

3ah, ¹H NMR

S108

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

