Asymmetric Hydrogenation of Trifluoromethyl Ketones: Application

in the Synthesis of Odanacatib and LX-1031

Tiao-Zhen Zhu,^a Pan-Lin Shao,^{*a} and Xumu Zhang^{*b}

^{*a*}College of Innovation and Entrepreneurship, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen 518055, Guangdong, China.

^bGuangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Road, Shenzhen, 518055, China.

Electronic Supplementary Information

Table of Contents	page
I. General information	S2
II. Experimental procedure and characterization of secondary trifluoromethyl ketones	S3
III. Representative procedure for asymmetric hydrogenation and characterization of	
secondary trifluoromethyl alcohols	S 8
IV. Applications of secondary trifluoromethyl alcohols	S28
V. References	S34
VI. NMR spectra	S36

I. General Information

Unless otherwise mentioned, all experiments were carried out under an atmosphere of argon in a glovebox or using standard Schlenk techniques. Solvents were dried with standard procedures and degassed with N₂. Flash column chromatography was performed using Tsingdao silica gel (60, particle size 200-300 mesh). ¹H, ¹³C and ¹⁹F NMR spectra were recorded on Bruker Ascend TM 400MHz (¹H: 400 MHz, ¹³C: 101 MHz, ¹⁹F: 376 MHz). Chemical shifts (δ) for ¹H and ¹³C NMR spectra were given in ppm and were referenced to residual solvent or TMS peaks. Enantioselective ratios were determined by chiral HPLC analysis using a chiral stationary phase on Agilent Technologies 1260 Infinity II instrument in comparison with the authentic racemates. Optical rotations were obtained on Rudolph Autopol I, serial number 35148. Exact ESI mass spectra were recorded on Orbitrap Fusion instrument.

II. Experimental procedure and characterization of secondary trifluoromethyl ketones

Scheme S1. General Preparation of fluorinated acetophenones

Method A:

$$R + \underbrace{\begin{array}{c} 0 \\ H \end{array}}^{OH} H \xrightarrow{1) \text{TMSCF}_3, \text{ } \text{K}_2\text{CO}_3, \text{ dry DMF}}_{2) \text{ HCl, rt, 1 h}} R + \underbrace{\begin{array}{c} 0 \\ CF_3 \end{array}}^{OH} CF_3 \xrightarrow{DMP, \text{ NaHCO}_3}_{DCM} R + \underbrace{\begin{array}{c} 0 \\ CF_3 \end{array}}^{OH} CF_3$$

General procedure for the fluorinated acetophenones^[1]: To a 100 mL flask was added aldehyde (8.0 mmol), and DMF (15 mL), and K_2CO_3 (0.08 mmol), TMS-CF₃ (9.6 mmol) was added dropwise. Then the mixture was allowed to stir at rt for 1 h before HCl (1 M) was added, then the mixture was stirred at rt for another 1 h. After the reaction was finished, the reaction mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc 10/1~4/1) afforded the desired fluorinated phenylethanols as a white solid.

To a solution of the fluorinated phenylethanols (5.0 mmol) in DCM, DMP (12.0 mmol) and NaHCO₃ (20 mmol) were added successively. The solution was allowed to stir at rt for 3 h. Then water was added and the obtained suspension was stirred for another 1 h. After the reaction was finished, the reaction mixture was extracted with DCM (3×20 mL). The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc 100/1~90/1) afforded the desired fluorinated acetophenones as a white solid.^[2]

Method B:

$$R + \underbrace{\begin{array}{c} 0 \\ + \end{array}} \\ 2) HCl, rt, 1 h \\ 1) TMSCF_3, K_2CO_3, dry DMF \\ 2) HCl, rt, 1 h \\ R + \underbrace{\begin{array}{c} 0 \\ + \end{array}} \\ CF_3 \\ DCM \\ CF_3 \\ DCM \\ CF_3 \\ CF_$$

General procedure for the α , β -unsaturated trifluoromethyl ketones^[2]: To a 100 mL flask was added α , β -unsaturated aldehyde (8.0 mmol), and DMF (20 mL), and K₂CO₃ (0.08 mmol), TMS-CF₃ (9.6 mmol) was added dropwise. Then the mixture was allowed to stir at rt for 1 h before HCl (1 M) was added, then the mixture was stirred at rt for another 1 h. After the reaction was finished, the reaction mixture was extracted with ethyl acetate (3 × 100 mL). The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc 10/1~4/1) afforded the desired α_{β} -unsaturated trifluoromethyl alcohols as light yellow oil.

To a solution of the α,β -unsaturated trifluoromethyl alcohols (5.0 mmol) in DCM, DMP (12.0 mmol) and NaHCO₃ (20 mmol) were added successively. The solution was allowed to stir at rt for 3 h. Then water was added and the obtained suspension was stirred for another 1 h. After the reaction was finished, the reaction mixture was extracted with DCM (3×20 mL). The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc 100/1~90/1) afforded the desired α,β -unsaturated trifluoromethyl ketones as a white solid.^[2]

Method C:

General procedure for the fluorinated indolinone^[3]: To a 100 mL oven-dried flask under argon was added the indole (5.2 mmol), and dry DCM (10 mL), and under stirring the mixture was cooled to 0 °C. The perfluoro anhydride (20.8 mmol) was then added dropwise using a syringe. After the reaction was finished, the reaction mixture is then dropwise added to a stirred, ice-cold saturated NaHCO₃ solution. Further DCM was added, the organic phases were separated, and the aqueous layer was extracted with DCM. The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc $20/1 \sim 2/1$) afforded the desired fluorinated indolinone as a yellow solid.

Characterization data of substrates

1-(4-(*tert*-butyl)phenyl)-2,2,2-trifluoroethan-1-one (1e)

White solid, 86% yield. ¹H NMR (400 MHz, CDCl₃) & 8.08 - 7.92 (m, 2H), 7.65 -7.45 (m, 2H), 1.36 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 180.1 (q, J = 34.5Hz), 159.8, 130.2, 127.3, 126.1, 116.8 (q, J = 291.3 Hz), 35.5, 30.9. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.33.

2,2,2-trifluoro-1-(naphthalen-2-yl)ethan-1-one (1m)

White solid, 84% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.62 (s, 1H), 8.07 (d, J = S4

8.7 Hz, 1H), 8.01 (d, *J* = 8.1 Hz, 1H), 7.95 (d, *J* = 8.7 Hz, 1H), 7.90 (d, *J* = 8.1 Hz, 1H), 7.69 (t, *J* = 7.5 Hz, 1H), 7.61 (t, *J* = 7.2 Hz, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 180.5 (q, *J* = 35.0 Hz), 136.5, 133.2 (d, *J* = 3.2 Hz), 132.2, 130.2, 130.1, 129.1, 127.9, 127.4, 127.2, 124.2, 116.9 (q, *J* = 291.0 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -70.73.

2,2,2-trifluoro-1-(naphthalen-1-yl)ethan-1-one (1n)

Light yellow oil, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.78 (d, J = 8.7 Hz, 1H), 8.12 (d, J = 7.4 Hz, 1H), 8.00 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.59 (ddd, J = 8.6, 6.9, 1.5 Hz, 1H), 7.50 (ddd, J = 8.1, 6.8, 1.2 Hz, 1H), 7.43 (t, J = 7.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 182.2 (q, J = 33.8 Hz), 136.1, 133.9, 131.6 (q, J = 4.0

Hz), 131.1, 129.4, 128.9, 127.0, 126.1, 125.1, 124.0, 116.7 (q, *J* = 293.2 Hz). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -70.15.

2,2,2-trifluoro-1-(2-phenyl-1H-indol-3-yl)ethan-1-one (10)

Yellow oil, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.77 (s, 1H), 8.21 (d, J = 5.9Hz, 1H), 7.64 – 7.31 (m, 8H). ¹³C NMR (101 MHz, CDCl₃) δ 177.0 (q, J = 36.5Hz), 148.1, 135.1, 131.3, 130.1, 129.5, 128.4, 126.9, 124.4, 123.6, 121.8 (q, J = 2.5

Hz), 116.5 (q, J = 290.3 Hz), 111.4, 108.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -72.71. HRMS (ESI) calcd. for C₁₁H₉F₃O₂ [M-H]⁻: 288.0642, Found: 288.0640.

(*E*)-1,1,1-trifluoro-4-phenylbut-3-en-2-one (1t)

Light yellow oil, 86% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, J = 16.0 Hz, 1H), 7.67 - 7.60 (m, 2H), 7.54 - 7.39 (m, 3H), 7.02 (d, J = 15.9 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 180.0 (q, J = 35.3 Hz), 150.1, 133.3, 132.3, 129.2, 116.6, 116.4 (q, J = 200.6 Hz) ¹⁹E NMP (276 MHz CDCl) δ , 77.60, HPMS (ESD) collad, for

116.6, 116.4 (q, J = 290.6 Hz).¹⁹F NMR (376 MHz CDCl₃) δ -77.60. HRMS (ESI) calcd. for C₁₀H₇F₃O [M-H]⁻: 199.0376, Found: 199.0368.

(E)-1,1,1-trifluoro-4-(p-tolyl)but-3-en-2-one (1u)

Light yellow solid, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 15.9 Hz, 1H), 7.54 (d, J = 8.1 Hz, 2H), 7.34 – 7.17 (m, 2H), 6.97 (d, J = 15.9 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 180.0 (q, J = 34.9 Hz),

150.2, 143.4, 130.7, 123.0, 129.3, 116.4 (q, *J* = 291.2 Hz), 115.6, 21.7. ¹⁹**F NMR** (565 MHz, CDCl₃) δ -77.54.

(*E*)-4-(4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-one (1v)

131.8, 130.3, 129.6, 117.0, 116.3 (q, J = 290.2 Hz). ¹⁹F NMR (565 MHz, CDCl₃) δ -77.65.

(E)-4-(4-bromophenyl)-1,1,1-trifluorobut-3-en-2-one (1w)

(ESI) calcd. for C₁₀H₆BrF₃O [M-H]⁻: 276.9481, Found: 276.9478.

(*E*)-1,1,1-trifluoro-4-(3-methoxyphenyl)but-3-en-2-one (1x)

Light yellow oil, 76% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 16.0Hz, 1H), 7.36 (t, J = 7.9 Hz, 1H), 7.28 – 7.21 (m, 1H), 7.13 (t, J = 2.1 Hz, 1H), 7.05 (ddd, J = 8.3, 2.6, 0.9 Hz, 1H), 6.99 (dd, J = 16.0, 1.0 Hz, 1H), 3.86 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 178.0 (q, J = 35.0 Hz), 160.1, 150.1, 134.6, 130.2, 122.0, 118.3, 116.9, 116.4 (q, J = 290.7 Hz), 113.8, 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -77.56. HRMS (ESI) calcd. for C₁₁H₉F₃O₂ [M-H]⁻: 229.0482, Found: 229.0476.

(*E*)-1,1,1-trifluoro-4-(2-methoxyphenyl)but-3-en-2-one (1y)

Yellow oil, 67% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.28 (d, J = 16.0 Hz, 1H), ¹y
⁽¹⁾

CDCl₃) δ 180.5 (q, *J* = 34.8 Hz), 159.7, 145.8, 133.8, 130.2, 122.4, 120.9, 117.0, 116.6 (q, *J* = 290.7 Hz), 111.5, 55.6. ¹⁹F NMR (376 MHz, CDCl₃) δ -77.63. HRMS (ESI) calcd. for C₁₁H₉F₃O₂ [M-H]⁻ : 229.0482, Found: 229.0476.

(*E*)-1,1,1-trifluoro-3-methyl-4-phenylbut-3-en-2-one (1z)

Yellow oil, 83% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (s, 1H), 7.60 – 7.34 (m, 5H), 2.17 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 182.4 (dd, J = 33.3, 15.2 Hz), 145.9 (dt, J = 15.2, 3.5 Hz), 134.7 (d, J = 15.5 Hz), 131.0 (d, J = 15.2 Hz),

130.4 (d, J = 15.2 Hz), 130.0 (d, J = 15.1 Hz), 128.8 (d, J = 15.2 Hz), 116.9 (qd, J = 291.8, 15.1 Hz), 13.4 (d, J = 15.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -68.91.

III. Representative procedure for asymmetric hydrogenation and characterization of secondary trifluoromethyl alcohols

General procedure for S/C = 500^[4]: To a 4.0 mL vial was added the catalyst precursor $[Ir(COD)Cl]_2$ (6.7 mg, 9.97 µmol, 1.0 equiv), (S_C , R_C , S_C , R_{FC})-*f*-amphol L2 (16.2 mg, 21.04 µmol, 2.1 equiv) and anhydrous 'PrOH (2.0 mL) in the argon-filled glovebox. The mixture was stirred for 2.0 h at 25 °C. The resulting orange solution (20 µL) was transferred by syringe into a vial (5.0 mL) charged with substrate (0.2 mmol), NaOH (0.8 mg, 0.02 mmol) and anhydrous toluene (1.0 mL). The vial was transferred to an autoclave, which was then charged with of H₂ (40 atm) and stirred at rt for 16 h. The hydrogen gas was released slowly in a well-ventilated hood, the yield of the reaction was first determined by quantitative ¹⁹F{¹H} NMR analysis. Then the solution was concentrated and purified by flash chromatography on silica gel (CH₂Cl₂/MeOH, 10:1) to afford the product. Pure product was afforded after column chromatography (hexanes/EtOAc 10/1~5/1).

(S)-2, 2, 2-trifluoro-1-phenylethan-1-ol (2a)

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 4.84 (q, J = 6.8 Hz, 1H), 3.50 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 133.9, 129.5, 128.6, 127.4, 124.2 (q, J = 281.8 Hz), 72.7 (q, J = 32.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ

-78.20.

Optical Rotation: $[\alpha]^{25}{}_{D} = +21.7$ (c = 1.0, CHCl₃) (Lit:^[5] $[\alpha]^{25}{}_{D} = +8.33$ (c = 0.5, CHCl₃, *S*, 51% ee). The absolute configuration was determined to be (*S*). 98% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95:5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 17.8 min for minor isomer, t_{R2} = 23.8 min for major isomer).

(S)-2,2,2-trifluoro-1-(p-tolyl)ethan-1-ol (2b)

Colourless oil, 91% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.36 (d, J = 7.9 Hz, 2H), ^{OH} ^{CF₃} 7.22 (d, J = 7.9 Hz, 2H), 4.98 (qd, J = 6.7, 4.0 Hz, 1H), 2.63 (d, J = 4.2 Hz, 1H), ^{Ne} ^{2b} 2.37 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 139.6, 131.1, 129.3, 127.3, 124.3 (q,

J = 282.0 Hz, 72.7 (q, J = 32.0 Hz), 21.2 (d, J = 4.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.41.

Optical Rotation: $[\alpha]^{20}{}_{D} = +28.7$ (c = 1.0, CHCl₃) (Lit: ${}^{[6]}[\alpha]^{25}{}_{D} = +28.0$ (c = 1.6, CHCl₃, *S*, 86% ee). The absolute configuration was determined to be (*S*). 99% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95:5, flow rate = 1.0 ml/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 14.7 min for minor isomer, t_{R2} = 20.0 min for major isomer).

(S)-2,2,2-trifluoro-1-(4-methoxyphenyl)ethan-1-ol (2c)

 $\begin{array}{c} \underset{\mathsf{MeO}}{\overset{\mathsf{OH}}{\overset{\mathsf{CF}_3}{2c}}} & \text{Colourless oil, >99\% yield. }^{\mathsf{I}}\mathbf{H} \ \mathbf{NMR} \ (400 \ \mathrm{MHz, CDCl_3}) \ \delta \ 7.48 - 7.30 \ (\mathrm{m, 2H}), \\ & 7.07 - 6.79 \ (\mathrm{m, 2H}), \ 4.95 \ (\mathrm{q}, J = 6.7 \ \mathrm{Hz}, 1\mathrm{H}), \ 3.82 \ (\mathrm{s}, 3\mathrm{H}), \ 2.58 \ (\mathrm{s}, 1\mathrm{H}). \ ^{13}\mathbf{C} \ \mathbf{NMR} \\ & (101 \ \mathrm{MHz, CDCl_3}) \ \delta \ 160.4, \ 128.8, \ 126.1, \ 124.3 \ (\mathrm{q}, J = 282.3 \ \mathrm{Hz}), \ 114.0, \ 72.4 \ (\mathrm{q}, J = 282.3 \ \mathrm{Hz}), \ 114.0, \ 128.4 \ \mathrm{Hz}), \ 114.0, \ 128.4 \ \mathrm{Hz}$

J = 32.0 Hz, 55.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -78.55.

Optical Rotation: $[\alpha]^{25}_{D} = +30.2$ (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 95% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95:5, flow rate = 1.0 ml/min, T = 25 °C, wavelength = 230 nm, t_{R1} = 35.2 min for minor isomer, t_{R2} = 38.4 min for major isomer).

(S)-1-(4-(dimethylamino)phenyl)-2,2,2-trifluoroethan-1-ol (2d)

White solid, 40.3 mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, J = 8.5Me₂N CF₃ Hz, 2H), 6.70 (d, J = 8.8 Hz, 2H), 4.85 (q, J = 6.8 Hz, 1H), 2.95 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 151.2, 128.4, 124.5(q, J = 282.2 Hz), 121.5, 112.2, 72.7 (q, J = 32.1 Hz), 40.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.35. HRMS (ESI) calcd. for C₁₀H₁₂F₃NO [M+H]⁺: 220.0944, Found: 220.0945.

Optical Rotation: $[\alpha]^{25}{}_{D} = +30.5$ (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 97% ee. (HPLC condition: Daicel Chiralcel AS-H Column, *n*hexane/*i*PrOH = 95:5, flow rate = 1.0 ml/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 9.8 min for major isomer, t_{R2} = 14.3 min for minor isomer).

(S)-1-(4-(tert-butyl)phenyl)-2,2,2-trifluoroethan-1-ol (2e)

White solid, >99% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 4.90 (q, J = 6.8 Hz, 1H), 2.49 (s, 1H), 1.25 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 152.7, 131.0, 127.2, 125.6, 124.3(q, J = 282.0 Hz), 72.7(q, J = 32.0 Hz), 34.7,

31.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -78.27.

Optical Rotation: $[\alpha]^{20}{}_{D} = +19.1$ (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 97% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 97/3, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 11.0 min for minor isomer, t_{R2} = 14.2 min for major isomer).

(S)-2,2,2-trifluoro-1-(4-fluorophenyl)ethan-1-ol (2f)

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (dd, J = 8.5, 5.2 Hz, 2H), 7.15 – 7.04 (m, 2H), 5.01 (q, J = 6.6 Hz, 1H), 2.81 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 163.4 (d, J = 248.5 Hz), 129.8, 129.3 (d, J = 8.5 Hz), 124.1 (q, J = 281.5 Hz), 115.7 (d, J = 21.8 Hz), 72.1 (q, J = 32.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.64, -111.86. HRMS (ESI) calcd. for C₈H₆F₄O [M-H]⁻: 193.0282, Found: 193.0274.

Optical Rotation: $[\alpha]^{20}{}_{D} = +22.4$ (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 96% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 13.5 min for minor isomer, t_{R2} = 16.3 min for major isomer).

(S)-1-(4-chlorophenyl)-2,2,2-trifluoroethan-1-one (2g)

CDCl₃) δ -78.55. HRMS (ESI) calcd. for C₈H₆ClF₃O [M+HCOO]⁻: 255.0041, Found: 255.0038.

Optical Rotation: $[\alpha]^{20}{}_{D} = +25.4$ (c = 1.0, CHCl₃) (Lit:^[7] $[\alpha]^{20}{}_{D} = +26.1$ (c = 1.0, CHCl₃, *S*, 98.7% ee). The absolute configuration was determined to be (*S*). 97% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 230 nm, t_{R1} = 11.9 min for minor isomer, t_{R2} = 14.4 min for major isomer).

(S)-1-(4-bromophenyl)-2,2,2-trifluoroethan-1-ol (2h)

¹⁹**F NMR** (376 MHz, CDCl₃) δ -78.42. **HRMS (ESI)** calcd. for C₈H₆BrF₃O [M+HCOO]⁻: 298.9536, Found: 298.9535.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +18.1 (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 97% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 13.4 min for minor isomer, t_{R2} = 16.8 min for major isomer).

(S)-2,2,2-trifluoro-1-(m-tolyl)ethan-1-ol (2i)

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.04 (m, 4H), ^{Me} ^{CF3} ²ⁱ ²ⁱ δ 138.5, 133.9, 130.3, 128.5, 128.0, 124.5, 124.3 (q, J = 282.0 Hz), 72.9 (q, J = 32.0 Hz), 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.25. HRMS (ESI) calcd. for C₉H₉F₃O [M-H]⁻:

189.0533, Found: 189.0525.

Optical Rotation: $[\alpha]^{20}{}_{D} = +23.3$ (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 99% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 13.4 min for minor isomer, t_{R2} = 15.6 min for major isomer).

(S)-2,2,2-trifluoro-1-(3-fluorophenyl)ethan-1-ol (2j)

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (td, J = 8.2, 6.0 Hz, ^P CF₃ H), 7.30 – 7.16 (m, 2H), 7.17 – 7.03 (m, 1H), 5.02 (qd, J = 6.5, 3.9 Hz, 1H), 2.79 (d, ² J = 4.2 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 162.8 (d, J = 246.4 Hz), 136.2 (d, J = 7.6 Hz), 130.2 (d, J = 7.8 Hz), 124.0 (q, J = 282.2 Hz), 123.1 (d, J = 3.0 Hz), 116.5 (d, J = 20.8Hz), 114.5 (d, J = 23.4 Hz), 72.3 (t, J = 32.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.41, -112.12. HRMS (ESI) calcd. for C₈H₆F₄O [M-H]⁻: 193.0282, Found: 193.0273.

Optical Rotation: $[\alpha]^{20}{}_{D} = +14.4$ (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 96% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 11.2 min for minor isomer, t_{R2} = 12.1 min for major isomer).

(S)-1-(3-chlorophenyl)-2,2,2-trifluoroethan-1-ol (2k)

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.42 – 7.31 (m, 3H), 5.00 (q, J = 6.6 Hz, 1H), 2.75 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 135.7, 134.6, 129.9, 129.7, 127.6, 125.6, 123.9 (q, J = 282.4 Hz), 72.2 (q, J = 32.1Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.35. HRMS (ESI) calcd. for C₈H₆ClF₃O [M-H]⁻: 208.9987, Found: 208.9979.

Optical Rotation: $[\alpha]^{20}{}_{D} = +17.3$ (c = 1.0, CHCl₃) (Lit:^[7] $[\alpha]^{20}{}_{D} = +23.1$ (c = 1.0, CHCl₃, *S*, 99.6% ee). The absolute configuration was determined to be (*S*). 98% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 10.8 min for minor isomer, t_{R2} = 12.9 min for major isomer).

(S)-1-(3-bromophenyl)-2,2,2-trifluoroethan-1-ol (2l)

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.64 (s, 1H), 7.54 (ddd,
Br
CF₃ $J = 8.0, 2.0, 1.1$ Hz, 1H), 7.40 (d, $J = 7.8$ Hz, 1H), 7.32 – 7.23 (m, 1H), 4.99 (qd, J
= 6.5, 4.3 Hz, 1H), 2.73 (d, $J = 4.4$ Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.0,

132.7, 130.5, 130.1, 126.1, 124.0 (q, J = 282.4 Hz), 122.7, 72.1 (q, J = 32.5 Hz). ¹⁹**F NMR** (565 MHz, CDCl₃) δ -78.33. **HRMS (ESI)** calcd. for C₈H₆BrF₃O [M-H]⁻: 252.9481, Found: 252.9477.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +15.9 (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 97% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 230 nm, t_{R1} = 11.2 min for minor isomer, t_{R2} = 14.6 min for major isomer).

(S)-2,2,2-trifluoro-1-(naphthalen-2-yl)ethan-1-ol (2m)

Colourless oil, 40.7 mg, 90% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (s, 1H), CF₃ 7.97 - 7.84 (m, 3H), 7.68 - 7.50 (m, 3H), 5.21 (qd, J = 6.7, 4.3 Hz, 1H), 2.78 (d, J = 4.5 Hz, 1H). I = 4.5 Hz, 1H. I = 282.3 Hz, 124.3, 73.0 (q, J = 32.5 Hz). I = 126.6, 124.3 (q, J = 282.3 Hz), 124.3, 73.0 (q, J = 32.5 Hz). I = 126.6, 124.3 (q, J = 282.3 Hz), 124.3, 73.0 (q, J = 32.5 Hz). I = 126.0, 126.6, 124.3 (q, J = 282.3 Hz), 124.3, 73.0 (q, J = 32.5 Hz). I = 126.0,

Optical Rotation: $[\alpha]^{20}{}_{D} = +17.7$ (c = 0.5, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 99% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 92/8, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 21.8 min for minor isomer, t_{R2} = 35.7 min for major isomer).

(S)-2,2,2-trifluoro-1-(naphthalen-1-yl)ethan-1-ol (2n)

Colourless oil, 98% yield. ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, J = 8.5 Hz, 1H), ^{OH} ^{CF3} 7.91 (t, J = 7.9 Hz, 2H), 7.84 (d, J = 7.2 Hz, 1H), 7.61 – 7.48 (m, 3H), 5.90 (q, J = 6.7Hz, 1H), 2.64 (s, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 133.7, 131.1, 130.2, 129.9, 129.0, 126.8, 125.9, 125.8, 125.2, 124.7 (q, J = 282.3 Hz), 122.8, 69.0 (q, J = 31.9

Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -76.87. **HRMS (ESI)** calcd. for C₁₂H₉F₃O [M-H]⁻: 225.0533, Found: 225.0527.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +18.2 (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 98% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 92/8, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 230 nm, t_{R1} = 17.5 min for minor isomer, t_{R2} = 24.7 min for major isomer).

Signal 1: DAD1 D, Sig=230,4 Ref=off	Sign	al 1: DAD1 D, Sig=230	,4 Ref=off		
Peak RetTime Type Width Area Hei	ight Area Peak	RetTime Type Width	Area	Height Area	a
# [min] [min] [mAU*s] [mA	AU] % #	[min] [min]	[mAU*s]	[mAU] %	
1 17.444 BB 0.3790 8856.36426 365.	.13733 48.7160 1	17.545 BB 0.3365	112.55531	5.12044 1.20	081
2 24.691 BB 0.5405 9323.22949 268.	.92386 51.2840 2	24.653 BB 0.5420	9204.04297	264.45908 98.7	919
Totals : 1.81796e4 634.	.06119 Tota	ls :	9316.59828	269.57951	

(S)-2,2,2-trifluoro-1-(2-phenyl-1H-indol-3-yl)ethan-1-ol (20)

White solid, 57.7 mg, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.27 (s, 1H), 7.93 (d, J = 7.9 Hz, 1H), 7.55 – 7.44 (m, 5H), 7.42 (d, J = 8.0 Hz, 1H), 7.28 (dd, J = 7.0, ²⁰ 1.2 Hz, 1H), 7.21 (ddd, J = 8.2, 7.1, 1.2 Hz, 1H), 5.32 (qd, J = 7.5, 2.6 Hz, 1H), 2.44 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.9, 135.9, 131.4, 129.1, 128.9, 126.0, 125.4 (q, J = 282.7 Hz), 123.1, 121.2 (q, J = 2.9 Hz), 120.9, 111.1, 106.1, 68.0 (q, J = 33.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -75.73. HRMS (ESI) calcd. for C₁₆H₁₂F₃NO [M-H]⁻: 290.0798, Found: 290.0797.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +60.8 (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 98% ee. (HPLC condition: Daicel Chiralcel OD-H Column, *n*hexane/*i*PrOH = 90/10, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 220 nm, t_{R1} = 36.4 min for major isomer, t_{R2} = 46.2 min for minor isomer).

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (dd, J = 5.0, 1.2 Hz, CF₃ 1H), 7.20 (d, J = 3.5 Hz, 1H), 7.05 (dd, J = 5.1, 3.6 Hz, 1H), 5.28 (dt, J = 7.9, 5.1 Hz, 1H), 2.80 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.1, 127.5, 127.1, 127.0, 123.7 (q, J = 281.9 Hz), 69.3 (q, J = 34.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.71. HRMS (ESI) calcd. for C₆H₅F₃OS [M+HCOO]⁻: 226.9995, Found: 226.9990.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +15.9 (c = 1.0, CHCl₃) (Lit:^[8] $[\alpha]^{25}{}_{D}$ = +24.2 (c = 1.0, CHCl₃, *S*, >98% ee). The absolute configuration was determined to be (*S*). 97% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 230 nm, t_{R1} = 16.5 min for minor isomer, t_{R2} = 25.0 min for major isomer).

(S)-2-fluoro-1-phenylethan-1-ol (2q)

Colourless oil, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.44 – 7.27 (m, 5H), 5.01 (ddd, J = 14.2, 7.7, 3.7 Hz, 1H), 4.68 – 4.20 (m, 2H), 2.64 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 138.1 (d, J = 8.4 Hz), 128.6, 128.4, 126.3, 87.1 (d, J = 174.4 Hz), 72.9 (d, J = 19.8 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -220.56.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +69.5 (c = 1.0, CHCl₃) (Lit:^[9] $[\alpha]^{20}{}_{D}$ = -56.8 (c = 1.2, CHCl₃, *R*, 98% ee). The absolute configuration was determined to be (*S*). 99% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 21.6 min for minor isomer, t_{R2} = 24.7 min for major isomer).

Signal 1: DAD1 A, Sig=210,4 Ref=360,100	Signal 1: DAD1 A, Sig=210,4 Ref=360,100
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 	Peak RetTime Type Width Area Height Area # [min] [mAU*s] [mAU] %
1 21.476 BB 0.3902 1.97004e4 770.72473 49.9198 2 24.994 BB 0.4638 1.97637e4 644.35651 50.0802	1 21.604 BB 0.3418 112.93392 4.06852 0.2502 2 24.661 BB 0.5224 4.50219e4 1237.50769 99.7498
Totals : 3.94641e4 1415.08124	Totals : 4.51348e4 1241.57621

(S)-2,2-difluoro-1-phenylethan-1-ol (2r)

Colourless oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.34 (m, 5H), 5.76 (td, J = 56.0, 4.7 Hz, 1H), 4.81 (td, J = 10.1, 4.6 Hz, 1H), 2.49 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 135.8 (t, J = 3.2 Hz), 129.0, 128.7, 127.1, 115.8 (t, J = 245.6

Hz), 73.7 (t, J = 24.4 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -127.57 (q, J = 24.8 Hz).

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +14.4 (c = 1.0, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 99% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 29.8 min for minor isomer, t_{R2} = 31.1 min for major isomer).

(S)-2,2,3,3,4,4,4-heptafluoro-1-phenylbutan-1-ol (2s)

Colourless oil, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.34 (m, 5H), 5.18 Colourless oil, 97% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.53 – 7.34 (m, 5H), 5.18 (dt, J = 17.7, 5.7 Hz, 1H), 2.58 (d, J = 5.2 Hz,1H). ¹³C NMR (151 MHz, CDCl₃) δ 133.9, 129.7, 128.6, 128.0, 72.1 (dd, J = 28.5, 22.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -80.83 (d, J = 8.4 Hz), -114.59 – -121.33 (m), -122.47 – -129.21 (m). Note: Two of the carbon atoms from the CF₂-CF₂-CF₃ group are not reported in the data above, due to their low signal intensity and partial overlap with other signals.

Optical Rotation: $[\alpha]^{25}{}_{D} = +17.3$ (c = 0.5, CHCl₃). The absolute configuration was assigned to be **(S)** by analogy to **2a**. 87% ee. (HPLC condition: Daicel Chiralcel OD-H Column, *n*hexane/*i*PrOH = 85/15, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 208 nm, t_{R1} = 4.4 min for minor isomer, t_{R2} = 7.6 min for major isomer).

(S,E)-1,1,1-trifluoro-4-phenylbut-3-en-2-ol (2t)

White solid, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.45 – 7.24 (m, 5H), 6.82 (d, J = 15.9 Hz, 1H), 6.18 (dd, J = 16.0, 6.6 Hz, 1H), 4.60 (q, J = 6.3 Hz, 1H), 2.70 (d, J = 5.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 136.4, 135.3, 128.7 (d, J = 3.0 Hz), 126.9, 124.2 (q, J = 281.8 Hz), 120.5 (d, J = 2.2 Hz), 71.6 (q, J = 32.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.97. HRMS (ESI) calcd. for C₁₀H₉F₃O [M-H]⁻: 201.0533, Found: 201.0525.

Optical Rotation: $[\alpha]^{20}{}_{D} = +14.3$ (c = 1.0, MeOH). (Lit: $[^{10}] [\alpha]^{20}{}_{D} = -20.3$ (c = 0.17, MeOH, *R*, 67.6% ee). The absolute configuration was determined to be **(S)**. 95% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 92/8, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 254 nm, t_{R1} = 10.4 min for minor isomer, t_{R2} = 12.0 min for major isomer).

MAU]	11 E, Sig=254,4 Ref=oft (D1DATA FL_3 2019-11-19 17-46-00001-P2-E1-272-20191119-double bond keton.D)	DAD1 E, Sg-254,4 Ref-oft (D:DATA FL_SCREENING SOLVENT 2019-12-10 10-32-40004-P2-A4-212-20191210-4 D) MAU
1000-	*	
800-	10.07	600-
600-		
400-		400-
200-		200-
0	,/ \	a <u>, , , , , , , , , , , , , , , , , , ,</u>
	5 7.5 10 12.5 15 17.5 20 22.5 min	5 7.5 10 12.5 15 17.5 20 22.5 mi
Signal	l 1: DAD1 E, Sig=254,4 Ref=off	Signal 1: DAD1 E, Sig=254,4 Ref=off
Peak F	RetTime Type Width Area Height Area	Deak Pottime Type Width Anon Height Anon
#	[min] [mAU*s] [mAU] %	Feak Recrime Type width Area Height Area
-		# [mınj [mAU*s] [mAU] %
1	3.111 BB 0.1244 30.05438 3.35700 0.1577	
2	10.074 BB 0.1864 9517.26465 790.62201 49.9370	1 10.402 BB 0.1928 201.03569 16.19353 2.5496
3	11.674 BB 0.2149 9511.23438 689.55841 49.9053	2 12.037 BB 0.2181 7683.92236 546.30731 97.4504

(*S*,*E*)-1,1,1-trifluoro-4-(p-tolyl)but-3-en-2-ol (2u)

Optical Rotation: $[\alpha]^{20}_{D} = +17.1$ (c = 1.0, MeOH). The absolute configuration was assigned to be **(S)** by analogy to **2t**. 95% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 254 nm, t_{R1} = 15.6 min for minor isomer, t_{R2} = 20.0 min for major isomer).

(*S*,*E*)-4-(4-chlorophenyl)-1,1,1-trifluorobut-3-en-2-ol (2v)

White solid, >99% yield. ¹H NMR (400 MHz, CDCl₃)
$$\delta$$
 7.39 – 7.28 (m, 4H),
CI CF_3 6.82 (d, J = 15.9 Hz, 1H), 6.18 (dd, J = 16.0, 6.3 Hz, 1H), 4.64 (q, J = 6.1 Hz, 1H), 2.30 (d, J = 5.8 Hz, 1H). ¹³C NMR (151 MHz, CDCl₃) δ 135.0, 134.5,

133.9, 129.0, 128.1, 124.2 (q, *J* = 281.9 Hz), 121.2, 71.5 (q, *J* = 31.8 Hz). ¹⁹**F NMR** (376 MHz, CDCl₃) δ -79.06.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +12.6 (c = 1.0, MeOH). The absolute configuration was assigned to be **(S)** by analogy to **2t**. 92% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 254 nm, t_{R1} = 15.1 min for minor isomer, t_{R2} = 16.6 min for major isomer).

(*S*,*E*)-4-(4-bromophenyl)-1,1,1-trifluorobut-3-en-2-ol (2w)

Light yellow solid, 78% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.64 – 7.38 (m, ^{OH} ^{CF3} 2H), 7.35 – 7.15 (m, 2H), 6.79 (d, *J* = 15.9 Hz, 1H), 6.18 (dd, *J* = 16.0, 6.3 Hz, ¹H), 4.63 (qd, *J* = 6.4, 1.4 Hz, 1H), 2.50 (d, *J* = 5.8 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 135.0, 134.2, 131.9, 128.4, 124.1 (q, *J* = 281.9 Hz), 122.7, 121.3 (d, *J* = 2.2 Hz), 71.4 (q, *J* = 32.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -78.99. HRMS (ESI) calcd. for C₁₀H₈BrF₃O [M-H]⁻: 278.9638, Found: 278.9636.

Optical Rotation: $[\alpha]^{23}_{D} = -2.5$ (c = 1.0, CHCl₃) (Lit:^[11] $[\alpha]_{D} = -9.1$ (c = 1.6, CHCl₃, *S*, >99% ee). The absolute configuration was determined to be (*S*). 93% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength =

254 nm, $t_{R1} = 17.5$ min for minor isomer, $t_{R2} = 19.0$ min for major isomer).

(*S*,*E*)-1,1,1-trifluoro-4-(3-methoxyphenyl)but-3-en-2-ol (2x)

Light yellow oil, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, MeO (CF₃) ^{2x} Light yellow oil, 87% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.32 – 7.22 (m, 1H), 7.01 (d, J = 7.7 Hz, 1H), 6.94 (t, J = 2.1 Hz, 1H), 6.88 – 6.85 (m, 1H), 6.82 (d, J = 16.9 Hz, 1H), 6.19 (dd, J = 15.9, 6.5 Hz, 1H), 4.63 (pd, J = 6.5, 1.3 Hz, 1H), 3.82 (s, 3H), 2.53 (s, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 159.8, 136.7, 136.1, 129.7, 124.2 (q, J = 281.9 Hz), 121.0 (d, J = 2.1 Hz), 119.5, 114.4, 112.1, 71.5 (q, J = 32.5 Hz), 55.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -79.01. HRMS (ESI) calcd. for C₁₁H₁₁F₃O₂ [M-H]⁻: 231.0638, Found:

231.0632.

Optical Rotation: $[\alpha]^{20}{}_{D}$ = +9.7 (c = 1.0, MeOH). The absolute configuration was assigned to be (*S*) by analogy to **2t**. 94% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 24.7 min for minor isomer, t_{R2} = 31.6 min for major isomer).

Signal 1: DAD1 A, Sig=210,4 Ref=360,100	Signal 1: DAD1 A, Sig=210,4 Ref=360,100
Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 24.627 BB 0.4602 6847.46826 228.10707 50.0786 2 31.928 BB 0.5939 6825.97070 173.91228 49.9214 Totals : 1.36734e4 402.01935	Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] % 1 24.681 BB 0.4697 1505.14978 49.92312 3.2262 2 31.594 BB 0.6037 4.51494e4 1066.82153 96.7738 Totals : 4.66545e4 1116.74465

(S,E)-1,1,1-trifluoro-4-(2-methoxyphenyl)but-3-en-2-ol (2y)

Yellow oil, >99% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (dd, J = 7.6, 1.7 Hz, ^{2y} (d, J = 8.3 Hz, 1H), 7.14 (d, J = 16.1 Hz, 1H), 6.92 (t, J = 7.5 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 6.23 (dd, J = 16.1, 6.9 Hz, 1H), 4.59 (q, J = 6.7 Hz, 1H), 3.82 (s, 3H), 2.68 (d, J = 5.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 131.6, 129.8, 127.4, 124.3 (q, J = 281.7 Hz), 124.2, 121.2 (d, J = 2.2 Hz), 120.7, 111.0, 72.1 (q, J = 32.2 Hz), 55.4. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.94. HRMS (ESI) calcd. for C₁₁H₁₁F₃O₂ [M-H]⁻: 231.0638, Found: 231.0633.

Optical Rotation: $[\alpha]^{20}{}_{D} = +7.7$ (c = 1.0, MeOH). The absolute configuration was assigned to be (*S*) by analogy to **2t**. 91% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 254 nm, t_{R1} = 20.5 min for minor isomer, t_{R2} = 26.1 min for major isomer).

(*S*,*E*)-1,1,1-trifluoro-3-methyl-4-phenylbut-3-en-2-ol (2z)

Yellow oil, 98% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.70 – 7.39 (m, 5H), 6.89 We CF₃ (s, 1H), 4.76 (p, J = 6.8 Hz, 1H), 4.14 (dd, J = 5.0, 1.9 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 136.2, 132.0, 131.0, 129.1, 128.2, 127.3, 124.6 (q, J = 283.2 Hz), 75.8 (q, J = 31.4 Hz), 13.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -76.24. HRMS (ESI) calcd.

for C₁₁H₁₁F₃O [M-H]⁻: 215.0689, Found: 215.0682.

Optical Rotation: $[\alpha]^{20}_{D} = -27.4$ (c = 1.0, CHCl₃) (Lit:^[11] $[\alpha]_{D} = -8$ (c = 1.6, CHCl₃, *S*, 92% ee). The absolute configuration was assigned to be **(S)**. 94% ee. (HPLC condition: Daicel Chiralcel OJ-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 254 nm, t_{R1} = 11.8 min for minor isomer, t_{R2} = 14.7 min for major isomer).

(R)-1-phenylethan-1-ol (4)

Colourless oil, 99% yield. ¹H NMR (600 MHz, CDCl₃) δ 7.38 – 7.31 (m, 4H), 7.29 – 7.23 (m, 1H), 4.88 (q, J = 6.5 Hz, 1H), 2.00 (s, 1H), 1.48 (d, J = 6.4 Hz, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 145.8, 128.5, 127.4, 125.4, 70.4, 25.1.

Optical Rotation: $[\alpha]^{25}_{D} = +53.0$ (c = 1.0, CHCl₃) (Lit: $[^{12}][\alpha]^{20}_{D} = +47.8$ (c = 1.0, CHCl₃, *R*, 99% ee). The absolute configuration was determined to be (*R*). 98% ee. (HPLC condition: Daicel Chiralcel OJ-3 Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 mL/min, T = 25 °C, wavelength = 210 nm, t_{R1} = 11.1 min for minor isomer, t_{R2} = 12.8min for major isomer).

IV. Applications of secondary trifluoromethyl alcohols

The late-stage modification of estrone with 2h

To a mixture of Estrone (8 mmol) and TEA (16 mmol) in DCM were dropwise added Tf_2O (9.6 mmol) under an argon at 0 °C, the reaction mixture was stirred at rt for 1.5 h. Then, saturated NaHCO₃ solution was added to the reaction mixture. Further ethyl acetate was added, the organic phases were separated, and the aqueous layer was extracted with ethyl acetate. The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc 10/1) afforded the desired estrone trifluoromethanesulfonic ester **6** as a white solid.^[13]

Tricyclohexylphosphine (1.9 mol%), palladium acetate (0.9 mol%), and triflate **6** (2.5 mmol) were added to a mixture of bis(pinacolato)diboron (2.75 mmol) and potassium acetate (5.0 mmol) in acetonitrile under nitrogen. The mixture was stirred at refluxing temperature until reaction completion, cooled to 30 - 40 °C, and filtered through a pad of cellulose powder. The filtercake was washed with acetonitrile. The combined filtrate was evaporated under reduced pressure and the residue was purified by column chromatography (hexanes/EtOAc $10/1 \sim 2/1$) to afford pure **7** as a white solid.^[14]

To a solution of **2h** (0.8 mmol) in toluene were added boronic acid **7** (0.76 mmol) and 2 M Na_2CO_3 aqueous (1.8 mL, 1.52 mmol) and Pd(dppf)Cl₂ (0.019 mmol). The solution was degassed with N_2 flowing for 30 min. Then the mixture solution was heated to reflux for 10 h. After the reaction was finished, the reaction mixture was cooled to rt and extracted with ethyl acetate (3 × 100 mL). The combined organic phase was dried with Na_2SO_4 and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc 20/1~2/1) afforded **8** as a white solid.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-17-oxo-7,8,9,11,12,13,14,15,16,17-decahydro-6H-cyclopenta[a] phenanthren-3-yl trifluoromethanesulfonate (6)

White solid, 2.96 g, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.34 (d, J = 8.6Hz, 1H), 7.04 (dd, J = 8.6, 2.8 Hz, 1H), 6.99 (d, J = 2.7 Hz, 1H), 2.94 (dd, J = 9.0, 4.4 Hz, 2H), 2.52 (dd, J = 18.8, 8.7 Hz, 1H), 2.45 – 2.37 (m, 1H), 2.30 (td, J = 10.7, 4.3 Hz, 1H), 2.22 – 1.91 (m, 4H), 1.72 – 1.59 (m, 2H), 1.59 – 1.41 (m, 4H), 0.92 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.3, 147.5, 140.2, 139.3, 127.1, 121.2, 118.7 (d, J = 319.8 Hz), 118.2, 50.3, 47.8, 44.0, 37.7, 35.7, 31.4, 29.3, 26.0, 25.6, 21.5, 13.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -72.97.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-6,7,8,9,11,12,13, 14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (7)

White solid, 570.5 mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ 7.74 – 7.54 (m, 2H), 7.32 (d, *J* = 8.0 Hz, 1H), 3.11 – 2.79 (m, 2H), 2.57 – 2.41 (m, 2H), 2.33 (td, *J* = 10.8, 4.1 Hz, 1H), 2.21 – 1.89 (m, 4H), 1.74 – 1.39 (m, 7H), 1.34 (s, 12H), 0.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 220.8,

143.1, 135.7, 135.5, 132.1, 124.7, 83.6, 50.5, 47.9, 44.6, 37.9, 35.8, 31.5, 29.1, 26.4, 25.5, 24.8, 24.7, 21.5, 13.8.

(8*R*,9*S*,13*S*,14*S*)-13-methyl-3-(4-((*S*)-2,2,2-trifluoro-1-hydroxyethyl)phenyl)-6,7,8,9,11,12,13, 14,15,16-decahydro-17H-cyclopenta[a]phenanthren-17-one (8)

White solid, 188.9 mg, 58% yield. ¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.66 (d, *J* = 7.9 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 2H), 7.43 (d, *J* = 8.1 Hz, 1H), 7.40 – 7.33 (m, 2H), 6.86 (s, 1H), 5.20 (q, *J* = 7.3 Hz, 1H), 3.04 – 2.83 (m, 2H), 2.48 – 2.37 (m, 2H), 2.28 (td, *J* = 11.0, 3.9 Hz, 1H),

2.07 (dt, J = 18.3, 8.8 Hz, 1H), 2.02 – 1.92 (m, 2H), 1.79 (d, J = 10.4 Hz, 1H), 1.64 – 1.31 (m, 6H), 0.84 (s, 3H). ¹³**C NMR** (151 MHz, DMSO- d_6) δ 219.6, 140.7, 139.3, 137.0, 136.9, 134.7, 128.2, 127.1, 126.3, 126.0, 125.2 (q, J = 282.5 Hz), 124.0, 70.3 (q, J = 30.4, 29.9 Hz), 49.7, 47.4, 43.9, 37.7, 35.4, 31.4, 29.1, 26.1, 25.4, 21.2, 13.6. ¹⁹**F NMR** (565 MHz, DMSO- d_6) δ -76.68. **HRMS** (**ESI**) calcd. for C₂₆H₂₇F₃O₂ [M+HCOO]⁻: 473.1945, Found: 473.1941. **Optical Rotation**: $[\alpha]^{23}_{D} = +43.4$ (c = 1.0, MeOH). 96% de. (HPLC condition: Daicel Chiralcel AD-H Column, *n*hexane/*i*PrOH = 90/10, flow rate = 1.0 ml/min, T = 25 °C, wavelength = 210 nm, $t_{R1} = 15.3$ min for minor isomer, $t_{R2} = 25.7$ min for major isomer).

The synthesis of Odanacatib precursor

To a solution of *ent-2h* (1.8 mmol) in toluene were added (4-(methylsulfonyl)phenyl)boronic acid **9** (1.9 mmol) and 2 M Na₂CO₃ aqueous (1.8 mL, 3.6 mmol) and Pd(dppf)Cl₂ (0.045 mmol). The solution was degassed with N₂ flowing for 30 min. Then the mixture solution was heated to reflux for 10 h. After the reaction was finished, the reaction mixture was cooled to rt and extracted with ethyl acetate (3×100 mL). The combined organic phase was dried with Na₂SO₄ and evaporated in vacuum. Purification of the residue by silica gel (hexanes/EtOAc 20/1~2/1) afforded **10** as a white solid.

(R)-2,2,2-trifluoro-1-(4'-(methylsulfonyl)-[1,1'-biphenyl]-4-yl)ethan-1-ol (10)

(d, J = 1.8 Hz), 127.2, 125.1 (q, J = 282.8 Hz), 70.2 (q, J = 30.5 Hz), 43.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.27. HRMS (ESI) calcd. for C₁₅H₁₃F₃O₂ [M+HCOO]⁻: 375.0525, Found: 375.0517.

Optical Rotation: $[\alpha]^{23}{}_D = -12.1$ (c = 1.0, THF) (Lit: $[^{15}] [\alpha]_D = -27.2$ (c = 1.5, THF, *R*, > 99% ee). The absolute configuration of **10** was determined to be (*R*). 90% ee (HPLC condition: Daicel Chiralcel AD-H Column, *n*hexane/*i*PrOH = 80/20, flow rate = 0.8 ml/min, T = 25 °C, wavelength = 254 nm, t_{R1} = 17.9 min for major isomer, t_{R2} = 20.8 min for minor isomer).

The synthesis of biaryl chiral alcohol (13) to LX1031

To a solution of 1-(4-bromophenyl)-2,2,2-trifluoroethan-1-one **1h** (8.0 mmol) in toluene and MeOH were added boronic (9.5 mmol), 4 M K₂CO₃ aqueous (6 mL, 24 mmol), and Pd(PPh₃)₄ (0.4 mmol). The solution was degassed with N₂ flowing for 30 min. The solution was heated to reflux for 6 h. After the reaction was finished, the reaction mixture was cooled to rt and extracted with ethyl acetate (3×100 mL). The combined organic phase was dried with Na₂SO₄ and evaporated in

vacuum. Purification of the residue by silica gel (hexanes/EtOAc 50/1~25/1) afforded the desired coupling product **12** as a white solid.^[16]

To a 4.0 mL vial was added the catalyst precursor $[Ir(COD)CI]_2$ (6.7 mg, 9.97 µmol, 1.0 equiv), (R_C , S_C , R_C , S_{FC})-*f*-amphol *ent*-L2 (16.2 mg, 21.04 µmol, 2.1 equiv) and anhydrous ^{*i*}PrOH (2.0 mL) in the argon-filled glovebox. The mixture was stirred for 2.0 h at 25 °C. The resulting orange solution (20 µL) was transferred by syringe into a vial (5.0 mL) charged with compound (0.2 mmol), NaOH (0.8 mg, 0.02 mmol) and anhydrous toluene (1.0 mL). The vial was transferred to an autoclave, which was then charged with of H₂ (40 atm) and stirred at rt for 16 h. The hydrogen gas was released slowly in a well-ventilated hood, and the solution was concentrated and purified by silica gel (hexanes/EtOAc 50/1~25/1) afforded **13** as a white solid.

2,2,2-trifluoro-1-(3'-methoxy-[1,1'-biphenyl]-4-yl)ethan-1-one (12)

White solid, 1.79 g, 80% yield. ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, J =MeO (CF₃) 12 7.9 Hz, 2H), 7.76 (d, J =8.5 Hz, 2H), 7.41 (t, J =8.0 Hz, 1H), 7.23 (d, J =7.8 Hz, 1H), 7.18 – 7.14 (m, 1H), 6.99 (dd, J =8.0, 2.2 Hz, 1H), 3.89 (s, 3H). ¹³C NMR (151 MHz, CDCl₃) δ 180.0 (q, J =34.9 Hz), 160.1, 148.1, 140.5, 130.7, 130.1, 128.6, 127.7, 119.8, 116.7 (q, J =291.3 Hz), 114.1, 113.2, 55.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -71.32.

(*R*)-2,2,2-trifluoro-1-(3'-methoxy-[1,1'-biphenyl]-4-yl)ethan-1-ol (13)

We0 H_{CF_3} F_3 H_{I} , 2H), 7.55 (d, J = 8.1 Hz, 2H), 7.37 (t, J = 7.9 Hz, 1H), 7.22 – 13 7.14 (m, 1H), 7.12 (dd, J = 2.6, 1.7 Hz, 1H), 6.92 (ddd, J = 8.3, 2.6, 1.0 Hz,

1H), 5.08 (qd, J = 6.7, 4.6 Hz, 1H), 3.87 (s, 3H), 2.60 (d, J = 4.6 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 160.0, 142.4, 141.8, 133.0, 129.9, 127.8, 127.4, 124.3 (q, J = 282.1 Hz), 119.7, 113.0, 129.9, 72.6 (q, J = 31.9 Hz), 55.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -78.27. HRMS (ESI) calcd. for C₁₅H₁₃F₃O₂ [M-H]⁻: 281.0795, Found: 281.0791.

Optical Rotation: $[\alpha]^{22}_{D} = -22.2$ (c = 1.0, EtOH) (Lit:^[14] $[\alpha]_{D} = -31.85$ (c = 1.067, EtOH, *R*, >99% ee). The absolute configuration was determined to be (*R*). 97% ee (HPLC condition: Daicel Chiralcel OD-H Column, *n*hexane/*i*PrOH = 95/5, flow rate = 1.0 ml/min, T = 25 °C, wavelength = 254 nm, t_{R1} = 24.3 min for major isomer, t_{R2} = 35.1 min for minor isomer).

V. References

- (1) Cheng, H.; Pei, Y.; Leng, F.; Li, J.; Liang, A.; Zou, D.; Wu, Y.; Wu, Y. Highly Efficient Synthesis of Aryl and Heteroaryl Trifluoromethyl Ketones Via o-Iodobenzoic Acid (IBX). *Tetrahedron Lett.* **2013**, *54* (33), 4483-4486.
- (2) Xu, X.; Min, Q.-Q.; Li, N.; Liu, F. Visible Light-Promoted Umpolung Coupling of Aryl Tri-/Difluoroethanones with 2-Alkenylpyridines. *Chem. Commun.* **2018**, *54* (78), 11017-11020.
- (3) Brüning, F.; Nagae, H.; Käch, D.; Mashima, K.; Togni, A. Asymmetric Hydrogenation of Aryl Perfluoroalkyl Ketones Catalyzed by Rhodium(III) Monohydride Complexes Bearing Josiphos Ligands. *Chem. - Eur. J.* 2019, 25 (46), 10818-10822.
- (4) (a) Gu, G.; Lu, J.; Yu, O.; Wen, J.; Yin, Q.; Zhang, X. Enantioselective and Diastereoselective Ir-Catalyzed Hydrogenation of α-Substituted β-Ketoesters Via Dynamic Kinetic Resolution. *Org. Lett.* 2018, 20 (7), 1888-1892; (b) Gu, G.; Yang, T.; Lu, J.; Wen, J.; Dang, L.; Zhang, X. Iridium/f-Ampha-Catalyzed Asymmetric Hydrogenation of Aromatic A-Keto Esters. *Org. Chem. Front.* 2018, 5 (7), 1209-1212.
- (5) Hodgkinson, R.; Jurčík, V.; Zanotti-Gerosa, A.; Nedden, H. G.; Blackaby, A.; Clarkson, G. J.; Wills, M. Synthesis and Catalytic Applications of an Extended Range of Tethered Ruthenium(II)/ η⁶-Arene/Diamine Complexes. *Organometallics* **2014**, *33* (19), 5517-5524.
- (6) Korenaga, T.; Nomura, K.; Onoue, K.; Sakai, T. Rational Electronic Tuning of CBS Catalyst for Highly Enantioselective Borane Reduction of Trifluoroacetophenone. *Chem. Commun.* 2010, 46 (45), 8624-8626.
- (7) Rowan, A. S.; Moody, T. S.; Howard, R. M.; Underwood, T. J.; Miskelly, I. R.; He, Y.; Wang,
 B. Preparative Access to Medicinal Chemistry Related Chiral Alcohols Using Carbonyl Reductase Technology. *Tetrahedron: Asymmetry* 2013, 24 (21), 1369-1381.
- (8) Contente, M. L.; Serra, I.; Molinari, F.; Gandolfi, R.; Pinto, A.; Romano, D. Preparation of Enantiomerically Enriched Aromatic β-Hydroxynitriles and Halohydrins by Ketone Reduction with Recombinant Ketoreductase KRED1-Pglu. *Tetrahedron* 2016, *72* (27), 3974-3979.
- (9) Thvedt, T. H. K.; Fuglseth, E.; Sundby, E.; Hoff, B. H. Enantioenriched 1-Aryl-2-Fluoroethylamines. Efficient Lipase-Catalysed Resolution and Limitations to the Mitsunobu Inversion Protocol. *Tetrahedron* 2010, *66* (34), 6733-6743.
- (10) Xu, Q.; Zhou, H.; Geng, X.; Chen, P. Nonenzymatic Kinetic Resolution of Racemic 2,2,2-Trifluoro-1-Aryl Ethanol via Enantioselective Acylation. *Tetrahedron* 2009, 65 (11), 2232-2238.
- (11) Nenajdenko, V. G.; Smolko, K. I.; Balenkova, E. S. Enantioselective Reduction of α,β-Unsaturated Ketones Bearing the Trifluoromethyl Group. *Tetrahedron: Asymmetry* 2001, *12* (9), 1259-1266.
- (12) Yu, J.; Duan, M.; Wu, W.; Qi, X.; Xue, P.; Lan, Y.; Dong, X.-Q.; Zhang, X. Readily Accessible and Highly Efficient Ferrocene-Based Amino-Phosphine-Alcohol (f-Amphol) Ligands for Iridium-Catalyzed Asymmetric Hydrogenation of Simple Ketones. *Chem. - Eur. J.* 2017, 23 (4), 970-975.
- (13) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Palladium-Catalyzed Difluoroalkylation of Aryl Boronic Acids: A New Method for the Synthesis of Aryldifluoromethylated Phosphonates and Carboxylic Acid Derivatives. *Angew. Chem. Int. Ed.* 2014, *53* (6), 1669-1673.
- (14) Zhao, M. M.; Zhang, H.; Iimura, S.; Bednarz, M. S.; Kanamarlapudi, R. C.; Yan, J.; Lim, N.-

K.; Wu, W. Process Development of Tryptophan Hydroxylase Inhibitor LX1031, a Drug Candidate for the Treatment of Irritable Bowel Syndrome. *Org. Process Res. Dev.* **2020**, *24* (2), 261-273.

- (15) González-Martínez, D.; Gotor, V.; Gotor-Fernández, V. Chemoenzymatic Synthesis of an Odanacatib Precursor through a Suzuki-Miyaura Cross-Coupling and Bioreduction Sequence. *ChemCatChem* 2019, 11 (23), 5800-5807.
- (16) de Oliveira Lopes, R.; de Miranda, A. S.; Reichart, B.; Glasnov, T.; Kappe, C. O.; Simon, R. C.; Kroutil, W.; Miranda, L. S. M.; Leal, I. C. R.; de Souza, R. O. M. A. Combined Batch and Continuous Flow Procedure to the Chemo-Enzymatic Synthesis of Biaryl Moiety of Odanacatib. *J. Mol. Catal. B: Enzym.* 2014, *104*, 101-107.

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

7.95 7.395 7.37 7.37 7.37 7.37 7.37 7.35 7.735 7.735 7.7257 7.725

-2.17

7.74 7.49 7.47 7.45 -7.45 -7.45 -7.43

S53

Me 2b

S61

S65

00.0 —

1</t

Br EF 2I

S70

OH CF₃ 2n

— 2.64

00.0 —

S92

110 90 70 f1 (ppm) -10 -70 -90 -30 -50

S98

