Supporting Information

Stereospecific Cyanation of Olefinic C-H Bond Enabled by 1,4-Rhodium Migration

Xiaosa Lu,† and Yinhua Huang†*

[†]College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China

Email: yhhuang@hznu.edu.cn

Contents of Supporting Information:

1. General information	S2
2. Experimental details	S2
2.1 Preparation of substrates	S 2
2.2 Optimization of Conditions	S5
2.3 General procedure for synthesis of β , β -disubstituted acrylonitriles v	via
rhodium-catalyzed cyanation of (1) with NCTS (2a)	S6
3. Mechanistic considerations	S7
3.1 Isomerization experiments	S7
3.2 Control experiments	S 8
3.3 Proposed Catalytic CycleS	10
4. Characterization of the substratesS	511
5. Characterization of the ProductsS	16
6. ReferencesS	25
7. X-Ray Crystallographic Data of 3ia	27
8. COSY Spectra of (Z)-3va and (E)-3va	29
9. NMR Spectra	30

1. General information

All air-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or argon. Solvents were degassed prior to use when necessary. NMR spectra were recorded on Bruker AMX 500 spectrophotometer (500 MHz for ¹H, 77 MHz for ²H, 126 MHz for ¹³C and 471 Hz for ¹⁹F). Chemical shifts are reported in δ (ppm) referenced to an internal SiMe₄ standard ($\delta = 0$ ppm) for ¹H NMR, chloroform-d ($\delta = 77.0$ ppm) for ¹³C NMR. The following abbreviations were used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad. HRMS (ESI-TOF) were recorded on a time-of-fligh (TOF) LC/MS instrument. Flash column chromatography was performed with Silica gel 60 (Merck) or Al₂O₃ (activated 200) (Merck).

All chemicals and solvents were purchased from commercial company and used as received. Solvents were degassed before use if necessary.

2. Experimental details

2.1 Preparation of substrates

Dess-Martin periodinane (CAS: 87413-09-0), methyltriphenylphosphonium bromide (CAS: 1779-49-3), triisopropyl borate (CAS: 5419-55-6), *n*-BuLi (2.5 M in hexane) (CAS: 109-72-8) and 2,2-dimethyl-1,3-propanediol (CAS: 126-30-7) were purchased from commercial company and used as received.

The known arylboronic acids (1a, 1b, 1c, 1d, 1e,1f, 1i, 1j, 1k, 1p, 1q, 1r, 1s, 1t) were prepared according to the reported procedures.¹ The new arylboronic acids (1g, 1h, 1l, 1m, 1n, 1o, 1u, 1v, 1w, 1x, 1y, 1z, 1#) were prepared by the same method.

N-cyano-N-phenyl-p-methylbenzenesulfonamide (NCTS) was prepared according to a reported procedure.²

Scheme S1. Arylboronic acids substrates

General method for the synthesis of arylboronic acid substrates¹

A typical procedure for the synthesis of 1g:

To a solution of 2-bromobenzaldehyde (2.77 g, 10.0 mmol, 1.0 equiv) in THF (20 mL) was slowly added a solution of 4-PhOC₆H₄MgBr (2.0 M in THF, 6 mL, 1.2 equiv) at 0 °C under predried argon. After stirring at 0 °C for 1 h, saturated aqueous NH₄Cl solution (10 mL) was added and the mixture was extracted with EtOAc (3 \times 20 mL). The organic layers were combined, washed with brine and water, and dried

over anhydrous Na₂SO₄. After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether = 1/20) to give **S1g** (3.37 g, 95%) as a white solid.

To a solution of above obtained **S1g** (3.37 g, 9.5 mmol, 1.0 equiv) in 20 mL DCM was added Dess-Martin Periodinane (DMP, CAS: 87413-09-0) (4.84 g, 11.4 mmol, 1.2 equiv) at 0 °C under air. After stirring at rt overnight, 20 mL of saturated aqueous Na₂CO₃ solution and saturated aqueous Na₂S₂O₄ solution (1:1) was added and the mixture was extracted with EtOAc (3 × 20 mL). The organic layers were combined, washed with brine and water, and dried over anhydrous Na₂SO₄. After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether = 1/30) to give **S2g** (3.02 g, 90%) as a white solid.

To the solution of methyl triphenylphosphonium bromide (3.68 g, 10.3 mmol, 1.2 equiv) in THF (20 mL) was slowly added *n*-BuLi (4.1 mL, 2.5 M in hexane, 10.3 mmol, 1.2 equiv) at -40 °C. After stirring at 0 °C for 30 min under argon, a solution of the above obtained **S2g** (3.02 g, 8.6 mmol, 1.0 equiv) in THF (10 mL) was slowly added and the resulting mixture was further stirred at 0 °C for 2 h. The reaction was quenched with saturated aqueous NH₄Cl solution (10 mL), and mixture was extracted with EtOAc (3 × 15 mL). The organic layers were combined, washed with brine and water, and dried over anhydrous Na₂SO₄. After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether = 1/100) to give **S3g** (2.28 g, 76%) as a white solid.

Under argon, to a solution of the above obtained **S3g** (2.28 g, 6.5 mmol, 1.0 equiv) in THF (15 mL) was slowly added *n*-BuLi (2.6 mL, 2.5 M in hexane, 6.5 mmol, 1.0 equiv) at -78 °C for 30 min. Then a solution of triisopropyl borate (1.84 g, 9.8 mmol, 1.5 equiv) in THF (10 mL) was added slowly. The reaction mixture was warmed to rt naturally and kept stirring for another 3 h. Saturated aqueous NH₄Cl solution (20 mL) was added and the mixture was extracted with EtOAc (3×15 mL). The organic layers were combined, washed with brine and water, and dried over anhydrous Na₂SO₄. After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether = 1/5) to give **1g** (0.88 g,

43%) as a white solid.

In case of heteroaryl-containing substrates, the corresponding boronic acids were transformed into boronic esters by refluxing with neopentyl glycol in toluene and used as the substrates (**1n**, **1o**).

2.2 Optimization of Conditions

Table S1. Optimization of Conditions^a

entry	variations from standard conditions (shown above)	yield (%) ^[c]	
		3aa	
1	none	96(94)	
2	in the absence of [RhCl(cod)] ₂	0	
3	K ₃ PO ₄ , K ₂ CO ₃ , KOH instead of Cs ₂ CO ₃	32, 45, 92	
4	THF, Toluene, MTBE instead of dioxane	80, 84, 89	
5	[RhCl(binap)]2 instead of [RhCl(cod)]2	32	
6	[RhCl(segphos)]2 instead of [RhCl(cod)]2	24	
7	[RhCl(dppe)]2 instead of [RhCl(cod)]2	7	
8	[RhCl(dppp)] ₂ instead of [RhCl(cod)] ₂	11	
9	[RhCl(dppb)]2 instead of [RhCl(cod)]2	31	
10	[RhCl(dppf)]2 instead of [RhCl(cod)]2	49	
11	Pd(OAc) ₂ , Pd(PPh ₃) ₂ Cl ₂ instead of [RhCl(cod)] ₂	8, 3	
12	1a', 1a'' instead of 1a	77, 18	
13	2b , 2c , 2d , 2e instead of 2a	<1	

^{*a*} Reaction conditions: **1a** (0.14 mmol), **2a** (0.12 mmol), base (1.0 equiv), solvent (1 mL), at 80 °C for 12 h. ^{*b*} Catalyst (5 mol% of M) was loaded if applicable. ^{*c*} The yields were obtained by ¹H NMR analysis of the crude reaction mixture with the aid of Cl₂CHCHCl₂ as an internal standard. Isolated yields in parentheses. THF = tetrahydrofuran; MTBE = methyl *tert*-butyl ether.

A typical procedure for entry 1:

Arylboronic acid 1a (32.3 mg, 0.140 mmol, 1.2 equiv), NCTS (32.7 mg, 0.120

mmol, 1.0 equiv), Cs₂CO₃ (39.1 mg, 0.120 mmol, 1.0 equiv) and [RhCl(cod)]₂ (1.5 mg, 0.003 mmol, 5 mol% Rh) were placed in a Schlenk tube under nitrogen. Degassed dioxane (1.0 mL) was added, and the mixture was stirred at 80 °C for 12 h. The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The crude product was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/50) to give **3aa** (23.2 mg, 94% yield).

2.3 General procedure for synthesis of β , β -disubstituted acrylonitriles via rhodium-catalyzed cyanation of (1) with NCTS (2a)

A general procedure: Arylboronic acid 1 (0.140 mmol, 1.2 equiv), NCTS (32.7 mg, 0.120 mmol, 1.0 equiv), Cs_2CO_3 (39.1 mg, 0.120 mmol, 1.0 equiv) and $[RhCl(cod)]_2$ (1.50 mg, 0.003 mmol, 5 mol% Rh) were placed in a Schlenk tube under nitrogen. Degassed dioxane (1.0 mL) was added, and the mixture was stirred at 80 °C for 12 h. The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The crude product was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/50) to give the corresponding product **3**.

3. Mechanistic considerations

3.1 Isomerization experiments

entry	reactant	catalyst	base	ratio of Z/E^b	
				reactant	product
1	(Z)- 3va	$[RhCl(cod)]_2$	Cs ₂ CO ₃ (1 equiv)	100/0	97/3
2	(Z)- 3va	[RhCl(cod)] ₂	none	100/0	100/0
3	(Z)- 3va	none	Cs ₂ CO ₃ (1 equiv)	100/0	97/3
4	(Z)- 3va	none	none	100/0	100/0
5	(Z)- 3va	none	KOH (1 equiv)	100/0	91/9
6	(Z)- 3va	none	NaOMe (1 equiv)	100/0	34/66
7	(Z)- 3va	none	NaOMe (3 equiv)	100/0	20/80
8	(Z)- 3va	none	NaOMe (5 equiv)	100/0	19/81
9	(Z)- 3va	none	NaOMe (10 equiv)	100/0	19/81
10 ^c	(E)- 3va	none	none	0/100	0/100
11^d	(E)- 3va	none	none	0/100	0/100
12	(E)- 3va	none	NaOMe (10 equiv)	0/100	19/81
13	(Z)- 3ba	none	NaOMe (10 equiv)	100/0	100/0

Table S2. Optimization of Conditions^a

^{*a*} Reaction conditions: **1a** (0.10 mmol), **2a** (0.12 mmol), [RhCl(cod)]₂ (5 mol% Rh), Cs₂CO₃ (1.0 equiv), dioxane (1 mL), at 80 °C for 12 h. ^{*b*} The ratio of the corresponding Z/E isomers determined by ¹H NMR analysis of the crude reaction mixture. ^{*c*} 12 h. ^{*d*} 24 h.

A typical procedure for entry 8:

(*Z*)-**3va** (24.1 mg, 0.100 mmol, 1.0 equiv) and NaOMe (27.0 mg, 0.500 mmol, 5.0 equiv) were placed in a Schlenk tube under nitrogen. Degassed dioxane (1.0 mL) was added, and the mixture was stirred at 80 °C for 12 h. The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis.

3.2 Control experiments

(a) Synthesis of 1a-*d*₂

Triphenylphosphine (CAS: 603-35-0) and iodomethane- d_3 (CAS: 865-50-9) were purchased from commercial company and used as received. The known compounds [PPh₃(CD₃)]I (CAS: 1560-56-1) and **S3a**- d_2 (CAS: 2077165-36-5) were prepared according to the reported procedures.³

The arylboronic acids $1a-d_2$ was prepared according to following procedure:

Under argon, to a solution of **S3a**- d_2 (1.30 g, 4.98 mmol, 1 equiv) in THF (20 mL) was added *n*-BuLi (2.0 mL, 2.5 M in hexane, 4.98 mmol, 1 equiv) dropwise at -78 °C for 30 min. Then a solution of triisopropyl borate (1.41 g, 7.5 mmol, 1.5 equiv) in THF (10 mL) was added slowly. The reaction mixture was warmed to rt naturally and kept stirring for 3 h. Saturated aqueous NH₄Cl solution (10 mL) was added and the mixture was extracted with EtOAc (3 × 15 mL). The organic layers were combined, washed with brine and water, and dried over anhydrous Na₂SO₄. After removal of solvent, the residue was purified by flash chromatography on silica gel (ethyl acetate/ petroleum ether = 1/5) to give **1a**- d_2 (0.59 g, 53%) (94% D) as a white solid.

(b) Deuterium-labelling experiment

1a- d_2 (32.5 mg, 0.140 mmol, 1.2 equiv), NCTS (32.7 mg, 0.120 mmol, 1.0 equiv), Cs₂CO₃ (39.1 mg, 0.120 mmol, 1.0 equiv) and [RhCl(cod)]₂ (1.5 mg, 0.003 mmol, 5 mol% Rh) were placed in a Schlenk tube under nitrogen. Degassed dioxane

(1.0 mL) was added, and the mixture was stirred at 80 °C for 12 h. The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The crude product was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/50) to give **3aa**- d_2 (26.8 mg, 92% yield) (94% D).

(c) Intermolecular competition experiment

Arylboronic acid **1a** (32.3 mg, 0.140 mmol, 1.2 equiv), **1a**- d_2 (32.5 mg, 0.140 mmol, 1.2 equiv), NCTS (32.7 mg, 0.120 mmol, 1.0 equiv), Cs₂CO₃ (39.1 mg, 0.120 mmol, 1.0 equiv) and [RhCl(cod)]₂ (1.5 mg, 0.003 mmol, 5 mol% Rh) were placed in a Schlenk tube under nitrogen. Degassed dioxane (1.0 mL) was added, and the mixture was stirred at 80 °C for 5 min. The reaction mixture was passed through a short column of silica-gel with EtOAc as eluent. The solvent was removed on a rotary evaporator. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The crude product was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/50) to give **3aa** (15.1 mg, 61%) and **3aa**- d_2 (4.4 mg, 15% yield) (94% D).

3.3 Proposed Catalytic Cycle

Scheme S2. Proposed mechanism for the cyanation of arylboronic acids by 1,4-rhodium migration

A catalytic cycle for the reaction of **1a** and **2a** producing **3aa** is illustrated in Scheme S2. Aryl-Rh species **A** which is generated by the transmetallation of **1a** with $[RhCl(cod)]_2$ in the presence of a base readily undergoes 1,4-Rh migration to give the alkenyl-Rh species **B**. The driving force of the migration may be attributed to the less congested vinyl position compared with the original aryl position. The coordination of **2a** with **B** facilitates the addition of alkenyl-Rh into the carbon-nitrogen triple bond to give the intermediate **E**, which followed by elimination to give the product **3aa**, leaving a [Rh]-N complex **F**. Finally, the [Rh]-N complex undergoes transmetalation with **1a** to regenerate aryl-Rh species **A** closing the catalytic cycle.

4. Characterization of the substrates

B(OH)₂

B(OH)₂

Compound 1g. Following the general procedure, the product **1g** was prepared (from **S1g**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (0.88 g, 43% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). ¹**H NMR** (500 MHz, CDCl₃) δ 7.95 (d, J = 7.4 Hz, 1H), 7.45 (dd, J = 7.4 Hz, 7.2 Hz, 1H), 7.38 (dd, J = 7.3 Hz, 7.2 Hz, 1H), 7.34 (dd, J = 7.9 Hz, 7.5 Hz, 2H), 7.27 (d, J = 7.9 Hz, 2H), 7.21 (d, J = 7.3 Hz, 1H), 7.12 (t, J = 7.5 Hz, 1H), 7.02 (d, J = 8.5 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 5.85 (s, 1H), 5.28 (s, 1H), 4.91 (s, 2H). ¹³**C NMR** (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 157.7, 156.8, 156.7, 150.5, 150.2, 148.8, 146.8, 136.7, 135.9, 135.1, 134.5, 131.3, 130.6, 129.8, 129.7, 129.6, 128.6, 128.5, 126.7, 123.3, 119.3, 119.0, 118.4, 118.0, 114.1, 112.9. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₁₇BO₃H⁺ 317.1344; Found 317.1348; deviation: -1.27 ppm.

Compound 1h. Following the general procedure, the product **1h** was prepared (from **S1h**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow solid (0.83 g, 51% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). **¹H NMR** (500 MHz, CDCl₃) δ 7.94 (dd, *J* = 7.4 Hz, 1.3 Hz, 1H), 7.59-7.53 (m, 3H), 7.49-7.41 (m, 3H), 7.40-7.33 (m, 3H), 7.26-7.24 (m, 3H), 5.98 (d, *J* = 0.9 Hz, 1H), 5.37 (d, *J* = 0.9 Hz, 1H), 4.81 (s, 2H). ¹³C **NMR** (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 150.8, 150.5, 148.5, 146.7, 141.2, 140.6, 140.4, 140.3, 139.9, 138.5, 135.9, 135.2, 131.2, 130.6, 129.8, 129.6, 128.8, 128.7, 127.5, 127.4, 127.3, 127.2, 127.1, 127.0, 126.9, 126.6, 126.5, 115.1, 113.7. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₀H₁₇BO₂H⁺ 301.1394; Found 301.1399; deviation: -1.67 ppm.

Compound 11. Following the general procedure, the product **11** was prepared (from **S11**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (1.27 g, 81% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). ¹H NMR (500 MHz, CDCl₃) δ 7.91 (d, *J* = 7.4 Hz, 1H), 7.46-7.44 (m, 1H), 7.40-7.37 (m, 1H), 7.20 (d, *J* = 7.6 Hz, 1H), 6.87 (s, 1H), 6.73-6.68 (m, 2H), 5.96 (s, 2H), 5.79 (s, 1H), 5.23 (s, 1H), 4.80 (s, 2H). ¹³C NMR (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 161.94, 161.93, 147.6, 146.8, 137.8, 131.7, 131.6, 131.3, 130.6, 127.4, 121.74, 121.73, 121.6, 118.71, 118.70, 118.6, 107.8, 107.7, 106.5, 106.4, 101.0, 86.9, 28.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₃BO₄H⁺ 269.0980; Found 269.0981; deviation: -0.37 ppm.

B(OH)2

B(OH)2

Compound 1m. Following the general procedure, the product **1m** was prepared (from **S1m**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (1.26 g, 72% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.4 Hz, 1H), 7.46-7.43 (m, 1H), 7.39 (ddd, *J* = 7.5 Hz, 7.4 Hz, 1.4 Hz, 1H), 7.19 (dd, *J* = 7.6 Hz, 1.0 Hz, 1H), 6.95 (s, 1H), 6.92 (s, 2H), 5.89 (d, *J* = 1.3 Hz, 1H), 5.29 (d, *J* = 1.3 Hz, 1H), 4.89 (s, 2H), 2.25 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 151.2, 148.8, 141.7, 137.2, 135.7, 130.8, 129.7, 128.9, 126.4, 125.3, 124.9, 113.8, 21.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₇BO₂H⁺ 253.1394; Found 253.1393; deviation: 0.40 ppm.

Compound 1n. Following the general procedure, the product **1n** was prepared (from **S1n**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a red liquid (1.18 g, 60% yield). ¹H NMR (500 MHz,

CDCl₃) δ 7.43 (d, *J* = 3.6 Hz, 2H), 7.42 (d, *J* = 1.8 Hz, 1H), 7.38-7.33 (m, 3H), 6.96 (d, *J* = 3.6 Hz, 1H), 5.65 (s, 1H), 5.27 (s, 1H), 3.76 (s, 4H), 1.03 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 150.5, 145.7, 143.5, 141.0, 135.9, 133.6, 129.8, 128.3, 128.0, 127.1, 125.7, 114.3, 72.4, 32.0, 21.9. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₉BO₂SH⁺ 298.1308; Found 298.1317; deviation: -3.07 ppm.

MeO Compound 10. Following the general procedure, the product 10 was prepared (from S10) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a red liquid (1.09 g, 65% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.13 (d, J = 2.1 Hz, 1H), 7.67 (d, J = 7.2 Hz, 1H), 7.42-7.38 (m, 2H), 7.33-7.31 (m, 2H), 6.64 (d, J = 8.7 Hz, 1H), 5.50 (s, 1H), 5.21 (s, 1H), 3.92 (s, 3H), 3.47 (s, 4H), 0.75 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 163.3, 149.2, 145.5, 137.6, 134.0, 132.1, 129.9, 129.7, 128.3, 128.0, 127.0, 113.1, 109.8, 72.0, 53.4, 31.4, 21.6. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₉H₂₂BNO₃H⁺ 346.1585; Found 346.1580; deviation: 1.55 ppm.

Compound 1u. Following the general procedure, the product **1u** was prepared (from **S1u**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (539 mg, 34% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). ¹H NMR (500 MHz, CDCl₃) δ 7.93 (d, *J* = 7.4 Hz, 1H), 7.42 (dd, *J* = 7.6, 7.5 Hz, 1H), 7.33 (dd, *J* = 7.5, 7.4 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 5.85 (s, 2H), 5.32 (s, 1H), 5.11 (s, 1H), 2.45-2.41 (m, 2H), 1.46-1.42 (m, 2H), 1.39-1.34 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 154.5, 152.9, 151.3, 148.9, 136.2, 135.1, 131.2, 130.4, 128.4, 127.8, 126.7, 126.1, 114.1, 112.2, 38.9, 38.5, 30.2, 30.0, 22.6, 22.5, 14.0, 13.9. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₂H₁₇BO₂H⁺ 227.1214; Found 227.1217; deviation: -1.47 ppm.

Compound 1v. Following the general procedure, the product **1v** was prepared (from **S1v**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a white liquid (410 mg, 32% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). **¹H NMR** (500 MHz, CDCl₃) δ 7.90 (d, *J* = 7.4 Hz, 1H), 7.40 (ddd, *J* = 7.6 Hz, 7.5 Hz, 1.5 Hz, 1H), 7.32 (dd, *J* = 7.5 Hz, 7.4 Hz, 1.5 Hz, 1H), 7.12 (d, *J* = 7.6 Hz, 1H), 5.49 (s, br, 2H), 5.31 (d, *J* = 1.7 Hz, 1H), 5.09 (d, *J* = 1.7 Hz, 1H), 2.40 (t, *J* = 7.8 Hz, 2H), 1.45-1.41 (m, 2H), 1.30-1.26 (m, 10H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 153.0, 151.3, 136.3, 131.2, 128.4, 128.2, 126.1, 112.2, 38.8, 31.9, 29.6, 29.5, 29.3, 28.0, 22.6, 14.1. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₅BO₂H⁺ 261.2020; Found 261.2022; deviation: -0.77 ppm.

Compound 1w. Following the general procedure, the product **1w** was prepared (from **S1w**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (374 mg, 40% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). **¹H NMR** (500 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 7.88 (d, *J* = 7.4 Hz, 1H), 7.41 (dd, *J* = 7.5, 7.4 Hz, 1H), 7.32 (m, 1H), 7.12 (d, *J* = 7.7 Hz, 1H), 5.29 (s, 1H), 5.28 (s, 2H), 5.14 (s, 1H), 2.32-2.30 (m, 2H), 1.69-1.65 (m, 5H), 1.31-1.27 (m, 1H), 1.10-1.07 (m, 3H), 0.88-0.84 (m, 2H). ¹³C **NMR** (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 151.1, 150.9, 136.3, 131.2, 128.5, 126.1, 113.8, 47.2, 35.7, 33.4, 33.2, 26.6, 26.2. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₅H₂₁BO₂Na⁺ 267.1527; Found 267.1522; deviation: 0.15 ppm.

Compound 1x. Following the general procedure, the product 1x was prepared (from S1x) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (317 mg, 43% yield) (It undergoes

dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). ¹H NMR (500 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 7.96 (d, J = 7.4 Hz, 1H), 7.37 (dd J = 7.4, 7.0 Hz, 1H), 7.31 (dd, J =7.7, 7.0 Hz, 1H), 7.01 (d, J = 7.7 Hz, 1H), 5.57 (s, 2H), 5.07 (s, 1H), 4.87 (s, 1H), 2.55-2.50 (m, 1H), 1.02 (d, J = 6.9 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 160.4, 158.1, 151.1, 148.8, 136.2, 135.1, 130.9, 130.2, 128.7, 128.2, 126.6, 126.0, 111.9, 110.3, 36.1, 35.3, 21.5, 21.4. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₁H₁₅BO₂H⁺ 191.1238; Found 191.1237; deviation: 0.53 ppm.

B(OH)₂

B(OH)2

Compound 1y. Following the general procedure, the product **1y** was prepared (from **S1y**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (521 mg, 55% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). **¹H NMR** (500 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 7.87 (d, *J* = 7.4 Hz, 1H), 7.50 (dd, *J* = 7.6, 7.4 Hz, 1H), 7.39-7.36 (m, 1H), 7.21-7.13 (m, 4H), 7.07 (d, *J* = 7.1 Hz, 2H), 5.34 (s, 1H), 5.13 (s, 1H), 4.91 (s, 2H), 2.83-2.80 (m, 4H). **¹³C NMR** (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 152.7, 152.1, 150.9, 147.9, 142.0, 141.0, 136.3, 135.2, 131.4, 130.3, 128.5, 128.4, 128.3, 128.24, 128.22, 127.6, 126.9, 126.4, 126.1, 125.7, 115.2, 112.8, 40.5, 40.0, 34.3, 33.9. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₇BO₂H⁺ 253.1394; Found 253.1404; deviation: 3.97 ppm.

Compound 1z. Following the general procedure, the product **1z** was prepared (from **S1z**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (366 mg, 49% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). **¹H NMR** (500 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 8.05 (d, *J* = 7.4 Hz, 1H), 7.48 (dd, *J* = 7.5, 7.4 Hz, 1H), 7.43-7.40 (m, 1H), 7.27-7.23 (m, 1H), 5.82-5.86 (m, 2H), 5.30 (s, 1H), 5.28 (s, 1H), 5.16 (s, 1H),

4.93 (s, 2H), 2.53-2.49 (m, 2H), 2.01-1.98 (m, 2H), 1.33-1.29 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) (mixed with its corresponding arylboroxine) δ 154.4, 152.9, 151.2, 148.9, 139.1, 139.0, 136.2, 135.1, 131.2, 130.4, 128.4, 127.8, 126.7, 126.1, 114.2, 114.1, 112.3, 39.2, 38.8, 33.74, 33.70, 29.2, 29.0, 28.9, 28.8, 28.7, 27.9, 27.8. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₆H₂₃BO₂Na⁺ 281.1683; Found 261.1686; deviation: -1.16 ppm.

CN

^{OMe} **Compound 1#**. Following the general procedure, the product **1#** was prepared (from **S1#**) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/5) as a yellow liquid (62 mg, 5% yield) (It undergoes dehydrate partially to give a mixture of arylboronic acid and corresponding arylboroxine). ¹**H NMR** (500 MHz, CDCl₃) δ 6.95 (s, 1H), 6.76 (s, 1H), 6.74 (s, 1H), 6.49 (d, *J* = 2.2 Hz, 1H), 6.40 (d, *J* = 2.2 Hz, 1H), 5.96 (s, 2H), 5.79 (s, 1H), 5.22 (s, 1H), 3.91 (s, 3H), 3.87 (s, 3H), 3.83 (s, 3H), 3.81 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 165.7, 162.1, 150.9, 150.7, 149.5, 148.9, 132.1, 120.3, 113.1, 110.8, 109.5, 108.0, 97.5, 55.90, 55.86, 55.8, 55.4. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₅H₂₁BO₂Na⁺ 267.1527; Found 267.1522; deviation: 0.15 ppm.

5. Characterization of the Products

Compound 3aa (CAS: 3531-24-6).⁵ Following the general procedure, the product **3aa** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (23.2 mg, 94% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.40 (m, 6H), 7.39 (dd, *J* = 8.0 Hz, 7.3 Hz, 2H), 7.32-7.30 (m, 2H), 5.75 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.2, 139.0, 137.1, 130.5, 130.1, 129.6, 128.7, 128.6, 128.5, 118.0, 95.0. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₁NH⁺ 206.0964; Found 206.0963; deviation: 0.61 ppm. **Compound 3aa**- d_2 . Following equation (1), the product **3aa**- d_2 was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (22.9 mg, 92% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.40 (m, 5H), 7.38 (dd, J = 8.0 Hz, 7.3 Hz, 2H), 7.32-7.30 (m, 2H), 5.75 (s, 0.06H). ²H NMR (77 MHz, CHCl₃) δ 7.48 (s, 1D), 5.75 (s, 1D). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 138.8, 136.9, 130.4, 130.0, 129.5, 128.6, 128.5, 128.41, 128.38, 117.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₉D₂NH⁺ 208.1090; Found 208.1083; deviation: 3.28 ppm.

Compound 3ba (CAS: 176445-14-0).⁶ Following the general procedure, the product **3ba** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (26.1 mg, 99% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.41 (m, 5H), 7.21-7.17 (m, 4H), 5.72 (s, 1H), 2.39 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 140.9, 137.3, 136.1, 130.0, 129.6, 129.4, 128.54, 128.45, 118.1, 94.0, 21.4. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₃NH⁺ 220.1121; Found 220.1114; deviation: 3.08 ppm.

F Compound 3ca (CAS: 854278-57-2).⁷ Following the general procedure, the product **3ca** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (22.5 mg, 84% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.49-7.41 (m, 5H), 7.30 (dd, *J* = 8.9 Hz, 5.3 Hz, 2H), 7.07 (dd, *J* = 8.9 Hz, 8.9 Hz, 2H), 5.70 (s, 1H). ¹⁹**F NMR** (471 MHz, CDCl₃) δ -109.67 (m). ¹³**C NMR** (126 MHz, CDCl₃) δ 164.1 (d, *J* = 252.2 Hz), 162.0, 136.9, 135.1 (d, *J* = 3.3 Hz), 130.5 (d, *J* = 8.6 Hz), 130.2, 129.5, 128.7, 117.8, 115.9 (d, *J* = 21.9 Hz), 94.8 (d, *J* = 1.3 Hz). **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₀FNH⁺ 224.0870; Found 224.0865; deviation: 2.26 ppm.

S17

C Compound 3da (CAS: 198996-03-1).⁷ Following the general procedure, the product **3da** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (25.3 mg, 88% yield). ¹**H NMR** (500 MHz, CDCl₃) δ 7.49-7.44 (m, 3H), 7.43-7.41 (m, 2H), 7.36 (d, *J* = 8.5 Hz, 2H), 7.24 (d, *J* = 8.5, 2H), 5.73 (s, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 161.9, 137.4, 136.7, 136.6, 130.3, 129.8, 129.5, 129.0, 128.7, 117.6, 95.3. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₀ClNH⁺ 240.0575; Found 240.0568; deviation: 2.73 ppm.

CN

CN

Compound 3ea (CAS: 198996-06-4).⁷ Following the general procedure, the product **3ea** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (23.6 mg, 72% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.65 (d, *J* = 8.2 Hz, 2H), 7.50-7.45 (m, 3H), 7.43-7.41 (m, 4H), 5.78 (s, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -62.89 (s). ¹³C NMR (126 MHz, CDCl₃) δ 161.6, 142.5, 136.3, 132.1 (q, *J* = 32.9 Hz), 130.5, 129.5, 128.9, 128.8, 125.7 (q, *J* = 3.7 Hz), 123.7 (q, *J* = 272.9 Hz), 117.3, 96.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₀F₃NH⁺ 274.0838; Found 274.0829; deviation: 3.33 ppm.

^{MeO} **Compound 3fa** (CAS: 170879-13-7).⁷ Following the general procedure, the product **3fa** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (26.5 mg, 94% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44 (dd, *J* = 7.4, 7.2 Hz, 1H), 7.39-7.35 (m, 3H), 7.32-7.30 (m, 2H), 7.03-6.99 (m, 2H), 6.97-6.95 (m, 1H), 5.74 (s, 1H), 3.82 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 162.7, 161.6, 137.3, 131.2, 130.0, 129.9, 129.6, 128.5, 118.4, 114.1, 92.8, 55.5. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₃NOH⁺ 236.1070; Found 236.1079; deviation: -3.87 ppm.

^{PhO} Compound 3ga. Following the general procedure, the product 3ga was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid (35.0 mg, 98% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.43 (m, 5H), 7.39 (dd, J = 8.5, 7.5 Hz, 2H), 7.28-7.26 (m, 2H), 7.19 (t, J = 7.5 Hz, 1H), 7.07 (d, J = 8.8 Hz, 2H), 6.97 (d, J = 8.8 Hz, 2H), 5.71 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.3, 159.8, 155.8, 137.0, 133.1, 130.1, 130.0, 129.9, 129.5, 128.5, 124.3, 119.8, 118.0, 117.9, 93.6. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₁₅NOH⁺ 298.1126; Found 298.1122; deviation: 1.48 ppm.

CN

CN

^{Ph} **Compound 3ha**. Following the general procedure, the product **3ha** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid (33.4 mg, 99% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.63-7.61 (m, 4H), 7.50-7.46 (m, 7H), 7.42-7.38 (m, 3H), 5.81 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.7, 143.2, 139.8, 137.6, 137.0, 130.0, 129.5, 128.90, 128.89, 128.5, 128.0, 127.2, 127.0, 117.9, 94.5. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₁H₁₅NH⁺ 282.1277; Found 282.1277; deviation: 0.09 ppm.

Compound 3ia (CAS: 1391868-32-8).⁸ Following the general procedure, the product **3ia** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid (25.6 mg, 82% yield). ¹**H** NMR (500 MHz, CDCl₃) δ 7.50-7.48 (m, 2H), 7.42-7.38 (m, 3H), 7.33 (t, *J* = 7.4 Hz, 1H), 7.27-7.24 (m, 1H), 7.21 (dd, *J* = 8.5, 8.0 Hz, 2H), 5.49 (s, 1H), 1.99 (s, 3H). ¹³**C** NMR (126 MHz, CDCl₃) δ 163.6, 139.6, 137.1, 136.1, 130.9, 130.2, 129.5, 129.4, 128.7, 126.0, 117.7, 96.8, 20.2. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₃NH⁺ 220.1121; Found 220.1121; deviation: -0.11 ppm. **Compound 3ja**. Following the general procedure, the product **3ja** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (23.2 mg, 88% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.40 (m, 5H), 7.25-7.23 (m, 2H), 7.09 (s, 1H), 7.08-7.05 (m, 1H), 5.71 (s, 1H), 2.33 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.3, 138.9, 138.4, 137.1, 131.2, 129.9, 129.5, 129.0, 128.5, 128.4, 125.7, 117.9, 94.6, 21.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₃NH⁺ 220.1121; Found 220.1128; deviation: -3.30 ppm.

CN

Compound 3ka (CAS: 1201634-42-5).⁷ Following the general procedure, the product **3ka** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (25.4 mg, 83% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.85 (t, *J* = 8.9 Hz, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.75 (s, 1H), 7.57-7.49 (m, 7H), 7.42 (dd, *J* = 8.6 Hz, 1.9 Hz, 1H), 5.88 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 163.1, 137.1, 136.2, 134.1, 132.9, 130.1, 129.7, 129.1, 128.8, 128.7, 128.5, 127.7, 127.6, 126.9, 125.0, 118.0, 95.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₉H₁₃NH⁺ 256.1121; Found 256.1115; deviation: 2.26 ppm.

Compound 3la. Following the general procedure, the product **3la** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (22.1 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.43 (m, 3H), 7.42-7.40 (m, 2H), 6.80-6.79 (m, 2H), 6.78 (s, 1H), 6.01 (s, H), 5.65 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.6, 149.7, 148.1, 137.1, 132.9, 130.0, 129.5, 128.5, 123.5, 118.1, 108.3, 101.7, 93.4. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₁NO₂H⁺ 250.0863; Found 250.0863; deviation: 0.62 ppm.

Compound 3ma. Following the general procedure, the product 3ma

was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (21.6 mg, 77% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.42 (m, 5H), 7.08 (s, 1H), 6.90 (s, 2H), 5.71 (s, 1H), 2.31 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 163.5, 139.0, 138.2, 137.2, 132.1, 129.9, 129.5, 128.4, 126.3, 118.0, 94.5, 21.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₅NH⁺ 234.1277; Found 234.1274; deviation: 1.40 ppm.

Compound 3na. Following the general procedure, the product 3na was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a red liquid (17.2 mg, 68% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.50-7.48 (m, 5H), 7.46-7.43 (m, 1H), 7.07-7.04 (m, 1H), 7.03-7.00 (m, 1H), 5.78 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 155.8, 142.0, 136.3, 130.8, 130.1, 129.3, 129.1, 128.5, 128.3, 117.6, 92.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₉NSH⁺ 212.0528; Found 212.0525; deviation: 1.64 ppm.

CN

^{MeO} Compound 30a. Following the general procedure, the product 30a was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a red liquid (27.8 mg, 98% yield). ¹H NMR (500 MHz, CDCl₃) δ 8.12 (d, *J* = 2.3 Hz, 1H), 7.49-7.41 (m, 6H), 6.73 (d, *J* = 8.7 Hz, 1H), 5.68 (s, 1H), 3.96 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.4, 159.9, 147.1, 138.1, 136.3, 130.2, 129.3, 128.7, 127.9, 117.7, 110.9, 93.6, 53.8. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₂N₂OH⁺ 237.1022; Found 237.1015; deviation: 3.13 ppm.

^bMe **Compound 3pa** (CAS: 920317-68-6).⁹ Following the general procedure, the product **3pa** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (18.6 mg, 66% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.46-7.40 (m, 5H), 7.26-7.24 (m, 2H), 6.88 (d, *J* = 8.8 Hz, 2H), 5.67 (s, 1H), 3.83 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 163.0, 159.5, 138.8, 138.3, 130.5, 129.7, 128.7, 128.5, 122.0, 117.8, 115.9, 114.9, 95.0, 55.4. **HRMS** (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₆H₁₃NOH⁺ 236.1070; Found 236.1073; deviation: -1.32 ppm.

CN

^{CI} **Compound 3qa** (CAS: 198996-08-6).¹⁰ Following the general procedure, the product **3qa** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (21.6 mg, 75% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.41 (m, 3H), 7.40-7.38 (m, 4H), 7.29-7.26 (m, 2H), 5.75 (s, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 162.0, 138.5, 136.3, 135.5, 131.0, 130.7, 129.0, 128.8, 128.4, 117.7, 95.3. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₀ClNH⁺ 240.0575; Found 240.0571; deviation: 1.48 ppm.

F Compound 3ra (CAS: 1201634-38-9).⁷ Following the general procedure, the product 3ra was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (20.1 mg, 75% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.47-7.43 (m, 3H), 7.39 (dd, *J* = 7.8, 7.4 Hz, 2H), 7.29 (d, *J* = 7.4 Hz, 2H), 7.15 (t, *J* = 8.7 Hz, 2H), 5.72 (s, 1H). ¹⁹F NMR (471 MHz, CDCl₃) δ -110.03 (m). ¹³C NMR (126 MHz, CDCl₃) δ 163.7 (d, *J* = 251.3 Hz), 162.11, 138.8, 133.1 (d, *J* = 3.4 Hz), 131.7 (d, *J* = 8.6 Hz), 130.6, 128.8, 128.5, 117.8, 115.8 (d, *J* = 21.9 Hz), 95.0. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₅H₁₀FNH⁺ 224.0870; Found 224.0872; deviation: -0.88 ppm.

Compound 3ta (CAS: 14799-79-2).¹¹ Following the general procedure, the product **3ta** was prepared (Z/E = 96/4 from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (12.7 mg, 74% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.53 (m, 2H), 7.45-7.42 (m, 3H), 5.40 (s, 1H), 2.28 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.1, 137.9, 129.9, 128.7, 127.1, 117.6, 95.5, 24.7. HRMS (ESI-TOF) m/z:

[M+H]⁺ Calcd for C₁₀H₉NH⁺ 144.0808; Found 144.0812; deviation: -2.97 ppm.

Compound 3ua (CAS: 67231-21-4).¹² Following the general procedure, the product **3ua** was prepared (Z/E = 96/4 from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (17.8 mg, 80% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.40 (m, 5H), 5.37 (s, 1H), 2.57 (t, J = 6.8 Hz, 2H), 1.41-1.30 (m, 4H), 0.88 (t, J = 7.2 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 137.6, 129.6, 128.7, 127.3, 117.6, 95.2, 37.9, 29.8, 22.1, 13.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₃H₁₅NH⁺ 186.1277; Found 186.1279; deviation: -0.94 ppm.

Compound (*Z*)-**3va**. Following the general procedure, the product (*Z*)-**3va** was prepared (*Z*/*E* = 97/3 from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (27.5 mg, 95% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.40 (m, 5H), 5.37 (s, 1H), 2.56 (t, *J* = 7.5 Hz, 2H), 1.42-1.36 (m, 2H), 1.30-1.24 (m, 10H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.2, 137.6, 129.6, 128.7, 127.3, 117.6, 95.2, 38.2, 31.8, 29.2, 29.1, 29.0, 27.7, 22.6, 14.1. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₃NH⁺ 242.1903; Found 242.1902; deviation: 0.52 ppm.

Compound (*E*)-**3va**. Following the general procedure, the product (*E*)-**3va** was prepared (Z/E = 97/3 from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (0.8 mg, 3% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.42-7.39 (m, 5H), 5.49 (s, 1H), 2.88 (t, *J* = 7.7 Hz, 2H), 1.50-1.44 (m, 2H), 1.38-1.22 (m, 10H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 165.2, 137.7, 129.9, 128.8, 126.2, 117.4, 95.6, 33.9, 31.7, 29.2, 29.13, 29.05, 28.4, 22.6, 14.0.

HRMS (ESI-TOF) m/z: $[M+H]^+$ Calcd for C₁₇H₂₃NH⁺ 242.1903; Found 242.1898; deviation: 2.18 ppm.

Compound 3wa. Following the general procedure, the product **3wa** was prepared (Z/E = 97/3 from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a white solid (25.7 mg, 95% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.45-7.40 (m, 5H), 5.34 (s, 1H), 2.45 (d, J = 7.2 Hz, 2H), 1.65-1.58 (m, 5H), 1.29-1.25 (m, 1H), 1.15-1.07 (m, 3H), 0.93-0.85 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.8, 137.4, 129.5, 128.6, 127.3, 117.5, 96.1, 46.1, 35.8, 32.9, 26.1, 25.9. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₁₉NH⁺ 226.1590; Found 226.1591; deviation: -0.33 ppm.

Compound 3xa (CAS: 106359-45-9).¹² Following the general procedure, the product **3xa** was prepared (*Z* only from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow solid (17.3 mg, 84% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.40 (m, 3H), 7.35-7.33 (m, 2H), 5.35 (s, 1H), 2.86 (m, 1H), 2.31 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 172.4, 138.2, 129.2, 128.6, 127.3, 117.7, 94.3, 35.8, 21.2. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₂H₁₃NH⁺ 172.1121; Found 172.1116; deviation: 2.78 ppm.

CN

Compound 3ya. Following the general procedure, the product **3ya** was prepared (*Z* only from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (26.0 mg, 93% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.49-7.43 (m, 5H), 7.30 (t, *J* = 7.5 Hz, 2H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 2H), 5.32 (s, 1H), 2.90 (t, *J* = 7.7 Hz, 2H), 2.72 (t, *J* = 7.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 164.7, 140.0, 137.1, 129.8, 128.8, 128.6, 128.3, 127.4, 126.5, 117.4, 96.0, 39.8, 33.9. HRMS

(ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₁₅NH⁺ 234.1277; Found 234.1275; deviation: 0.97 ppm.

Compound 3za. Following the general procedure, the product **3za** was prepared (*Z* only from ¹H NMR analysis of crude reaction mixture) and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (22.7 mg, 79% yield). ¹H NMR (500 MHz, CDCl₃) δ 7.44-7.40 (m, 5H), 5.82-5.74 (m, 1H), 5.37 (s, 1H), 5.00-4.95 (m, 1H), 4.94-4.91 (m, 1H), 2.56 (t, *J* = 7.5 Hz, 2H), 2.04-1.99 (m, 2H), 1.42-1.24 (m, 8H). ¹³C NMR (126 MHz, CDCl₃) δ 166.1, 138.8, 137.5, 129.5, 128.6, 127.2, 117.5, 114.3, 95.2, 38.1, 33.6, 28.8, 28.6, 27.5. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₇H₂₁NH⁺ 240.1747; Found 240.1737; deviation: 4.08 ppm.

^bMe **Compound CC-5079** (CAS: 1198105-56-4).¹³ Following the general procedure, the product **CC-5079** was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/50) as a yellow liquid (4.7 mg, 12% yield). ¹H **NMR** (500 MHz, CDCl₃) δ 6.90 (dd, J = 8.4 Hz, 2.0 Hz, 1H), 6.84-6.82 (m, 2H), 6.56 (s, 3H), 5.66 (s, 1H), 3.91 (s, 3H), 3.84 (s, 3H), 3.80 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 164.7, 161.1, 151.4, 149.4, 138.8, 129.5, 122.3, 117.5, 111.3, 106.2, 102.4, 95.2, 56.3, 56.23, 56.19. **HRMS** (ESI-TOF) m/z: [M+K]⁺ Calcd for C₁₉H₁₉NO₄K⁺ 364.0946; Found 364.0951; deviation: -1.64 ppm.

6. <u>References</u>

 (a) T. J. Hu, G. Zhang, Y. H. Chen, C. G. Feng, G. Q. Lin, Borylation of Olefin C-H Bond via Aryl to Vinyl Palladium 1,4-Migration, *J. Am. Chem. Soc.* 2016, *138*, 2897–2900; (b) S. S. Zhang, T. J. Hu, M. Y. Li, Y. K. Song, X. D. Yang, C. G. Feng, G. Q. Lin, Asymmetric Alkenylation of Enones and Imines Enabled by A Highly Efficient Aryl to Vinyl 1,4-Rhodium Migration, *Angew. Chem. Int. Ed.* 2019, *58*, 3387–3391; (c) C. P. Delaney, V. M. Kassel, S. E. Denmark, Potassium Trimethylsilanolate Enables Rapid, Homogeneous Suzuki-Miyaura Cross-Coupling of Boronic Esters, *ACS Catalysis* 2019, *10*, 73–80.

- 2 P. Anbarasan, H. Neumann, M. Beller, A General Rhodium-Catalyzed Cyanation of Aryl and Alkenyl Boronic Acids, *Angew. Chem. Int. Ed.* **2011**, *50*, 519–522.
- 3 (a) T. J. Hu, G. Zhang, Y. H. Chen, C. G. Feng, G. Q. Lin, Borylation of Olefin C-H Bond via Aryl to Vinyl Palladium 1,4-Migration, *J. Am. Chem. Soc.* 2016, *138*, 2897–900; (b) Q. Zhou, S. Li, Y. Zhang, J. Wang, Rhodium(II)- or Copper(I)-Catalyzed Formal Intramolecular Carbene Insertion into Vinylic C(sp²)-H Bonds: Access to Substituted *1H*-Indenes, *Angew. Chem. Int. Ed.* 2017, 56, 16013–16017.
- 4 F. Hu, Z. Chen, Y. Tan, D. Xu, S. Huang, S. Jia, X. Gong, W. Qin, H. Yan, Organocatalytic Enantioselective γ-Elimination: Applications in the Preparation of Chiral Peroxides and Epoxides, *Org. Lett.* **2020**, *22*, 1934–1940.
- 5 A. F. Kassir, R. Guillot, M. C. Scherrmann, T. Boddaert, D. J. Aitken, Formation of Tetrahydrothiophenes via a Thia-Paterno-Buchi-Initiated Domino Photochemical Reaction. *Org. Lett.* **2020**, *22*, 8522–8527.
- 6 Y. P. Han, X. R. Song, Y. F. Qiu, X. H. Hao, J. Wang, X. X. Wu, X. Y. Liu, Y. M. Liang, Lewis Acid Mediated Tandem Reaction of Propargylic Alcohols with Hydroxylamine Hydrochloride To Give α, β-Unsaturated Amides and Alkenyl Nitriles. J. Org. Chem. 2015, 80, 9200–9207.
- 7 K. Yoo, H. Kim, J. Yun, Asymmetric Synthesis of 1,1-Diarylalkyl Units by a Copper Hydride Catalyzed Reduction: Differentiation Between Two Similar Aryl Substituents. *Chemistry*, 2009, 15, 11134–11138.
- 8 Q. Yan, D. Kong, M. Li, G. Hou, G. Zi, Highly Efficient Rh-Catalyzed Asymmetric Hydrogenation of α , β -Unsaturated Nitriles. J. Am. Chem. Soc. 2015, 137, 10177–10181.
- 9 A. Bedini, G. Spadoni, G. Gatti, S. Lucarini, G. Tarzia, S. Rivara, S. Lorenzi, A. Lodola, M. Mor, V. Lucini, M. Pannacci, F. Scaglione, Design and Synthesis of *N*-(3,3-Diphenylpropenyl)alkanamides as a Novel Class of High-Affinity MT₂-Selective Melatonin Receptor Ligands. *J. Med. Chem.* **2006**, *49*, 7393–7403.
- 10 M. Moreno-Mañas, R. Pleixats, A. Roglans, Stereospecific Preparation of (*E*) and (*Z*)-3,3-Diarylacrylonitriles by Heck Reaction. *Synlett.* **1997**, *10*, 1157–1158.
- X. Wang, A. Studer, Metal-Free Direct C-H Cyanation of Alkenes. *Angew. Chem. Int. Ed. Engl.* 2018, 57, 11792–11796.
- 12 J. B. Metternich, D. G. Artiukhin, M. C. Holland, M. Bremen-Kuhne, J. Neugebauer, R. Gilmour, Photocatalytic *E* → *Z* Isomerization of Polarized Alkenes Inspired by the Visual Cycle: Mechanistic Dichotomy and Origin of Selectivity. *J. Org. Chem.* 2017, 82, 9955–9977.

13 Y. Mu, T. T. Nguyen, M. J. Koh, R. R. Schrock, A. H. Hoveyda, *E*- and *Z*-, diand tri-Substituted Alkenyl Nitriles through Catalytic Cross-Metathesis. *Nat. Chem.* 2019, 11, 478–487.

7. X-Ray Crystallographic Data of 3ia

Colorless crystals of product **3ia** (CCDC-2057676) suitable for X-ray crystallographic analysis were obtained by recrystallization from dichloromethane/pentane. The ORTEP drawing of compound **3ia** is shown in Figure S1.

Figure S1. ORTEP illustration of compound 3ia with thermal ellipsoids drawn at 50% probability level

Table S3. Crystal data and structure refinement for compound 3ia

Identification code	mo210113b
Empirical formula	$C_{16}H_{13}N$
Formula weight	219.27
Temperature/K	296.15
Crystal system	orthorhombic
Space group	Fdd2
a/Å	19.031(16)
b/Å	36.93(4)
c/Å	7.092(6)
$\alpha/^{\circ}$	90
β/°	90
$\gamma/^{\circ}$	90
Volume/Å ³	4984(8)
Z	16

1.169
0.068
1856.0
0.15 imes 0.15 imes 0.08
MoKa ($\lambda = 0.71073$)
4.412 to 61.2
$-26 \le h \le 26, -49 \le k \le 48, -9 \le l \le 9$
10435
$3176 [R_{int} = 0.1031, R_{sigma} = 0.1231]$
3176/1/155
0.946
$R_1 = 0.0567, wR_2 = 0.0912$
$R_1 = 0.1898, wR_2 = 0.1235$
0.12/-0.12
0.0(10)

8. COSY Spectra of (Z)-3va and (E)-3va

9. <u>NMR Spectra</u>

¹H NMR spectrum of **1g** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1g** (126 MHz, CDCl₃)

¹³C NMR spectrum of **1h** (126 MHz, CDCl₃)

¹³C NMR spectrum of **1l** (126 MHz, CDCl₃)

¹H NMR spectrum of **1m** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1m** (126 MHz, CDCl₃)

¹H NMR spectrum of **1n** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1n** (126 MHz, CDCl₃)

¹H NMR spectrum of **1o** (500 MHz, CDCl₃)

¹H NMR spectrum of **1u** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1u** (126 MHz, CDCl₃)

¹H NMR spectrum of **1v** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1v** (126 MHz, CDCl₃)

¹H NMR spectrum of **1w** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1w** (126 MHz, CDCl₃)

¹H NMR spectrum of **1x** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1x** (126 MHz, CDCl₃)

¹H NMR spectrum of **1y** (500 MHz, CDCl₃)

¹H NMR spectrum of **1z** (500 MHz, CDCl₃)

¹³C NMR spectrum of **1z** (126 MHz, CDCl₃)

¹H NMR spectrum of **1**# (500 MHz, CDCl₃)

¹³C NMR spectrum of **1**# (126 MHz, CDCl₃)

¹H NMR spectrum of **3aa** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3aa** (126 MHz, CDCl₃)

¹H NMR spectrum of **3aa**-*d*₂ (500 MHz, CDCl₃)

²H NMR spectrum of **3aa**-*d*₂ (77 MHz, CDCl₃)

¹³C NMR spectrum of **3aa**-*d*₂ (126 MHz, CDCl₃)

¹H NMR spectrum of **3ba** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ba** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ca** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **3ca** (471 MHz, CDCl₃)

¹³C NMR spectrum of **3ca** (126 MHz, CDCl₃)

¹H NMR spectrum of **3da** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3da** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ea** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **3ea** (471 MHz, CDCl₃)

¹³C NMR spectrum of **3ea** (126 MHz, CDCl₃)

¹H NMR spectrum of **3fa** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3fa** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ga** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ga** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ha** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ha** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ia** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ia** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ja** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ja** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ka** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ka** (126 MHz, CDCl₃)

¹H NMR spectrum of **3la** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3la** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ma** (500 MHz, CDCl₃)

¹H NMR spectrum of **3na** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3na** (126 MHz, CDCl₃)

¹H NMR spectrum of **3oa** (500 MHz, CDCl₃)

¹H NMR spectrum of **3pa** (500 MHz, CDCl₃)

S60

¹³C NMR spectrum of **3pa** (126 MHz, CDCl₃)

¹H NMR spectrum of **3qa** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3qa** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ra** (500 MHz, CDCl₃)

¹⁹F NMR spectrum of **3ra** (471 MHz, CDCl₃)

¹³C NMR spectrum of **3ra** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ta** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ta** (126 MHz, CDCl₃)

¹H NMR spectrum of **3ua** (500 MHz, CDCl₃)

¹H NMR spectrum of (*Z*)-**3va** (500 MHz, CDCl₃)

¹³C NMR spectrum of (Z)-**3va** (126 MHz, CDCl₃)

¹H NMR spectrum of (*E*)-**3va** (500 MHz, CDCl₃)

¹³C NMR spectrum of (*E*)-**3va** (126 MHz, CDCl₃)

¹H NMR spectrum of **3wa** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3wa** (126 MHz, CDCl₃)

¹H NMR spectrum of **3xa** (500 MHz, CDCl₃)

¹H NMR spectrum of **3ya** (500 MHz, CDCl₃)

¹³C NMR spectrum of **3ya** (126 MHz, CDCl₃)

¹³C NMR spectrum of **3za** (126 MHz, CDCl₃)

