Radical [3+2]-Cycloaddition Reaction for the Synthesis of

Difluorocyclopentanones

Nana Tang,^{‡a} Yan Xu,^{‡a} Tao Niu,^{‡a} Shan Yang,^a Hongchun Dong,^a Xinxin Wu^a and Chen Zhu^{*a,b}

^a Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou, Jiangsu 215123, China

Email: <u>chzhu@suda.edu.cn</u>

^b Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China.

Table of Contents

1. General experimental details	S2
2. General procedure for the radical cyclization	S2
3. Synthesis of starting materials	S2
4. Characterization of new starting materials	S2
5. Characterization of products	S4
6. Light on-off experiments	S13
7. Radical-trapping experiments	S14
8. Configuration determination of compound 3r, 3s and 3y	S16
9. ¹ H, ¹³ C, and ¹⁹ F NMR spectra	S18
10. X-ray crystal structures of compound 3a	S85

1. General experimental details

Commercially available reagents were used without further purification. Infrared (FT-IR) spectra were recorded on a BRUKER VERTEX 70, v_{max} in cm⁻¹. ¹H-NMR spectra were recorded on a BRUKER AVANCE III HD (400 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane with the residual CHCl₃ signal as internal standard (CDCl₃: δ 7.26). Data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quadruplet, br = broad, m = multiplet), coupling constants (Hz) and integration. ¹³C-NMR spectra were recorded on a BRUKER AVANCE III HD (100 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCl₃: δ 77.16). ¹⁹F-NMR spectra were recorded on BRUKER AVANCE III HD (376MHz) and VARIAN DD2-600 (564MHz) spectrometer. Mass spectra were measured with an Agilent Technologies 6120 Quadrupole LC/MS. High resolution mass spectrometry (HRMS) were measured with a GCT PremierTM and BRUKER micrOTF-Q III. Melting points were measured using INESA WRR and values are uncorrected.

2. General procedure for the radical cyclization

Alkenes 1 (0.2 mmol, 1.0 equiv.), bromodifluoromethyl alkynyl ketone 2 and *fac*-Ir(ppy)₃ (0.004 mmol, 2 mol %) were loaded in a flask which was subjected to evacuation/flushing with nitrogen for three times. DMA (2.0 mL) was added to the mixture via syringe and the mixture was then irradiated by 30 W green LEDs. The reaction was stirred at rt for 4 h. The mixture was then diluted with ethyl acetate (30 mL). The resultant organic solution was washed by H_2O and brine, dried over Na_2SO_4 , filtered, concentrated, and purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether) to give the corresponding product **3**.

3. Synthesis of starting materials

To a stirred solution of alkynes (15 mmol, 1.0 equiv.) in anhydrous THF (40 mL) was added *n*-BuLi (2.5 M in hexane, 18 mmol, 1.2 equiv.) dropwise at -78 °C. The resulting solution was stirred at the same temperature for 30 min, at which time a solution of ethyl bromodifluoroacetate (18 mmol, 1.2 equiv.) and BF₃·OEt₂ (18 mmol, 1.2 equiv.) in anhydrous THF (8 mL) was added dropwise. After reaction was complete (ca. 1 h), water and saturated NH₄Cl solution was added. The aqueous layer was separated and extracted with ethyl acetate (2 x 25 mL). The combined organic extracts were washed with brine, dried over MgSO₄, filtered and concentrated to give the crude product, which was purified by flash column chromatography on silica gel (eluent: ethyl acetate/petroleum ether) to afford compound **2**.

4. Characterization of new starting materials

2a: 4.5 g, 87% yield, colorless oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 200/1). ¹H NMR (400 MHz, CDCl₃) δ 7.70-7.66 (m, 2H), 7.59-7.53 (m, 1H), 7.49-7.42 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5 (t, *J*_{C-F} = 32.0 Hz), 133.9, 132.4, 128.9, 118.3, 112.9 (t, *J*_{C-F} = 315.0 Hz), 100.6, 82.2; ¹⁹F NMR

(376 MHz, CDCl₃) δ -63.0 (s). FT-IR: v (cm⁻¹) 3064, 2187, 1697, 1288, 684. HRMS [ESI] calcd for C₁₀H₆BrF₂O [M+H]⁺ 258.9565, found 258.9567.

2aa: 0.85 g, 59% yield, brown oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 200/1). ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.60 (m, 2H), 6.96-6.92 (m, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4 (t, *J*_{C-F} = 31.8 Hz), 163.1, 136.2, 114.8, 113.0 (t, *J*_{C-F} = 315.1 Hz), 110.0, 102.5,

82.8, 55.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s). FT-IR: v (cm⁻¹) 2938, 2842, 2173, 1794, 1419, 1297, 682. HRMS [EI] calcd for C₁₁H₇BrF₂O₂ [M]⁺ 287.9597, found 287.9596.

2ab: 1.12 g, 82% yield, colorless oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 200/1). ¹H NMR (400 MHz, CDCl₃) δ 7.58-7.52 (m, 2H), 7.27-7.22 (m, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4 (t, *J*_{C-F} = 32.2 Hz), 143.7, 133.9, 129.8, 115.2, 113.0 (t, *J*_{C-F} = 315.2 Hz), 101.6, 82.3,

21.9; ^{19}F NMR (376 MHz, CDCl₃) δ -62.8 (s). FT-IR: v (cm $^{-1}$) 3649, 2181, 1694, 1603, 1148, 1046. HRMS [EI] calcd for C11H7BrF_2O [M]^+ 271.9648, found 271.9647.

2ac: 1.30 g, 78% yield, yellow solid, m.p. 45-46 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 200/1). ¹H NMR (400 MHz, CDCl₃) δ 7.78-7.72 (m, 2H), 7.71-7.60 (m, 4H), 7.55-7.48 (m, 2H), 7.48-7.42 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4 (t, J_{C-F} = 32.1 Hz),

145.3, 139.4, 134.5, 129.2, 128.7, 127.5, 127.2, 116.9, 113.0 (t, $J_{C-F} = 314.9 \text{ Hz}$), 100.9, 83.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -62.7 (s). FT-IR: v (cm⁻¹) 3629, 2181, 1691, 1406, 1151, 1051. HRMS [EI] calcd for C₁₆H₉BrF₂O [M]⁺ 333.9805, found 333.9803.

2ad: 1.0 g, 72% yield, colorless oil. The crude product was purified by CF_2Br flash column chromatography (eluent: ethyl acetate/petroleum ether = 200/1). ¹H NMR (400 MHz, CDCl₃) δ 7.72-7.66 (m, 2H), 7.18-7.11 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3 (t, J_{C-F} = 32.3 Hz), 165.0 (d, J_{C-F} = 255.2 Hz), 136.4 (d, J_{C-F} = 9.3 Hz), 116.6 (d, J_{C-F} = 22.4 Hz),

114.5 (d, $J_{C-F} = 3.5$ Hz), 112.8 (t, $J_{C-F} = 315.0$ Hz), 99.4, 82.2 (d, $J_{C-F} = 1.0$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -63.1 (s), -102.8 (s). FT-IR: v (cm⁻¹) 3107, 2186, 1697, 1236, 685. HRMS [ESI] calcd for C₁₀H₅BrF₃O [M+H]⁺ 276.9470, found 276.9478.

2ae: 0.1 g, 76% yield, brown oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.97-7.94 (m, 1H), 7.42-7.38 (m, 1H), 7.32-7.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4 (t, *J*_{C-F} = 32.3 Hz), 137.0, 130.4, 126.9, 117.8, 112.8 (t, *J*_{C-F} = 315.0 Hz), 96.1, 82.8; ¹⁹F NMR

 $(376 \text{ MHz}, \text{CDCl}_3) \delta$ -62.9 (s). FT-IR: v (cm⁻¹) 3113, 2184, 1691, 1272, 697. HRMS [ESI] calcd for C₈H₄BrF₂OS [M+H]⁺ 264.9129, found 264.9116.

2af: 0.99 g, 67% yield, colorless oil. The crude product was purified by CF_2Br flash column chromatography (eluent: ethyl acetate/petroleum ether = 200/1). ¹H NMR (400 MHz, CDCl₃) δ 0.99 (s, 9H), 0.24 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6 (t, J_{C-F} = 32.3 Hz), 112.7 (t, J_{C-F} = 314.9 Hz),

109.4, 95.8, 25.8, 16.7, -5.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -63.7 (s). FT-IR: v (cm⁻¹) 2947, 2159, 1708, 1387, 1240, 678. HRMS [CI] calcd for C₁₀H₁₆BrF₂OSi [M+H]⁺ 297.0116, found 297.0119.

2ag: 1.26 g, 58% yield, colorless oil.¹H NMR (400 MHz, CDCl3) δ CF₂Br 2.51 (t, J = 7.2 Hz, 2H), 1.68-1.59 (m, 2H), 1.52-1.41 (m, 2H), 0.95 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl3) δ 168.4 (t, JC-F = 31.9

Hz),, 112.8 (t, JC-F = 314.9 Hz),, 105.2, 74.8, 29.2, 21.9, 19.2, 13.4; ¹⁹F NMR (376 MHz, CDCl3) δ -63.4 (s). FT-IR: ν (cm⁻¹) 2962, 2213, 1707, 1258, 1158, 1126,945. HRMS [EI] calcd for C₈H₉BrF₂O [M]⁺ 237.9805, found 237.9806.

5. Characterization of products

3a: 65.2 mg, 90% yield, yellow solid, m.p. 60-61 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.42 (m, 5H), 7.42-7.36 (m, 2H), 7.34-7.27 (m, 3H), 4.47 (dd, *J* = 9.6 Hz, *J* = 4.0 Hz, 1H), 2.98-2.81 (m, 1H), 2.57-2.44 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.8 (t, *J*_{C-F} = 26.9 Hz), 148.2, 141.7, 137.9, 134.9 (t, *J*_{C-F} = 3.0 Hz), 130.9, 129.1, 128.9, 128.2, 127.4,

127.2, 118.0 (t, $J_{C-F} = 253.4 \text{ Hz}$), 45.0 (dd, $J_{C-F} = 4.7$, 2.6 Hz), 39.3 (t, $J_{C-F} = 20.6 \text{ Hz}$); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 271.5 Hz), -106.3 (d, J = 271.8 Hz). FT-IR: v (cm⁻¹) 3059, 2921, 2851, 1746, 1647, 1618, 1589, 1492, 1347, 1226. HRMS [ESI] calcd for C₁₈H₁₃BrF₂NaO [M+Na]⁺ 385.0010, found 384.9992.

3b: 68.4 mg, 91% yield, yellow solid, m.p. 89-90 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.38 (m, 5H), 7.21-7.14 (m, 4H), 4.43 (dd, *J* = 9.6, 3.6 Hz, 1H), 2.95-2.78 (m, 1H), 2.54-2.41 (m, 1H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9 (t, *J*_{C-F} = 26.9 Hz), 148.0,

138.6, 138.0, 136.9, 135.1 (t, $J_{C-F} = 2.3$ Hz), 130.8, 129.7, 128.9, 128.2, 127.3, 118.0 (t, $J_{C-F} = 253.8$ Hz), 44.6 (dd, $J_{C-F} = 4.5$, 2.2 Hz), 39.4 (t, $J_{C-F} = 20.3$ Hz), 21.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 271.5 Hz), -106.3 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 2921, 2852, 1736, 1611, 1587, 1513, 1488, 1378, 1225. HRMS [CI] calcd for C₁₉H₁₆BrF₂O [M+H]⁺ 377.0347, found 377.0351.

3c: 74.5 mg, 89% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.36 (m, 7H), 7.23-7.18 (m, 2H), 4.45 (dd, *J* = 9.6, 3.6 Hz, 1H), 2.96-2.79 (m, 1H), 2.58-2.45 (m, 1H),

1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9 (t, $J_{C-F} = 26.9$ Hz), 150.0, 147.9, 138.5, 138.0, 135.2 (t, $J_{C-F} = 2.5$ Hz), 130.8, 129.0, 128.1, 127.1, 125.9, 118.0 (t, $J_{C-F} = 253.7$ Hz), 44.5 (dd, $J_{C-F} = 4.4$, 2.2 Hz), 39.2 (t, $J_{C-F} = 20.4$ Hz), 34.5, 31.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.5 (d, J = 271.5 Hz), -106.0 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 3056, 2962, 2867, 1736, 1585, 1517, 1487, 1394, 1251. HRMS [CI] calcd for C₂₂H₂₂BrF₂O [M+H]⁺ 419.0817, found 419.0819.

3d: 76.2 mg, 87% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.65-7.60 (m, 4H), 7.52-7.41 (m, 7H), 7.40-7.33 (m, 3H), 4.52 (dd, *J* = 9.6, 4.0 Hz, 1H), 3.01-2.84 (m, 1H), 2.62-2.49 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7 (t, *J*_{C-F} = 26.8 Hz),

148.3, 140.7, 140.5, 140.1, 137.9, 134.9 (t, $J_{C-F} = 2.6$ Hz), 130.9, 128.9, 128.9, 128.2 127.9, 127.7, 127.5, 127.1, 118.0 (t, $J_{C-F} = 253.8$ Hz), 44.7 (dd, $J_{C-F} = 4.5$, 2.2 Hz), 39.2 (t, $J_{C-F} = 20.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 (d, J = 271.8 Hz), -106.2 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 3030, 2924, 2853, 1736, 1602, 1587, 1518, 1486, 1338, 1218. HRMS [ESI] calcd for C₂₄H₁₇BrF₂NaO [M+Na]⁺ 461.0323, found 461.0328.

3e: 71.3 mg, 91% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.48-7.38 (m, 5H), 7.22-7.17 (m, 2H), 6.93-6.88 (m, 2H), 4.42 (dd, *J* = 9.6, 4.0 Hz, 1H), 3.82 (s, 3H), 2.94-2.77 (m, 1H), 2.54-2.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9 (t, *J*_{C-F} = 26.8 Hz), 158.7, 148.0, 138.0, 135.3 (t, *J*_{C-F} = 2.5 Hz),

133.7, 130.8, 128.9, 128.5, 128.2, 118.0 (t, $J_{C-F} = 253.6$ Hz), 114.4, 55.3, 44.2 (dd, $J_{C-F} = 4.6$, 2.1 Hz), 39.4 (t, $J_{C-F} = 20.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (d, J = 271.5 Hz), -106.4 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 3002, 2934, 2837, 1735, 1647, 1610, 1583, 1463, 1339, 1221. HRMS [CI] calcd for C₁₉H₁₆BrF₂O₂ [M+H]⁺ 393.0296, found 393.0307.

3f: 54.6 mg, 56% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 60/1). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.80 (m, 2H), 7.46-7.39 (m, 5H), 7.30-7.25 (m, 2H), 4.45 (dd, *J* = 10.0, 4.0 Hz, 1H), 2.97-2.82 (m, 1H), 2.53-2.40 (m, 1H), 1.34 (s, 12H), ¹³C NMR (100 MHz, CDCl₃) δ 186.7 (t, *J*_{C-F} = 26.7 Hz), 148.3, 144.8, 137.9, 135.5, 134.7 (t, *J*_{C-F} = 2.4 Hz), 130.9, 128.9, 128.2, 126.8, 117.9 (t, *J*_{C-F} = 253.7 Hz), 83.9, 45.1 (dd, *J*_{C-F} = 4.1, 2.4 Hz), 39.2 (t, *J*_{C-F} =

20.6 Hz), 24.9, 24.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.7 (d, *J* = 271.5 Hz), -106.3 (d, *J* = 271.5 Hz). FT-IR: v (cm⁻¹) 2978, 2926, 1737, 1610, 1585, 1517, 1488, 1398, 1251. HRMS [ESI] calcd for C₂₄H₂₄BBrF₂NaO₃ [M+Na]⁺ 511.0862, found 511.0856.

3g: 66.8 mg, 76% yield, yellow solid, m.p. 73-74 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.48 (m, 2H), 7.48-7.39

(m, 5H), 7.19-7.14 (m, 2H), 4.42 (dd, J = 9.6, 3.6 Hz, 1H), 2.96-2.79 (m, 1H), 2.52-2.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.4 (t, $J_{C-F} = 26.8$ Hz), 148.8, 140.7, 137.7, 134.4 (t, $J_{C-F} = 1.8$ Hz), 132.2, 131.1, 129.2, 128.9, 128.2, 121.2, 117.9 (t, $J_{C-F} = 253.8$ Hz), 44.5 (dd, $J_{C-F} = 4.8$, 2.0 Hz), 39.0 (t, $J_{C-F} = 20.7$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 (d, J = 271.8 Hz), -106.7 (d, J = 272.2 Hz). FT-IR: v (cm⁻¹) 3061, 2918, 2849, 1737, 1613, 1588, 1487, 1336, 1225. HRMS [ESI] calcd for C₁₈H₁₂Br₂F₂NaO [M+Na]⁺ 462.9115, found 462.9111.

3h: 65.3 mg, 86% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.40 (m, 5H), 7.30-7.22 (m, 2H), 7.12-7.01 (m, 2H), 4.46 (dd, *J* = 9.6, 3.2 Hz, 1H), 2.96-2.79 (m, 1H), 2.54-2.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.5 (t, *J*_{C-F} = 26.8 Hz), 161.9 (d, *J*_{C-F} = 244.5 Hz), 148.6, 137.8, 137.4 (d, *J*_{C-F} = 3.3 Hz), 134.7 (t,

 $J_{C-F} = 2.4$ Hz), 131.0, 129.0 (dd, $J_{C-F} = 7.9$, 0.9 Hz), 128.9, 128.2, 117.9 (t, $J_{C-F} = 253.9$ Hz), 116.0 (d, $J_{C-F} = 21.6$ Hz), 44.3 (dd, $J_{C-F} = 4.5$, 1.9 Hz), 39.2 (t, $J_{C-F} = 20.7$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 (d, J = 272.6 Hz), -106.6 (d, J = 271.5 Hz), -115.1 (s). FT-IR: v (cm⁻¹) 2958, 2919, 2849, 1736, 1645, 1601, 1584, 1466, 1377, 1206. HRMS [ESI] calcd for C₁₈H₁₂BrF₃NaO [M+Na]⁺ 402.9916, found 402.9898.

3i: 70.5 mg, 89% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.48 (m, 2H), 7.47-7.39 (m, 5H), 7.19-7.14 (m, 2H), 4.42 (dd, *J* = 9.6, 3.6 Hz, 1H), 2.96-2.79 (m, 1H), 2.52-2.39 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.4 (t, *J*_{C-F} = 26.9 Hz),

148.7, 140.1, 137.7, 134.4 (t, $J_{C-F} = 2.5 \text{ Hz}$), 133.1, 131.0, 129.2, 128.9, 128.8 (t, $J_{C-F} = 0.9 \text{ Hz}$), 128.2, 117.8 (t, $J_{C-F} = 254.1 \text{ Hz}$), 44.4 (dd, $J_{C-F} = 4.5$, 2.0 Hz), 39.1 (t, $J_{C-F} = 20.7 \text{ Hz}$); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.1 (d, J = 271.8 Hz), -106.7 (d, J = 272.2 Hz). FT-IR: v (cm⁻¹) 3059, 2920, 2849, 1735, 1584, 1491, 1408, 1338, 1206. HRMS [ESI] calcd for C₁₈H₁₃BrClF₂O [M+H]⁺ 396.9801, found 396.9793.

3j: 68.7 mg, 80% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.62 (m, 2H), 7.54-7.38 (m, 7H), 4.53 (dd, *J* = 9.6, 3.6 Hz, 1H), 3.99-2.83 (m, 1H), 2.54-2.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.3 (t, *J*_{C-F} = 26.7 Hz), 149.0, 145.7, 137.7, 134.1 (t, *J*_{C-F} = 2.0 Hz), 131.1, 129.6 (q, *J*_{C-F} = 30.5 Hz), 128.9,

128.3, 127.9, 126.1 (q, $J_{C-F} = 3.6$ Hz), 124.1 (q, $J_{C-F} = 270.6$ Hz), 117.8 (dd, $J_{C-F} = 254.7$, 252.9 Hz), 44.8 (dd, $J_{C-F} = 4.4$, 1.6 Hz), 38.9 (t, $J_{C-F} = 20.9$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.5 (s), -103.9 (d, J = 273.0 Hz), -106.8 (d, J = 272.2 Hz). FT-IR: v (cm⁻¹) 2921, 1737, 1584, 1507, 1489, 1444, 1322, 1207. HRMS [ESI] calcd for C₁₉H₁₃BrF₅O [M+H]⁺ 431.0064, found 431.0073.

3k: 63.8 mg, 85% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.40 (m, 5H), 7.25-7.18 (m, 3H), 7.16-7.10 (m, 1H), 4.61 (dd, *J* = 10.0, 4.8 Hz, 1H), 2.97-2.81 (m 1H), 2.47 (s, 3H), 2.42-2.28 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.8 (t, *J*_{C-F} = 26.9 Hz), 147.7, 140.2, 137.9, 135.7, 135.5 (t, *J*_{C-F} = 2.3 Hz), 130.9, 130.8, 129.0, 128.2, 127.3, 126.8,

125.7, 118.2 (t, $J_{C-F} = 253.7 \text{ Hz}$), 41.5 (t, $J_{C-F} = 3.1 \text{ Hz}$), 37.7 (t, $J_{C-F} = 20.5 \text{ Hz}$), 19.8; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 270.7 Hz), -106.1 (d, J = 270.3 Hz). FT-IR: v (cm⁻¹) 3062, 2921, 2851, 1735, 1584, 1488, 1461, 1381, 1253. HRMS [CI] calcd for C₁₉H₁₆Br₁F₂O [M+H]⁺ 377.0347, found 377.0355.

31: 61.6 mg, 70% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.67-7.62 (m, 1H), 7.51-7.40 (m, 5H), 7.35-7.29 (m, 1H), 7.24-7.15 (m, 2H), 4.82 (dd, J = 9.6, 4.0 Hz, 1H), 3.00-2.83 (m, 1H), 2.54-2.40 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.5 (t, $J_{C-F} = 27.0$ Hz),

148.1, 140.4, 137.7, 134.3 (t, $J_{C-F} = 2.5$ Hz), 133.5, 131.0, 128.9, 128.9, 128.2, 128.0, 124.3, 118.0 (t, $J_{C-F} = 253.8$ Hz), 44.9 (t, $J_{C-F} = 3.2$ Hz), 37.2 (t, $J_{C-F} = 20.9$ Hz); ¹⁹F NMR (564 MHz, CDCl₃) δ -109.6 (d, J = 270.2 Hz), -113.2 (d, J = 270.2 Hz). FT-IR: v (cm⁻¹) 3059, 2920, 2850, 1736, 1658, 1632, 1584, 1469, 1338, 1208. HRMS [ESI] calcd for C₁₈H₁₃Br₂F₂O [M+H]⁺ 440.9296, found 440.9288.

3m: 64.7 mg, 83% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.41 (m, 5H), 7.15-7.10 (m, 1H), 7.07-7.01 (m, 1H), 6.91 (s, 1H), 4.57 (dd, *J* = 9.6, 4.4 Hz, 1H), 2.97-2.80 (m, 1H), 2.43 (s, 3H), 2.41-2.27 (m, 1H), 2.32 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0

(t, $J_{C-F} = 26.8$ Hz), 147.5, 140.1, 137.9, 136.3, 135.7 (t, $J_{C-F} = 2.3$ Hz), 132.5, 130.9, 130.6, 129.0, 128.2, 127.9, 126.4, 118.2 (t, $J_{C-F} = 253.8$ Hz), 41.5 (t, $J_{C-F} = 3.3$ Hz), 37.8 (t, $J_{C-F} = 20.3$ Hz), 21.3, 19.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.7 (d, J = 271.1 Hz), -105.7 (d, J = 270.7 Hz). FT-IR: v (cm⁻¹) 2922, 1736, 1584, 1500, 1489, 1380, 1253. HRMS [CI] calcd for C₂₀H₁₈BrF₂O [M+H]⁺ 391.0504, found 391.0522.

3n: 73.6 mg, 84% yield, yellow solid, m.p. 73-74 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.40 (m, 7H), 7.28-7.18 (m, 2H), 4.43 (dd, *J* = 9.6, 3.2 Hz, 1H), 2.96-2.80 (m, 1H), 2.54-2.41 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.3 (t, *J*_{C-F} = 26.9 Hz), 148.9, 143.9, 137.6, 134.1 (t, *J*_{C-F} = 2.4 Hz), 131.1, 130.8, 130.6, 130.5, 128.9, 128.2, 125.8, 123.1, 117.8 (t, *J*_{C-F} =

253.7 Hz), 44.6 (dd, J_{C-F} = 4.4, 2.1 Hz), 39.0 (t, J_{C-F} = 20.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.2 (d, J = 271.8 Hz), -106.6 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 2923, 1737, 1684, 1591, 1541, 1457, 1374, 1220. HRMS [ESI] calcd for C₁₈H₁₃Br₂F₂O [M+H]⁺ 440.9296, found 440.9302.

30: 69.9 mg, 85% yield, yellow solid, m.p. 114-115 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.91-7.81 (m, 3H), 7.73 (s, 1H), 7.55-7.42 (m, 7H), 7.42-7.37 (m, 1H), 4.63 (dd, *J* = 9.6, 4.0 Hz, 1H), 3.04-2.87 (m, 1H), 2.65-2.51 (m, 1H); ¹³C

NMR (100 MHz, CDCl₃) δ 186.8 (t, $J_{C-F} = 26.9$ Hz), 148.5, 138.9, 137.9, 134.8 (t, $J_{C-F} = 2.5$ Hz), 133.5, 132.5, 130.9, 129.1, 128.9, 128.2, 127.9, 127.7, 126.5, 126.3, 126.1, 125.3, 118.0 (t, $J_{C-F} = 253.8$ Hz), 45.1 (dd, $J_{C-F} = 4.4$, 2.4 Hz), 39.2 (t, $J_{C-F} = 20.7$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 271.5 Hz), -106.0 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 3057, 2927, 1736, 1647, 1598, 1583, 1488, 1367, 1232. HRMS [CI] calcd for C₂₂H₁₆BrF₂O [M+H]⁺ 413.0347, found 413.0340.

3p: 46.8 mg, 56% yield, yellow solid, m.p. 119-120 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 40/1). ¹H NMR (400 MHz, CDCl₃) δ 7.84-7.79 (m, 1H), 7.77-7.72 (m, 1H), 7.54-7.42 (m, 5H), 7.41-7.30 (m, 2H), 7.20 (s, 1H), 4.81 (dd, *J* = 9.2, 1.6 Hz, 1H), 3.00-2.83 (m, 1H), 2.83-2.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 185.9 (t, *J*_{C-F} = 26.8 Hz), 149.1, 144.8,

139.5, 139.4, 137.6, 134.3 (dd, $J_{C-F} = 3.2$, 2.3 Hz), 131.2, 128.9, 128.3, 124.6, 124.5, 123.6, 122.4, 121.9, 117.6 (dd, $J_{C-F} = 254.8$, 253.7 Hz), 41.2 (dd, $J_{C-F} = 5.7$, 1.1 Hz), 39.0 (t, $J_{C-F} = 21.1$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -102.5 (d, J = 273.0 Hz), -106.4 (d, J = 273.0 Hz). FT-IR: v (cm⁻¹) 3056, 2959, 2919, 1736, 1698, 1647, 1584, 1473, 1338, 1235. HRMS [ESI] calcd for C₂₀H₁₄BrF₂OS [M+H]⁺ 418.9911, found 418.9912.

3q: 39.1 mg, 46% yield, yellow solid, m.p. 125-126 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 30/1). ¹H NMR (400 MHz, CDCl₃) δ 7.79-7.72 (m, 1H), 7.59-7.49 (m, 3H), 7.49-7.41 (m, 3H), 7.41-7.34 (m, 2H), 4.81 (dd, J = 9.2, 4.4 Hz, 1H), 3.02-2.80 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 184.9 (t, $J_{C-F} = 26.5$ Hz), 164.1, 150.9, 149.8, 141.1, 137.3, 131.3, 130.6 (t,

 $J_{C-F} = 2.7 \text{ Hz}), 129.0, 128.2, 125.4, 124.7, 120.3, 117.2 \text{ (t, } J_{C-F} = 253.8 \text{ Hz}), 110.8, 39.8 \text{ (dd, } J_{C-F} = 4.7, 2.9 \text{ Hz}), 35.6 \text{ (t, } J_{C-F} = 22.9 \text{ Hz}); {}^{19}\text{F} \text{ NMR} (376 \text{ MHz}, \text{CDCl}_3) \delta -105.7 \text{ (d, } J = 273.0 \text{ Hz}), -106.7 \text{ (d, } J = 272.6 \text{ Hz}). \text{ FT-IR: } \nu \text{ (cm}^{-1}) 3064, 2921, 2849, 1746, 1645, 1583, 1561, 1474, 1361, 1231. \text{ HRMS} [ESI] calcd for C_{19}H_{12}BrF_2NNaO_2 [M+Na]^+ 425.9912, found 425.9917.$

3r: 30.1 mg, 40% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.36 (m, 7H), 7.35-7.27 (m, 3H), 3.81 (d, *J* = 8.8 Hz, 1H), 2.47-2.30 (m, 1H), 1.29 (d, *J* = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7 (t, *J*_{C-F} = 27.0 Hz), 147.7, 141.1, 138.1, 134.7 (dd, *J*_{C-F} = 2.6, 2.4

Hz), 130.9, 129.2, 129.0, 128.0, 127.9, 127.2, 118.1 (dd, $J_{C-F} = 258.6$, 251.9 Hz), 53.3 (d, $J_{C-F} = 5.7$ Hz), 44.9 (dd, $J_{C-F} = 20.8$, 18.5 Hz), 10.1 (d, $J_{C-F} = 7.3$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -117.0 (d, J = 262.4 Hz), -120.3 (d, J = 263.2 Hz). FT-IR: v (cm⁻¹) 3061, 2975, 2850, 1741, 1583, 1569, 1454, 1382, 1228. HRMS [ESI] calcd for C₁₉H₁₆Br₁F₂O₂ [M+H]⁺ 377.0347, found 377.0360.

3s: 60.6 mg, 81% yield, yellow solid, m.p. 120-121 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.75-7.70 (m, 1H), 7.48-7.38 (m, 5H), 7.33-7.22 (m, 3H), 5.09-5.02 (m, 1H), 3.42-3.24 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.4 (t, J_{C-F} = 28.0 Hz), 144.5, 142.4, 139.7, 137.4, 134.5 (t, J_{C-F} = 3.4 Hz), 130.3, 128.4, 127.9, 127.7, 126.7, 124.7, 124.3, 117.4 (t, J_{C-F} = 256.4 Hz),

51.5 (d, $J_{C-F} = 6.7$ Hz), 44.1 (dd, $J_{C-F} = 21.8$, 18.9 Hz), 30.6 (d, $J_{C-F} = 9.4$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.9 (d, J = 276.7 Hz), -112.0 (d, J = 276.7 Hz). FT-IR: v (cm⁻¹) 3062, 2955, 2852, 1731, 1646, 1607, 1585, 1457, 1346, 1220. HRMS [ESI] calcd for C₁₉H₁₄BrF₂O [M+H]⁺ 375.0191, found 375.0194.

3t: 35.8 mg, 50% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.37 (m, 5H), 4.82-4.77 (m, 1H), 3.69-3.56 (m, 2H), 2.71-2.60 (m, 1H), 2.55-2.39 (m, 1H), 1.68-1.59

(m, 2H), 1.49-1.38 (m, 2H), 0.94 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.1 (t, $J_{C-F} = 26.7$ Hz), 149.8, 137.3, 133.5 (t, $J_{C-F} = 2.7$ Hz), 131.2, 129.0, 128.1, 117.6 (t, $J_{C-F} = 254.6$ Hz), 75.8 (d, $J_{C-F} = 7.8$ Hz), 69.6, 36.7 (t, $J_{C-F} = 20.7$ Hz), 31.8, 19.4, 13.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -101.3 (d, J = 274.1 Hz), -106.0 (d, J = 273.7 Hz). FT-IR: v (cm⁻¹) 2958, 2932, 2871, 1739, 1587, 1573, 1488, 1420, 1379, 1226. HRMS [ESI] calcd for C₁₆H₁₇BrF₂NaO₂ [M+Na]⁺ 381.0272, found 381.0276.

3u: 32.7 mg, 42% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.29 (m, 7H), 7.27-7.21 (m, 3H), 3.28-3.18 (m, 1H), 2.95-2.85 (m, 1H), 2.77-2.67 (m, 1H), 2.56-2.25 (m, 3H), 1.94-1.82

(m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 187.0 (t, $J_{C-F} = 27.1$ Hz), 144.8, 140.7, 138.0, 136.8 (dd, $J_{C-F} = 4.1$, 2.0 Hz), 130.6, 128.7, 128.6, 128.6, 128.2, 126.4, 118.2 (dd, $J_{C-F} = 257.1$, 250.3 Hz), 39.3 (d, $J_{C-F} = 5.9$ Hz), 34.2, 33.7, 33.6 (dd, $J_{C-F} = 21.3$, 19.4 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.9 (d, J = 274.5 Hz), -107.0 (d, J = 274.5 Hz). FT-IR: v (cm⁻¹) 3062, 2919, 2850, 1737, 1684, 1633, 1541, 1470, 1346, 1260. HRMS [ESI] calcd for C₂₀H₁₈BrF₂O [M+H]⁺ 391.0504, found 391.0516.

3v: 37.6 mg, 51% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.46-7.36 (m, 5H), 3.27-3.19 (m, 1H), 2.49-2.30 (m, 2H), 2.05-1.92 (m, 1H), 1.62-1.32 (m, 9H), 0.98-0.90 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 187.2 (t, *J*_{C-F} = 27.1 Hz), 144.3, 138.1, 137.2 (dd, *J*_{C-F} = 4.0, 2.1

Hz), 130.5, 128.7, 128.1, 118.2 (dd, $J_{C-F} = 256.6$, 250.7 Hz), 39.9 (d, $J_{C-F} = 5.8$ Hz), 33.9 (dd, $J_{C-F} = 21.1$, 19.2 Hz), 32.8, 31.8, 28.9, 27.4, 22.6, 14.1; ¹⁹F NMR (376 MHz, CDCl₃) δ -100.1 (d, J = 274.1 Hz), -106.4 (d, J = 274.5 Hz). FT-IR: v (cm⁻¹) 2954, 2925, 2855, 1741, 1586, 1488, 1444, 1377, 1228. HRMS [ESI] calcd for C₁₉H₁₆Br₂F₂O₂ [M+H]⁺ 371.0817, found 371.0814.

3w: 22.5 mg, 30% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether =

100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.35 (m, 5H), 3.66-3.55 (m, 2H), 3.28-3.19 (m, 1H), 2.50-2.32 (m, 2H), 2.06-1.80 (m, 3H), 1.76-1.52 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.9 (t, *J*_{C-F} = 27.2 Hz), 144.8, 137.9, 136.7 (dd, *J*_{C-F} = 4.0, 1.9 Hz), 130.6, 128.7, 128.2, 118.1 (dd, *J*_{C-F} = 257.1, 250.1 Hz), 44.7, 39.8 (d, *J*_{C-F} = 5.9 Hz), 33.8 (dd, *J*_{C-F} = 21.4, 19.4 Hz), 32.0, 32.0, 24.7; ¹⁹F NMR (376 MHz, CDCl₃) δ -99.9 (d, *J* = 274.9 Hz), -106.8 (d, *J* = 274.9 Hz). FT-IR: v (cm⁻¹) 2940, 2864, 1740, 1586, 1507, 1458, 1345, 1228. HRMS [ESI] calcd for C₁₆H₁₇BrClF₂O [M+H]⁺ 377.0114, found 377.0115.

3x: 38.0 mg, 46% yield, yellow solid, m.p. 109-110 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.25 (m, 5H), 3.29-3.20 (m, 1H), 2.44-2.12 (m, 2H), 1.28-1.21 (m, 1H), 0.87-0.79 (m, 1H), 0.83 (s, 9H), 0.04 (s, 3H), 0.00 (s, 3H); ¹³C NMR (100 MHz, CDCl₃)

δ 187.2 (t, $J_{C-F} = 27.0$ Hz), 143.3, 139.5 (dd, $J_{C-F} = 3.7$, 2.1 Hz), 138.0, 130.5, 128.7, 128.1, 118.3 (dd, $J_{C-F} = 256.6$, 250.6 Hz), 36.4 (dd, $J_{C-F} = 13.5$, 7.6 Hz), 36.3 (dd, $J_{C-F} = 21.1$, 18.8 Hz), 26.4, 17.3, 16.7, -4.5, -5.9; ¹⁹F NMR (376 MHz, CDCl₃) δ -99.3 (d, J = 274.1 Hz), -106.9 (d, J = 274.5 Hz). FT-IR: v (cm⁻¹) 2956, 2918, 2849, 1740, 1698, 1653, 1585, 1461, 1361, 1231. HRMS [ESI] calcd for C₁₉H₂₆BrF₂OSi [M+H]⁺ 415.0899, found 415.0905.

3y: 22.8 mg, 35% yield, yellow solid, m.p. 57-58°C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.36 (m, 5H), 3.60-3.51 (m, 1H), 2.95-2.79 (m, 1H), 2.52-2.40 (m, 1H), 2.04-1.68 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 187.8 (t, *J*_{C-F} = 28.1 Hz), 144.5, 138.0, 136.7 (dd, *J*_{C-F} = 3.8, 2.4 Hz),

130.5, 128.8 128.1, 118.6 (dd, $J_{C-F} = 258.0$, 250.8 Hz), 46.1 (dd, $J_{C-F} = 3.6$, 2.0 Hz), 44.2 (dd, $J_{C-F} = 21.1$, 18.9 Hz), 33.1, 26.7, 25.7 (dd, $J_{C-F} = 6.0$, 3.8 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -101.7 (d, J = 270.3 Hz), -116.2 (d, J = 270.3 Hz). FT-IR: v (cm⁻¹) 3056, 2958, 2850, 1735, 1606, 1587, 1541, 1471, 1353, 1221. HRMS [ESI] calcd for C₁₅H₁₄BrF₂O [M+H]⁺ 327.0191, found 327.0194.

3z: 36.0 mg, 34% yield, dr = 1:1, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 30/1). ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.34 (m, 5H, two isomers), 7.25-7.21 (m, 2H, two isomers), 7.13-7.09 (m, 2H, two isomers), 4.24-4.12 (m, 2H, two isomers), 3.73 (q, *J* = 6.8 Hz, 1H, two isomers), 3.23-3.12 (m, 1H, two

isomers), 2.45 (d, J = 7.2 Hz, 2H, two isomers), 2.40-2.25 (m, 2H, two isomers), 2.05-1.94 (m, 1H, two isomers), 1.91-1.66 (m, 3H, two isomers), 1.62-1.49 (m, 1H, two isomers), 1.52 (d, J = 7.2 Hz, 3H, two isomers), 0.90 (d, J = 6.4 Hz, 6H, two isomers); ¹³C NMR (100 MHz, CDCl₃) δ 186.8 (t, $J_{C-F} = 27.0$ Hz, two isomers), 174.7 (two isomers), 144.9 (one isomer), 144.9 (one isomer), 140.6 (two isomers), 137.9 (two isomers), 137.7 (one isomer), 137.7 (one isomer), 136.6 (dd, $J_{C-F} = 6.2$, 2.1 Hz, two isomers), 130.6 (two isomers), 129.4 (two isomers), 128.7 (two isomers), 128.2 (two isomers), 127.2 (two isomers), 118.1 (dd, $J_{C-F} = 257.1$, 250.5 Hz, two isomers), 64.0 (one isomer), 64.0 (one isomer), 45.2 (one isomer), 39.4 (d, $J_{C-F} = 5.7$ Hz, one isomer), 33.8 (t, $J_{C-F} = 20.2$ Hz, one isomer),

30.2 (one isomer), 29.4 (one isomer), 29.3 (one isomer), 26.5 (one isomer), 26.5 (one isomer), 22.4 (two isomers), 18.5 (one isomer), 18.5 (one isomer); ¹⁹F NMR (376 MHz, CDCl₃) δ -99.9 (d, *J* = 274.5 Hz, one isomer), -99.9 (d, *J* = 274.9 Hz, one isomer), -106.9 (d, *J* = 274.5 Hz, one isomer), -106.9 (d, *J* = 274.5 Hz, one isomer). FT-IR: v (cm⁻¹) 3062, 2947, 2858, 1700, 1684, 1576, 1540, 1464, 1383, 1246. HRMS [ESI] calcd for C₂₈H₃₁BrF₂NaO₃ [M+Na]⁺ 555.1317, found 555.1313.

3aa: 53.1 mg, 68% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.52-7.47 (m, 2H), 7.40-7.33 (m, 2H), 7.31-7.25 (m, 3H), 6.95-6.89 (m, 2H), 4.46 (dd, *J* = 9.6, 4.0 Hz, 1H), 3.87 (s, 3H), 2.96-2.79 (m, 1H), 2.54-2.40 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.5 (t, *J*_{C-F} = 26.7 Hz), 162.1, 149.2, 142.0, 133.6 (t, *J*_{C-F} = 2.5 Hz), 131.6, 129.9, 129.0, 127.4, 127.1, 118.2 (t, *J*_{C-F} = 253.5 Hz), 113.4, 55.5, 45.3 (dd, *J*_{C-F} = 3.9, 2.5 Hz), 39.3 (t, *J*_{C-F} = 20.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.3 (d, *J* = 270.7 Hz), -105.9 (d, *J* = 270.3 Hz). FT-IR: v (cm⁻¹) 3028, 2920, 2847, 1732, 1600, 1576, 1504, 1454,

1342, 1223. HRMS [ESI] calcd for $C_{19}H_{15}BrF_2NaO_2$ [M+Na]⁺ 415.0116, found 415.0127.

3ab: 68.9 mg, 92% yield, yellow solid, m.p. 95-96 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.42-7.35 (m, 4H), 7.34-7.26 (m, 3H), 7.26-7.21 (m, 2H), 4.47 (dd, *J* = 9.6, 4.0 Hz, 1H), 2.97-2.80 (m, 1H), 2.56-2.39 (m, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7 (t, *J*_{C-F} = 26.7 Hz), 148.9, 141.8, 141.6, 135.1, 134.4 (t, *J*_{C-F} = 2.5 Hz), 129.2, 129.0, 128.8, 127.4, 127.2, 118.1 (t, *J*_{C-F} = 253.7 Hz), 45.1 (dd, *J*_{C-F} = 4.4, 2.4 Hz), 39.3 (t, *J*_{C-F} = 20.6 Hz), 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, *J* = 271.5 Hz), -106.1 (d, *J* =

271.1 Hz). FT-IR: ν (cm⁻¹) 3690, 2988, 1792, 1636, 1486, 1266, 1163, 1049. HRMS [EI] calcd for C₁₉H₁₅BrF₂O [M]⁺ 376.0274, found 376.0269.

3ac: 75.3 mg, 86% yield, yellow solid, m.p. 127-128 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.71-7.63 (m, 4H), 7.63 -7.56 (m, 2H), 7.53-7.46 (m, 2H), 7.45-7.37 (m, 3H), 7.36-7.29 (m, 3H), 4.51 (dd, *J* = 9.6, 4.0 Hz, 1H), 3.01-2.84 (m, 1H), 2.61-2.46 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.8 (t, *J*_{C-F} = 26.8 Hz), 148.2, 143.8, 141.8, 140.0, 136.6, 134.9 (t, *J*_{C-F} = 2.3 Hz), 129.8, 129.1, 129.0, 128.1, 127.5, 127.3, 127.3, 126.8, 118.1 (t, *J*_{C-F} = 253.7 Hz), 45.2 (dd, *J*_{C-F} = 4.1, 2.2 Hz), 39.3 (t, *J*_{C-F} = 20.7 Hz); ¹⁹F NMR (376 MHz,

CDCl₃) δ -104.3 (d, J = 271.5 Hz), -106.0 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 3329, 2923, 1693, 1671, 1494, 1340, 1192, 1053. HRMS [EI] calcd for C₂₄H₁₇BrF₂O [M]⁺ 438.0431, found 438.0431.

3ad: 73.5 mg, 91% yield, yellow solid, m.p. 67-68 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.44 (m, 2H), 7.41-7.34 (m, 2H), 7.33-7.29 (m, 1H), 7.29-7.24 (m, 2H), 7.14-7.07 (m, 2H), 4.45 (dd, *J* = 9.6, 4.0 Hz, 1H), 2.97-2.81 (m, 1H), 2.56-2.43 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.7

(t, $J_{C-F} = 27.1$ Hz), 164.1 (d, $J_{C-F} = 250.9$ Hz), 146.8, 141.6, 135.2 (t, $J_{C-F} = 2.1$ Hz), 133.8 (d, $J_{C-F} = 3.5$ Hz), 131.4 (d, $J_{C-F} = 8.8$ Hz), 129.1, 127.4, 127.3, 117.9 (t, $J_{C-F} = 253.6$ Hz), 115.3 (d, $J_{C-F} = 22.0$ Hz), 45.0 (dd, $J_{C-F} = 4.2$, 2.5 Hz), 39.2 (t, $J_{C-F} = 20.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.6 (d, J = 271.8 Hz), -106.1 (d, J = 271.8 Hz), -108.2 (s). FT-IR: v (cm⁻¹) 2923, 2852, 1739, 1645, 1600, 1502, 1450, 1373, 1234. HRMS [ESI] calcd for C₁₈H₁₂BrF₃NaO [M+Na]⁺ 402.9916, found 402.9896.

3ae: 45.4 mg, 62% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.99-7.94 (m, 1H), 7.42-7.34 (m, 3H), 7.34-7.23 (m, 4H), 4.54-4.45 (m, 1H), 2.99-2.81 (m, 1H), 2.57-2.42 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 186.5 (t, J_{C-F} = 26.7 Hz), 142.0, 141.7, 137.7, 134.0 (t, J_{C-F} = 2.1 Hz), 131.1, 129.1, 129.0, 127.4, 127.2, 124.9, 118.2 (dd, J_{C-F} = 252.9, 251.1 Hz),

45.6 (t, $J_{C-F} = 3.4 \text{ Hz}$), 39.3 (t, $J_{C-F} = 20.4 \text{ Hz}$); ¹⁹F NMR (376 MHz, CDCl₃) δ -104.4 (d, J = 270.0 Hz), -105.4 (d, J = 270.0 Hz). FT-IR: v (cm⁻¹) 3028, 2923, 2851, 1731, 1559, 1508, 1493, 1363, 1218. HRMS [ESI] calcd for C₁₆H₁₁BrF₂NaOS [M+Na]⁺ 390.9574, found 390.9573.

3af: 45.7 mg, 57% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.30 (m, 2H), 7.29-7.23 (m, 1H), 7.18-7.13 (m, 2H), 4.47 (dd, *J* = 10.0, 2.8 Hz, 1H), 2.94-2.77 (m, 1H), 2.55-2.42 (m, 1H), 1.03 (s, 9H), 0.41 (s, 3H), 0.39 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.8 (t, *J*_{C-F} = 26.6 Hz), 160.3, 149.0, 141.7, 129.0, 127.2, 127.0, 117.5 (t, *J*_{C-F} = 253.6 Hz),

46.5 (dd, $J_{C-F} = 3.9, 3.0 \text{ Hz}$), 39.3 (t, $J_{C-F} = 20.4 \text{ Hz}$), 27.5, 19.6, -1.7, -3.2; ¹⁹F NMR (376 MHz, CDCl₃) δ -104.8 (d, J = 271.5 Hz), -105.6 (d, J = 270.3 Hz). FT-IR: v (cm⁻¹) 3063, 2946, 2867, 1739, 1646, 1603, 1542, 1465, 1385, 1217. HRMS [ESI] calcd for C₁₈H₂₃BrF₂NaOSi [M+Na]⁺ 423.0562, found 423.0554.

4: 23.1 mg, 82% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 2.0 Hz, 1H), 7.38-7.16 (m, 10H), 4.62-4.55 (m, 1H), 2.92-2.75 (m, 1H), 2.61-2.47 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 193.2 (t, *J*_{C-F} = 25.6 Hz), 141.9, 141.1, 133.2, 132.5 (t, *J*_{C-F} = 2.4 Hz),

131.9, 131.1, 129.1, 128.7, 127.3, 127.2, 117.6 (t, $J_{C-F} = 253.3 \text{ Hz}$), 40.8 (dd, $J_{C-F} = 5.3$, 1.7 Hz), 40.8 (t, $J_{C-F} = 19.7 \text{ Hz}$); ¹⁹F NMR (376 MHz, CDCl₃) δ -105.9 (d, J = 275.6 Hz), -111.0 (d, J = 275.6 Hz). FT-IR: v (cm⁻¹) 2925, 1732, 1611, 1447, 1188, 1073, 1002. HRMS [EI] calcd for C₁₈H₁₄F₂O [M]⁺ 284.1013, found 284.1013.

5: 54.1 mg, 75% yield, yellow oil. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.33 (m, 3H), 7.28-7.04 (m, 8H), 6.98-6.92 (m, 2H), 6.90-6.85 (m, 2H), 4.36 (dd, *J* = 8.4, 7.2 Hz, 1H), 2.92-2.77 (m, 1H), 2.45-2.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 191.2 (t, *J*_{C-F} = 25.3 Hz), 160.4, 143.3, 140.4, 139.0, 132.4 (t, *J*_{C-F} = 2.6 Hz), 129.8, 129.7, 129.0,

129.0, 128.5, 128.0, 128.0, 127.4, 126.5, 117.7 (dd, $J_{C-F} = 254.9$, 250.3 Hz), 42.1 (t, $J_{C-F} = 3.3$ Hz), 40.3 (dd, $J_{C-F} = 21.3$, 19.6 Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -106.6 (d, J = 271.5 Hz), -108.5 (d, J = 271.5 Hz). FT-IR: v (cm⁻¹) 3026, 2957, 2853, 1713, 1577, 1549, 1455, 1325, 1233. HRMS [ESI] calcd for C₂₄H₁₈F₂NaO [M+Na]⁺ 383.1218, found 383.1233.

6: 41.3 mg, 76% yield, Z/E = 15.7:1, red solid, m.p. 165-166 °C. The crude product was purified by flash column chromatography (eluent: ethyl acetate/petroleum ether = 100/1). Major isomer: ¹H NMR (400 MHz, CDCl₃) δ 8.71 (s, 1H), 7.86-7.80 (m, 2H), 7.18-7.03 (m, 6H), 7.01-6.85 (m, 6H), 6.85-6.79 (m, 2H), 6.73-6.67 (m, 2H), 4.11 (dd, J = 9.2, 3.6 Hz, 1H), 3.86 (s, 3H), 3.77 (s, 3H), 2.83-2.65 (m, 1H), 2.42-2.26 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 192.3 (t, $J_{C-F} = 25.7$ Hz), 160.8, 159.9, 157.2, 144.6, 137.8, 133.6, 133.4, 132.4 (t, $J_{C-F} = 2.4$ Hz,), 132.1,

129.0, 128.9, 128.7, 128.4, 128.4, 127.9, 127.4, 126.3, 118.0 (t, $J_{C-F} = 251.7$ Hz), 114.6, 114.0, 113.5, 104.9, 86.8, 55.4, 55.3, 41.9 (dd, $J_{C-F} = 4.2$, 2.4 Hz), 40.0 (t, $J_{C-F} = 20.5$ Hz); ¹⁹F NMR (376 MHz, CDCl₃) δ -103.1 (d, J = 271.5 Hz, Z isomer), -105.9 (d, J = 271.5 Hz, Z isomer), -107.1 (d, J = 268.8 Hz, E isomer), -108.9 (d, J = 268.8 Hz, E isomer). FT-IR: v (cm⁻¹) 1698, 1601, 1509, 1375, 1251, 1032, 1019. HRMS [EI] calcd for C₂₄H₁₈F₂O [M]⁺ 546.2007, found 546.2010.

6. Light on-off experiments

For one clean tubes, according to the general procedure, the 0.2 mmol scale model reaction solution was stirred for light on 40 min and light off 12h. Yields of isolated products are given.

Time	light on (40 min)	light off (12 h)
Yield	14%	16%

For five clean tubes, according to the general procedure, the 0.2 mmol scale model reaction solution was stirred for specified time intervals (40 min, 80 min, 120 min, 160 min and 200 min) with regular interval time of light on and light off (light on 40 min, light off 40 min, light on 40 min \cdots). Yields of isolated products are given.

7. Radical-trapping experiments

Styrene (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.) TEMPO (0.3 mmol, 1.5 equiv.) and fac-Ir(ppy)₃ (0.004 mmol, 2 mol %) were loaded in a flask which was subjected to evacuation/flushing with nitrogen for three times. DMA (2.0 mL) was added to the mixture via syringe and the mixture was then irradiated by 30 W green LEDs. The reaction was stirred at rt for 4 h. The resultant organic solution were measured with high resolution mass spectrometry (HRMS). The results are following: **A**

HRMS [ESI] calcd for $C_{19}H_{23}F_2NNaO_2$ [M+Na]⁺ 358.1589, found 358.1592. **B** or **C** HRMS [ESI] calcd for $C_{27}H_{32}F_2NO_2$ [M+H]⁺ 440.2396, found 440.2399. These result indicate that the formation of radical **A** from **2** and intermediates **B** or **C** was involved in this transformation. The radical trap experiment proved that a radical process is present in the catalytic system.

8. Configuration determination of compound 3r, 3s and 3y

Configuration determination of compound 3r, 3s and 3y by comparing the calculated *J* values with the tested ones by NMR:

 ${}^{3}J=4.22-0.5\cos\varphi+4.5\cos^{2}\varphi$ (φ =dihedral angle of two C-H bonds)

	3r	3s	3у
Calculated dihedral angle of	159.0°	178.9°	178.7°
trans-configuration			
Calculated ${}^{3}J$ of	8.6	9.2	9.2
trans-configuration			
Calculated dihedral angle of	33.2°	28.1°	32.7°
cis-configuration			
Calculated ${}^{3}J$ of	7.0	7.3	7.0
cis-configuration			
Exact J value of ¹ H NMR	8.4	7.2	7.2
Proposed configuration	trans	cis	cis
H-F HOSEY result	trans	-	cis

9. ¹H, ¹³C, and ¹⁹F NMR spectra

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

--63.040

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -22 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

-60.8 -61.2 -61.6 -62.0 -62.4 -62.8 -63.2 -63.6 -64.0 -64.4 -64.8 -65.2 -65.6 -66.0 -66.4 -66

0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290

0 -10 -30 -50 -70 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -110 -130 -150 -170 -190 -210 fl (ppm)

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -270 -280 -290 -300

$\begin{array}{c} 4.650\\ 4.640\\ 4.640\\ 4.640\\ 2.033\\ 2.033\\ 2.011\\ 2.033\\ 2.023\\ 2.$ 7,8997,8787,82487,82487,782487,7277,7277,7297,72097,72097,74947,749

3r (H-F hoesy)

NOTE: According to proposed configuration of Table of Section 8 via comparing calculated formula *vs* NMR, configuration of 3s is more likely to be *cis*. These results also agreed with configuration confirmation of 3r and 3y via H-F HOSEY.

$\begin{array}{c} 7.419\\ 7.738\\ 7.$

$\begin{array}{c} 7,7,50\\ 7,7,7,10\\ 7,10\\ 7,1$

3v

 $\begin{array}{c} 7.429\\ 7.429\\ 7.7339\\ 7.7339\\ 7.7339\\ 7.7339\\ 7.7339\\ 7.7339\\ 7.7339\\ 7.7339\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73359\\ 7.73569\\ 7.73556\\$

7,401 7,730 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,738 7,2577 7,258 7,257

20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

$\begin{array}{c} & 7.973 \\ & 7.975 \\ & 7.975 \\ & 7.975 \\ & 7.975 \\ & 7.975 \\ & 7.975 \\ & 7.338 \\ & 7.337 \\$

0 -10 -20 -30 -40 -50 -50 -70 -80 -90 -110 -130 -150 -170 -190 -210 -230 -250 -270 -290

C 102.753 103.475 103.475 106.214 106.214 106.748 107.463 109.246

6 (noe)

10. X-ray crystal structures of compound 3a

CCDC 2059851 contains the supplementary crystallographic data for compound **3a**. The data can be obtained free of charge from The Cambridge Crystallographic Data Center via www.ccdc.cam.ac.uk/data_request/cif.

