Discovery and Heterologous Production of Sarubicins and Quinazolinone C-

Glycosides with Protecting Activity for Cardiomyocytes

Mingming Yu, ‡^{a,b} Jianying Luo, ‡^{a,b} Dan Luo,^c Qiang He,^a Yijun Yan,^a Xu Ji,^d and Sheng-Xiong Huang*^a

^a State Key Laboratory of Phytochemistry and Plant Resources in West China, and Yunnan Key Laboratory of Natural Medicinal Chemistry, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.

^b University of Chinese Academy of Sciences, Beijing 100049, China.

^c College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming 650500, China.

^d Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, Yunnan University, Kunming 650091, China.

⁺ M.Y. and J.L. contributed equally to this work.

*Corresponding Author. S.-X. Huang, Tel: +86-871-65215112. E-mail: sxhuang@mail.kib.ac.cn

Contents

Experiment Section	2
Tab. S1. Bacterial strains and plasmids used in this study	2
Tab. S2. The primers used in this study	3
Tab. S3. Deduced functions of ORFs in <i>sar</i> BGC	4
Tab. S4. Protective effects of compounds 1 and 2 against H ₂ O ₂ -induced cardiomyocytes injury	5
Fig. S1. Confirmation of mutants by PCR using the primers.	5
Fig. S2. Two possible routes of C-glycosylation in the biosynthesis of sarubicin A	6
Scheme S1. A) Transformation of 1 to 2; B) Proposed mechanism of transformation from 1 to 2	6
Tab. S5. 1D and 2D NMR data of compound 3 (H9101)	7
Tab. S6. 1D and 2D NMR data of compound 4 (H9102)	8
Tab. S7. 1D and 2D NMR data of compound 5 (H9103)	9
NMR and HRESIMS spectra of compounds 3-5 and 8-10	
Fig. S3. HRESIMS spectrum of 3	10
Fig. S4. ¹ H NMR (600 MHz) spectrum of 3 in DMSO- d_6	11
Fig. S5. ¹³ C NMR (150 MHz) spectrum of 3 in DMSO- <i>d</i> ₆	12
Fig. S6. HSQC (600 MHz) spectrum of 3 in DMSO- d_6	13
Fig. S7. HMBC (600 MHz) spectrum of 3 in DMSO- <i>d</i> ₆	14
Fig. S8. ROESY (600 MHz) spectrum of 3 in DMSO- <i>d</i> ₆	15
Fig. S9. HRESIMS spectrum of 4	16
Fig. S10. ¹ H NMR (600 MHz) spectrum of 4 in DMSO- <i>d</i> ₆	17
Fig. S11. ¹³ C NMR (150 MHz) spectrum of 4 in DMSO- d_6	
Fig. S12. HSQC (600 MHz) spectrum of 4 in DMSO- d_6	19
Fig. S13. HMBC (600 MHz) spectrum of 4 in DMSO- <i>d</i> ₆	20
Fig. S14. ROESY (600 MHz) spectrum of 4 in DMSO-d ₆	21
Fig. S15. HRESIMS spectrum of 5	22
Fig. S16. ¹ H NMR (600 MHz) spectrum of 5 in DMSO- <i>d</i> ₆	23
Fig. S17. ¹³ C NMR (150 MHz) spectrum of 5 in DMSO- <i>d</i> ₆	24
Fig. S18. HSQC (600 MHz) spectrum of 5 in DMSO- <i>d</i> ₆	25
Fig. S19. HMBC (600 MHz) spectrum of 5 in DMSO- d_6	26
Fig. S20. ROESY (600 MHz) spectrum of 5 in DMSO- <i>d</i> ₆	27
Fig. S21. ¹ H NMR (600 MHz) spectrum of 8 in DMSO- <i>d</i> ₆	
Fig. S22. ¹³ C NMR (150 MHz) spectrum of 8 in DMSO- <i>d</i> ₆	29
Fig. S23. ¹ H NMR (400 MHz) spectrum of 9 in DMSO- d_6	
Fig. S24. ¹ H NMR (100 MHz) spectrum of 9 in DMSO- <i>d</i> ₆	
Fig. S25. ¹ H NMR (400 MHz) spectrum of 10 in DMSO- d_6	
Fig. S26. ¹ H NMR (100 MHz) spectrum of 10 in DMSO- <i>d</i> ₆	
Supplementary references	

Experiment Section

Tab. S1. Bacterial strains and plasmids used in this study

Strain and plasmid	Description	References or sources
E. coli		
DH5a	Host strain for cloning	Invitrogen
BW25113/pIJ790	Host strain for PCR-targeting	Ref. 1
ET12567/pUZ8002	Host strain for conjugation between E. coli and	Ref. 2
	Streptomyces	
XL1-blueMR	Host strain for genomic library	Agilent Technologies
DH5α/BT340	Host strain for in-frame deletion	Ref. 3
Streptomyces		
<i>S.</i> sp. KIB-H91	Wild type sarubicins producing strain	This study
S. coelicolor M1154	Host strain for heterologous expression	Ref. 4
S. coelicolor M1154/p18F3	Streptomyces coelicolor M1154 integrated with	This study
	plasmid 18F3 which contains sar biosynthetic gene	
	cluster	
S. coelicolor 18F3 ∆sarS3	sarS3 inactivation mutant of S. coelicolor 18F3	This study
S. coelicolor 18F3 ∆sarS5	sarS5 inactivation mutant of S. coelicolor 18F3	This study
S. coelicolor 18F3 ∆sarO	sarO inactivation mutant of S. coelicolor 18F3	This study
Cosmid		
pJTU2554	Apr ^r , Cosmid vector for genomic library construction	Ref. 1
pJTU6722	Ery ^r , Vector for PCR targeting	Constructed by Prof.
		Meifeng Tao
p18F3	Apr ^r , Cosmid which contains sar biosynthetic gene	This study
	cluster	
p18F3_∆ <i>sarS3</i>	Apr ^r , gene inactivation clone used for sarS3 mutant	This study
p18F3_∆ <i>sarS5</i>	Apr ^r , gene inactivation clone used for sarS5 mutant	This study
p18F3_∆ <i>sarO</i>	Apr ^r , gene inactivation clone used for sarO mutant	This study

Tab. S2. The primers used in this study

gene	Sequence (5´ to 3´)
For gene Screening	
gra-Orf14	14F: GCTGGAGCACATCGCGTTCA
	14R: CACGAGCTTGGGCATGTTGG
gra-Orf17	17F: TCGTGGTGAAGAGCGGGATC
	17R: GCGGCTGACCTTGGTGAAA
For gene disruption	
sarS3	5152F: GCCACGGCCGCACGGAACGCGGGGCACCAGGTCTTCATGattccggggatcc
	gtcgac
	5152R: TCTCGCAGGCGGCCACCACGGCGTCCTGCGAGTCCTCCCtgtaggctggag
	ctgcttc
sarS5	5158F: CGCCACCGTGGAACTGGACGCCGTGTACGTCCCGCTGCCattccggggatcc
	gtcgac
	5158R: CGGGTGAACGCCCGGTCCACCCGGACCGTGCCGTGTGCCCtgtaggctggag
	ctgcttc
sarO	5154F: TTGGAGACCCAGAACCTCATGGTCAAGACAGGCATCTCGattccggggatcc
	gtcgac
	5154R: CTCAGGTGCCCGGCCGGGCTCCGCCCGTTTGATCCCGCGCtgtaggctggag
	ctgcttc
For gene confirmation	
sarS3	5152YF: GAAGTTCCCTGGGTATTCC
	5152YR: CGCCCCGGCCAGCGCTTCG
sarS5	5158YF: CGCCGGATGCTGCCGGCC
	5158YR: GGTGCGCACGGCCGTCAC
sarO	5154YF: CCGTCGGAAGGTATTCGAC
	5154YR: CATGTACGTGATAGCCAAC

Gene	Size	Proposed function by a BLAST search (blastp)	Positives/	Accession
NO.	aa	Protein, Origin	Identities	No.
sarN	610	ATP-dependent amidotransferase, TtmN [Streptomyces	66/55	ALJ49932.1
		afghaniensis]		
sarR1	391	MFS transporter, partial, Streptomyces acidiscabies	74/62	WP_040837276.1
sarA1	390	DHAP synthase, PhzC [Streptomyces tendae]	72/62	WP_028424979.1
sarA2	269	2,3-dihydro-2,3-dihydroxybenzoate dehydrogenase	61/46	AFS18549.1
		DhbX [Klebsiella oxytoca]		
sarA3	228	Isochorismatase, PhzD [Streptomyces tendae]	71/64	AFS18573.1
sarA4	623	2-Amino-2-desoxyisochorismate Synthase PhzE	73/62	AFS18572.1
		[Streptomyces tendae]		
sarU1	116	hypothetical protein, Streptomyces gancidicus BKS 13-15	74/63	WP_006135773.1
sarH	396	3-hydroxybenzoate-6-hydroxylase,3HB6H [Rhodococcus	46/33	WP_011594786.1
		jostii]		
sarS1	323	dTDP-glucose 4,6 dehydratase, StrE [Streptomyces griseus]	72/66	WP_030951601.1
sarS2	329	dTDP-1-glucose thymidylyltransferase, StrD [Streptomyces	69/61	CAH94331.1
		griseus]		
sarS3	344	C-glycosyltransferase, UrdGT2 [Streptomyces fradiae]	61/52	AAF00209.1
sarR2	200	SARP family transcriptional regulator, SrrZ [Streptomyces	61/48	WP_003951745.1
		<i>sp</i> . F-3]		
sarO	311	Dehydrogenase, Nocardia sp. BMG51109	71/57	WP_036571061.1
sarU2	101	Hypothetical protein, Amycolatopsis sp. MJM2582	61/43	WP_037347854.1
sarR3	492	Arabinose ABC transporter permease, Bacillus megaterium	78/59	WP_034679354.1
sarS4	434	Putative NDP-deoxyglucose-2,3-dehydratase, SpnO	60/47	AAG23276.1
		[Saccharopolyspora spinosa]		
sarS5	326	dTDP-3,4-diketo-2,6-dideoxy-D-glucose 3-ketoreductase,	61/49	AAG23275.1
		SpnN [Saccharopolyspora spinosa]		
sarR4	151	MerR family transcriptional regulator, Microbispora sp.	80/67	WP_036330534.1
		ATCC PTA-5024		
sarR5	384	Transposase, Streptomyces himastatinicus	61/51	WP_039941984.1
sarR6	652	Transcriptional regulator, Streptomyces sp. NRRL F-5065	62/49	WP_037858633.1

Tab. S3. Deduced functions of ORFs in sar BGC

	Concentration ^a					
Compound	0 μΜ	10 µM				
1	49.03±3.89	81.36±4.84**				
2	49.03±3.89	89.43±2.58**				
Carvedilol ^b	49.03±3.89	85.98±6.18**				

Tab. S4. Protective effects of compounds $\mathbf{1}$ and $\mathbf{2}$ against H_2O_2 -induced cardiomyocytes injury

Date expressed as means \pm SD (n = 3). ^a***p*<0.01 vs 0 μ M group. ^b Positive control.

Fig. S1. Confirmation of mutants by PCR using the primers.

Confirmation of mutants *S. coelicolor* p18F3 Δ*sarS3*, p18F3 Δ*sarS5*, and p18F3 Δ*sarO* by PCR using the primers listed in supplementary Tab.S2.

Fig. S2. Two possible routes of C-glycosylation in the biosynthesis of sarubicin A

Route a): glycosyl transfer at C-6 of hydroquinone; then intramolecular aldol condensation between C-5 and C-4'. Route b): intermolecular aldol condensation between C-5 and C-4'; followed by hydroxylation at C-1 of 3HAA; then cyclization between C-6 and C-1'.

Scheme S1. A) Transformation of 1 to 2; B) Proposed mechanism of transformation from 1 to 2.

		H91	01			
Position 2 2-Me 4 4a 5 6 7 8 8a 1' 2'-aix 2'-eq 3' 4'	C Signals H Signals		HMBC Correlations	ROESY Correlation		
	$\delta_{ m C}$, type	$\delta_{ extsf{H}}$, (int. mult. J in Hz)				
2	152.9 (s)					
2-Me	21.5 (q)	2.36 (3H, s)	2			
4	167.3 (s)					
4a	102.6 (s)					
5	147.1 (s)					
6	124.3 (s)					
7	117.9 (d)	7.18 (1H, s)	1', 5, 6, 8, 8a	2'-H _{aix}		
8	143.4 (s)					
8a	135.5 (s)					
1'	70.2 (d)	4.68 (1H, d, 11.4)	5', 5, 6, 7	5', 3'		
2'-aix		1.31 (1H, pseudo-q, 12.6)	1', 3', 7'	4', 7		
2'-eq	40.5 (t)	2.09 (1H, dd, 12.6, 3.0)	3', 4'			
3'	71.8 (d)	3.48 (1H, overlapped)		1'		
4'	77.2 (d)	2.85 (1H, t, 9.0)	3', 5', 6'	2'-H _{aix} , 6'		
5′	76.1 (d)	3.32 (1H, dq, 9.0, 6.0)		1′		
6'	18.5 (q)	1.22 (3H, d, 6.0)	5′	4'		
Exchangeable		4.72-5.30 (2H)				
Protons		11.58 (5-OH, s)				
		6 1 1 6 12				

Tab. S5. 1D and 2D NMR data of compound 3 (H9101)

a) Data were recorded at 600 MHz for ¹H and 150 MHz for ¹³C in DMSO- d_6 using the corresponding solvent residual signal as internal standard.

	H9102 ^a									
Position	C Signals	H Signals	HMBC Correlations	ROESY Correlations						
ition 2 2-CH ₃ 4 4a 5 6 7 8 8a 1' 2'-aix 2'-eq 3' 4' 5' 6' Exchange Protor 3-NH 5-Oł	$\delta_{ m c}$, type	$\delta_{ extsf{H}}$, (int. mult. J in Hz)								
2	152.1 (s)									
2-CH ₃	21.4 (q)	2.37 (3H, s)	2							
4	167.3 (s) ^b									
4a	106.1 (s)									
5	147.0 (s)									
6	125.0 (s)									
7	118.5 (d)	7.28 (1H, s)	1', 5, 6, 8, 8a	2'-H _{aix}						
8	144.1 (s)									
8a	135.5 (s) ^b									
1'	70.4 (d)	4.63 (1H, d, 11.4)	2', 3', 5', 5, 6, 7	5', 3'						
2'-aix	34.7 (t)	1.71 (1H, dd, 12.0, 2.4)	3'	7						
2'-eq		1.56 (1H, brd, 12.0)	1', 6							
3'	69.3 (d)	3.69 (1H, brd, 11.4)		1'						
4'	69.9 (d)	3.41 (1H, overlapped)	2', 3'	6'						
5′	74.1 (d)	3.58 (1H, q, 6.0)		1'						
6'	17.6 (q)	1.22 (3H, d, 6.0)	4', 5'	4'						
Exchangeable		4.12 (1H, brs)								
Protons		4.30 (1H, brs)								
3-NH _b		8.93 (1H, brs)								
5-OH		11.50 (1H, s)								
3-NH _a		12.48 (1H, brs)								
a) Data were rec	orded at 600 M	Hz for 1 H and 150 MHz for 13 C	C in DMSO- d_6 using the c	corresponding solvent						
residual signal as	internal standar	d; b) The signals were detected	d by the HMBC spectrum.							

Tab. S6. 1D and 2D NMR data of compound 4 (H9102)

	H9103 ^a										
Position	C Signals	H Signals	HMBC Correlations	ROESY Correlations							
	$\delta_{ ext{C}}$, type	$\delta_{ extsf{H}}$, (int. mult. J in Hz)									
2	152.5 (s) ^b										
2-Me	21.4 (q)	2.37 (3H, s)	2								
4	167.1 (s)										
4a	106.4 (s)										
5	147.2 (s)										
6	122.7 (s)										
7	117.8 (d)	7.32 (1H, s)	1', 5, 8a	2'-H _{aix}							
8	144.0 (s)										
8a	136.3 (s) ^b										
1'	70.2 (d)	4.92 (1H, dd, 12.0, 1.2)	5', 5, 6, 7	5'							
2'-aix	47.0 (1)	2.73 (1H, pseudo-t, 12.6)	1', 3', 7'	4', 7							
2'-eq	47.0 (t)	2.56 (1H, dd, 12.6, 1.2)	3'								
3'	206.4 (s)										
4'	78.4 (d)	3.88 (1H, d, 9.6)	3', 5', 6'	2'-H _{aix} , 6' (w)							
5′	78.3 (d)	3.58 (1H, dq, 9.6, 6.0)		1'							
6'	19.3 (q)	1.37 (3H, d, 6.0)	5′	4' (w)							
Exchangeable		4.72-5.30 (2H)									
Protons		11.56 (5-OH, s)									
a) Data wara raa	orded at 600 M	117 for 111 and 150 MUI for 130	in DMCO d using the	orrognonding columnt							

Tab. S7. 1D and 2D NMR data of compound 5 (H9103)

a) Data were recorded at 600 MHz for ¹H and 150 MHz for ¹³C in DMSO- d_6 using the corresponding solvent residual signal as internal standard; b) The signals were detected by the HMBC spectrum.

NMR and HRESIMS spectra of compounds 3-5 and 8-10

Fig. S3. HRESIMS spectrum of 3

---- End Of Report ----

Agilent Technologies

Page 1 of 1

Printed at: 2:14 PM on: 3/11/2019

Fig. S4. ¹H NMR (600 MHz) spectrum of **3** in DMSO-*d*₆

Fig. S5. ¹³C NMR (150 MHz) spectrum of **3** in DMSO-*d*₆

Fig. S6. HSQC (600 MHz) spectrum of **3** in DMSO- d_6

Fig. S7. HMBC (600 MHz) spectrum of **3** in DMSO-*d*₆

Fig. S8. ROESY (600 MHz) spectrum of **3** in DMSO-*d*₆

Qualitative Analysis Report

e Name H9102
n P1-C2
1102
ame
ed Time 3/11/2019 2:29:41 PM
thod Default.m
1

User Spectra

/ -	_															
285.0241		218.	58													
330.8971		287.	57													
337.0899		270.	67													
345.1053	1	1573	3.57	C15 H18 N2 O6	5	(M+Na)+										
346.1078	1	215.	08	C15 H18 N2 O6	5	(M+Na)+										
367.0887		294.	34													
399.1062		238.	65													
437.1944	1	2455	5.96													
438.1994	1	618.	82													
659.2844	1	302.	24													
Formula Cal	ulat	or El	ement Lir	nits				-								
Element	Min		Мах													
C		3	60													
Н		0	60													
0		0	10													
N		0	3													
Formula Cal	culat	orRe	esults													
Formula			Calculat	edMass	CalculatedM	Z	Μz		Diff. (r	nDa)			Diff. (ppm	Diff. (ppm)	Diff. (ppm)	Diff. (ppm)
C15 H18 N2 O	6			322.1165		345.1057		345.1053			0.40			1.1	1.16	1.16
,												1				

---- End Of Report ----

Agilent Technologies

Printed at: 2:33 PM on: 3/11/2019

Fig. S10. ¹H NMR (600 MHz) spectrum of **4** in DMSO-*d*₆

Fig. S12. HSQC (600 MHz) spectrum of **4** in DMSO-*d*₆

Fig. S13. HMBC (600 MHz) spectrum of $\mathbf{4}$ in DMSO- d_6

Fig. S14. ROESY (600 MHz) spectrum of 4 in DMSO-d₆

Qualitative Analysis Report

--- End Of Report ---

Agilent Technologies

Page 1 of 1

Printed at: 4:10 PM on: 3/20/2019

Fig. S16. ¹H NMR (600 MHz) spectrum of **5** in DMSO- d_6

24

Fig. S18. HSQC (600 MHz) spectrum of **5** in DMSO-d₆

Fig. S19. HMBC (600 MHz) spectrum of **5** in DMSO-d₆

Fig. S21. ¹H NMR (600 MHz) spectrum of **8** in DMSO- d_6

h DMSO F:\\ nmr 45

Fig. S24. ¹H NMR (100 MHz) spectrum of **9** in DMSO-*d*₆

Fig. S25. ¹H NMR (400 MHz) spectrum of **10** in DMSO-*d*₆

Fig. S26. ¹H NMR (100 MHz) spectrum of **10** in DMSO- d_6

Supplementary references

- L. Li, Z. Xu, X. Xu, J. Wu, Y. Zhang, T. Zhang, X. He, T. Zabriskie and Z. Deng, The mildiomycin biosynthesis: initial steps for sequential generation of 5-hydroxymethylcytidine 5'-monophosphate and 5-hydroxymethylcytosine in *Streptoverticillium rimofaciens* ZJU5119. *ChemBioChem.*, 2008, 9, 1286-1294.
- 2. M. S. B. Paget, L. Chamberlin, A. Atrih, S. J. Foster and M. J. Buttner, Evidence that the extracytoplasmic function sigma factor sigmaE is required for normal cell wall structure in *Streptomyces coelicolor* A3(2).1999, *J. Bacteriol.*, **181**, 204–211.
- 3. K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in *Escherichia coli* K-12 using PCR products. *Proc. Natl. Acad. Sci. U. S. A*, 2000, **97**, 6640-6645.
- 4. T. Hosaka, M. Ohnishi-Kameyama, H. Muramatsu, K. Murakami, Y. Tsurumi, S. Kodani, M. Yoshida, A. Fujie and K. Ochi, Antibacterial discovery in actinomycetes strains with mutations in RNA polymerase or ribosomal protein S12. *Nat. Biotechnol.*, 2009, **27**, 462-464.