Visible Light Induced Deaminative Alkylation of

Difluoroenoxysilanes: A Transition Metal Free Strategy

Qi-Ping Huang, ^a Yang Huang, ^a An-Jun Wang, ^a Liang Zhao, ^{a, b} Jia Jia, ^a Yanbo Yu, ^c Jie Tong, ^d Jiwei Gu ^c and Chun-Yang He ^{*, a, b}

^a Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, Generic Drug Research Center of Guizhou Province, Zunyi Medical University, Zunyi, Guizhou, P. R. China. * hechy2002@163.com

^b Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine

of Ministry of Education. School of Pharmacy. Zunyi Medical University, Zunyi, Guizhou, P. R. China

° School of Medicine, Washington University in St. Louis, St. Louis, Missouri 63110, United States

^d School of Medicine, Yale University, New Haven, Connecticut 06510, United States.

*E-mail: hechy2002@163.com

List of Contents

1) General information	S03
2) General procedure for the synthesis of Katritzky salts 1	S03
3) General procedure for visible light promoted deaminative difluoroalkylati	on of
Amines	S06
4) Detailed procedure for the 1 mmol-scale synthesis of compound 3a , 3ad .	S07
5) Mechanism studies	S09
6) Data for compounds 1, 3, 6	S14
7) References	S33
8) Copies of NMR spectra of 1 , 3 , 5 , 6	S34

1. General information.

¹H NMR and ¹³C NMR spectra were recorded on an Agilent MR400 spectrometer. ¹⁹F NMR was recorded on an Agilent MR400 spectrometer (CFCl₃ as outside standard and low field is positive). Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br = broad. NMR yield was determined by ¹⁹F NMR using p-fluorotoluene as an internal standard before working up the reaction.

Materials: All reagents were used as received from commercial sources, unless specified otherwise, or prepared as described in the literature. All reagents were weighed and handled in air at room temperature.

2. General procedure for the synthesis of Katritzky salts 1.

 $1a^{[1]}, 1b^{[2]}, 1c^{[2]}, 1d^{[2]}, 1e^{[2]}, 1f^{[2]}, 1g^{[2]}, 1h^{[2]}, 1i^{[2]}, 1j^{[1]}, 1k^{[2]}, 11^{[2]}, 1n^{[2]}, 1o^{[2]}, 1p^{[2]}, 1q^{[2]}, 1r^{[2]}, 1s^{[2]}, 1s^{[2]}, 1t^{[2]}, 1u^{[2]}, 1v^{[2]}, 1y^{[3]}, 1aa^{[3]}, 1ab^{[2]}, 1ac^{[2]}, 1ad^{[2]}, 1ae^{[2]}, 1af^{[2]}, 1af^{[2]}, 1ag^{[2]}, 1ah^{[2]}, 1ai^{[2]}, 1ai^{[2]}, 1ai^{[2]}, 1ai^{[2]}, 1ai^{[3]}, 1an^{[6]}, were prepared according to previous reported procedures. 1m, 1n, 1z, 1aj, 1ak (unknown Katritzky salts) were prepared according to literature procedures^{[2]} as described as follows:$

Procedure 2a. A 25 mL Schlenk tube equipped with a magnetic stirrer bar was charged with triphenylpyrylium tetrafluoroborate (2.5 mmol, 1.0 equiv.) and the corresponding primary amine (3.0 mmol, 1.2 equiv., if solid). Ethanol (2.5 mL, 1.0 M) was added followed by the corresponding primary amine (3.0 mmol, 1.2 equiv., if liquid). No precautions were taken to exclude oxygen or water. The reaction mixture was stirred and heated at reflux in an oil bath at 90 °C for 5 h. If precipitation occurred during the reaction, the solid was collected by filtration and washed with Et₂O (3×25 mL). If no precipitation occurred, Et₂O (7.5 mL) was added and the crude mixture was stirred for 1 h. The resulting solid was collected by filtration and washed with Et₂O (3×25 mL). If

precipitation did still not take place, the solvent was removed under reduced pressure and the crude product was purified by flash column chromatography, eluting with CH₂Cl₂/MeOH.

Amine hydrochlorides as starting materials: The corresponding amine hydrochloride (3.0 mmol, 1.2 equiv.) was weighed into a 25 mL Schlenk tube containing a magnetic stirring bar. EtOH (2.5 mL, 1.0 M) and Et₃N (3.0 mmol, 1.2 equiv.) were added successively. The resulting suspension was stirred at room temperature for 30 min. 2,4,6-Triphenylpyrylium tetrafluoroborate (2.5 mmol, 1.0 equiv.) was added in one portion and the reaction mixture was stirred and heated at reflux in an oil bath at 90 °C for 5 h. If precipitation occurred during the reaction, the solid was collected by filtration and washed with H₂O (3×25 mL). If no precipitation occurred, Et₂O (7.5 mL) was added and the crude mixture was stirred for 1 h. The resulting solid was collected by filtration and washed with H₂O (3×25 mL). If precipitation did still not take place, the solvent was removed under reduced pressure. The crude product was then dissolved in CH₂Cl₂, washed with H₂O and concentrated

under reduced pressure. The crude product was purified by flash column chromatography, eluting with CH₂Cl₂/MeOH.

Procedure 2b. The triphenylpyrylium tetrafluoroborate (2.5 mmol, 1.0 equiv.) and the corresponding primary amine (2.5 mmol, 1.0 equiv.) was weighed into a 25 ml Schlenk tube containing a magnetic stirring bar. CH_2Cl_2 (5.0 mL, 0.5 M) and then Et₃N (1.0 equiv. for free base amines; 2.0 equiv. for amine hydrochloride salts) were added successively. The mixture was stirred at room temperature for 30 min. Acetic acid (2.0 equiv.) was added and the reaction mixture was stirred at room temperature for 6 h. The reaction mixture was diluted with CH_2Cl_2 , washed successively with aq. HCl (1.0 M, 2×25 mL), aq. NaHCO₃ (sat., 2×25 mL) and brine (3×25 mL), dried over anhydrous Na₂SO₄, filtered and concentrated. The crude product was purified by flash column chromatography, eluting with $CH_2Cl_2/MeOH$.

3. General procedure for visible light promoted deaminative difluoroalkylation of aliphatic amines.

Procedure a:

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the Katritzky salt (1) (0.2 mmol, 1.0 equiv.), Hantzsch ester (10-50 mol%). The tube was evacuated and backfilled with argon three times, followed by DMSO and NMP (3:1, 2.0 mL) with stirring. Difluoroenoxytriethylsilane (2) (0.4 mmol, 2.0 equiv.) was added subsequently. The tube was screw capped and heated to 50 °C under irradiation of blue LEDs. After stirring for 24 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product.

Procedure b:

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the Katritzky salt (1) (0.2 mmol, 1.0 equiv.). The tube was evacuated and backfilled with argon three times, followed by DMSO (2.0 mL) with stirring. Difluoroenoxytriethylsilane (2) (0.4 mmol, 2.0 equiv.) was added subsequently. The tube was screw capped and heated to 50 °C under irradiation of blue LEDs. After stirring for 24 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide pure product.

4. Detailed procedure for the gram scale synthesis of compound 3a, 3af.

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the **1a** (4.0 mmol, 1.0 equiv.), Hantzsch ester (0.4 mmol, 10 mol%). The tube was evacuated and backfilled with argon three times, followed by DMSO and NMP (3:1, 16.0 mL) were added with stirring. Difluoroenoxytriethylsilane (**2**) (8.0 mmol, 2.0 equiv.) was added subsequently. The tube was screw capped and heated to 50 °C under irradiation of blue LEDs. After stirring for 48 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The product **3a** (1012 mg, 68% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as white solid.

Procedure a: A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the **1af** (4.0 mmol, 1.0 equiv.), Hantzsch ester (0.4 mmol, 10 mol%). The tube was evacuated and backfilled with argon three times, followed by DMSO and NMP (3:1, 16.0 mL) with stirring. Difluoroenoxytriethylsilane (**2**) (8.0 mmol, 2.0 equiv.) was added subsequently. The tube was screw capped and heated to 50 °C under irradiation of blue LEDs. After stirring for 48 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The product **3af** (904 mg, 71% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil.

Procedure b: A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the **1af** (4.0 mmol, 1.0 equiv.). The tube was evacuated and backfilled with argon three times, followed by DMSO (16.0 mL) with stirring. Difluoroenoxytriethylsilane (**2**) (8.0 mmol, 2.0 equiv.) was added subsequently. The tube was screw capped and heated to 50 °C under irradiation of blue LEDs. After stirring for 42 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The product **3af** (777 mg, 61% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil.

5. Mechanism studies.

5.1 Addition of radical and SET inhibitors.

Typical procedure: A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the Katritzky salt (**1a**) (0.2 mmol, 1.0 equiv.), Hantzsch ester (0.02 mmol, 10 mol%) and TEMPO (0.2 mmol, 1.0 equiv.). The tube was evacuated and backfilled with argon three times, followed by DMSO and NMP (3:1, 2.0 mL) were added with stirring. Difluoroenoxytriethylsilane (**2**) (0.4 mmol, 2.0 equiv.) was added subsequently. The tube was screw capped and heated to 50 °C under irradiation of blue LEDs 24 W. After stirring for 24 h, the reaction mixture was cooled to room temperature, monitored by TLC. The reaction was totally suppressed by the addition of a radical scavenger TEMPO (100 mol%), which suggests that the involvement of radical intermediates is likely during the reaction.

5.2 Trapping of intermediates.

Typical procedure: A 25 mL oven-dried Schlenk tube equipped with a magnetic bar was charged with the Katritzky salt (4)^[7] (0.2 mmol, 1.0 equiv.), Hantzsch ester (0.02 mmol, 10 mol%). The tube was evacuated and backfilled with argon three times, followed by DMSO and NMP (3:1, 2.0 mL) were added with stirring. Difluoroenoxytriethylsilane (2) (0.4 mmol, 2.0 equiv.) was added subsequently. The tube was screw capped and heated to 50 °C under irradiation of blue LEDs 24 W. After stirring for 24 h, the reaction mixture was cooled to room temperature, diluted with ethyl acetate, washed with H₂O and brine, dried over anhydrous Na₂SO₄, filtered and concentrated. The residue was purified with silica gel chromatography to provide

product **5**^[2]. (The yield of the crude ring-opened product **5** was determined to be 5% by ¹⁹F-NMR analysis with p-fluorotoluene as an internal standard). ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 8.0 Hz, 2H), 7.02 – 6.95 (m, 1H), 5.90 (dt, *J* = 15.6, 1.5 Hz, 1H), 3.73 (s, 3H), 2.54 – 2.48 (m, 2H), 2.42 – 2.30 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 100.16 (t, *J* = 17.1 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.8 (t, *J* = 31.8 Hz), 166.7, 146.6, 134.5, 131.6, 130.2 (t, *J* = 3.0 Hz), 128.7, 121.9, 119.1 (t, *J* = 254.9 Hz), 51.6, 32.1 (t, *J* = 23.1 Hz), 24.3 (t, *J* = 5.1 Hz).

5.3 UV-Vis spectroscopic measurement.

Solution 1: 1a (0.2 mmol, 1.0 equiv.) were added in DMSO/NMP (4.0 mL, 3:1). The mixture was stirred for 20 minutes and filtered.

Solution 2: Hantzsch ester (0.2 mol, 1.0 equiv.) was added in DMSO/NMP (4.0 mL, 3:1). The mixture was stirred for 20 minutes and filtered.

Solution **3**: **1a** (0.2 mmol, 1.0 equiv.) combine Hantzsch ester (0.2 mol, 1 equiv.) was added in DMSO/NMP (4.0 mL, 3:1). The mixture was stirred for 20 minutes and filtered. Performed on UV visible spectrophotometer, recorded in 1 cm path quartz cuvettes using T6 Xinyue visible spectrophotometer (PERSEETM), DMSO/NMP (3:1) as blank sample.

A $\lambda (nm)$	1 a	HE	1a + HE	A λ (nm)	1a	HE	1a + HE
440	0.213	0.505	0.852	530	0.075	0.007	0.078
450	0.183	0.052	0.295	540	0.063	0.007	0.065
460	0.164	0.013	0.217	550	0.053	0.008	0.055
470	0.15	0.009	0.187	560	0.046	0.007	0.047
480	0.136	0.007	0.163	570	0.041	0.008	0.041
490	0.124	0.007	0.143	580	0.036	0.007	0.036
500	0.111	0.007	0.124	590	0.032	0.007	0.032
510	0.099	0.007	0.108	600	0.03	0.008	0.03
520	0.088	0.007	0.094	610	0.027	0.007	0.026

Solution 1: 1af (0.2 mmol, 1.0 equiv.) were added in DMSO (3.0 mL). The mixture was stirred for 20 minutes and filtered.

Solution 2: Difluoroenoxytriethylsilane (0.4 mol, 2.0 equiv.) was added in DMSO (3.0 mL). The mixture was stirred for 20 minutes and filtered.

Solution **3**: **1af** (0.2 mmol, 1.0 equiv.) combine Difluoroenoxytriethylsilane (0.4 mol, 1 equiv.) was added in DMSO (3.0 mL). The mixture was stirred for 20 minutes and filtered.

Performed on UV visible spectrophotometer, recorded in 1 cm path quartz cuvettes using T6 Xinyue visible spectrophotometer (PERSEETM), DMSO (3.0 mL) as blank sample.

A	1af	2	1af + 2	A	1af	2	1af + 2
λ (nm)				λ (nm)			
420	0.535	0.019	0.472	520	0.037	0.01	0.058
430	0.499	0.017	0.422	530	0.029	0.011	0.052
440	0.447	0.016	0.36	540	0.022	0.01	0.046
450	0.339	0.014	0.262	550	0.019	0.01	0.043
460	0.234	0.013	0.178	560	0.016	0.01	0.04
470	0.17	0.011	0.133	570	0.014	0.01	0.039
480	0.123	0.011	0.106	580	0.013	0.01	0.037
490	0.092	0.011	0.091	590	0.012	0.01	0.036
500	0.067	0.011	0.078	600	0.011	0.01	0.036
510	0.049	0.011	0.068	610	0.011	0.01	0.035

5.4 The time profile of reactions.

Typical procedure: To 25 mL oven-dried Schlenk tube (No.1-8) equipped with a magnetic stirrer bar was charged with the Katritzky salt (**1a**) (0.2 mmol, 1.0 equiv.), Hantzsch ester (0.04 mmol, 20 mol%). The tube was evacuated and backfilled with argon three times, followed by DMSO and NMP (3:1, 2.0 mL) with stirring. Difluoroenoxytriethylsilane (**2**) (0.4 mmol, 2.0 equiv.) was added subsequently. The tube 1 was determined by ¹H NMR and ¹⁹F NMR immediately. The tube 2-8 were heated to 50 °C and stirring for 2-24 h. After stirring for 2 h, 4 h, 8 h, 12 h, 16 h, 20 h or 24 h, the reaction mixture was cooled to room temperature, then monitored by ¹H NMR and ¹⁹F NMR.

Entry	Time (h)	Yield of $3a$ (¹⁹ F-NMR)	6: HE
1	0	0	0
2	2	2	0.024
3	4	14	0.017
4	8	19	0.04
5	12	30	0.57
6	16	46	0.65
7	20	82	0.72
8	24	82.5	0.76

5.5 Determination of the quantum yield ^[1].

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the **1a** (0.6 mmol, 1.0 equiv.), Hantzsch ester (0.06 mmol, 10 mol%). The tube was evacuated and backfilled with argon three times, followed by DMSO and NMP (3:1, 6.0 mL) with stirring. Difluoroenoxytriethylsilane (**2**) (1.2 mmol, 2.0 equiv.) was added subsequently. The tube was stored protected from light. 2.0 mL of this stock solution was transferred to a quartz cuvette under an argon atmosphere. The cuvette was capped with a stopper and sealed with parafilm. The reaction mixture was heated to 50 °C under irradiation of blue LEDs ($\lambda_{max} = 455$ nm). After stirring for 2 h, the yield determined by HPLC analysis with styrene as an internal standard. The yield of the desired product 3a was determined to be 4.7 % (8.68 * 10⁻⁶ mol). The reaction quantum yield (Φ) was determined using eq 1.

$$\Phi = \frac{\text{mol of product}}{\text{photon flux } \bullet \text{t} \bullet \text{f}}$$
(1)
$$\Phi = \frac{8.68 * 10^{-6} \text{ mol}}{2.5 * 10^{-9} \text{ E s}^{-1} * 7200 * 0.943} = 0.51$$

A 25 mL oven-dried Schlenk tube equipped with a magnetic stirrer bar was charged with the **1af** (0.6 mmol, 1.0 equiv.). The tube was evacuated and backfilled with argon three times, followed by DMSO (6.0 mL) with stirring. Difluoroenoxytriethylsilane (**2**) (1.2 mmol, 2.0 equiv.) was added subsequently. The

tube was stored protected from light. 2.0 mL of this stock solution was transferred to a quartz cuvette under an argon atmosphere. The cuvette was capped with a stopper and sealed with parafilm. The reaction mixture was heated to 50 °C under irradiation of blue LEDs ($\lambda_{max} = 455$ nm). After stirring for 2 h, the yield determined by HPLC analysis with styrene as an internal standard. The yield of the desired product 3ad was determined to be 1.3 % (2.34 * 10⁻⁶ mol). The reaction quantum yield (Φ) was determined using eq 1.

$$\Phi = \frac{\text{mol of product}}{\text{photon flux } \bullet t \bullet f}$$
(1)
$$\Phi = \frac{2.34 * 10^{-6} \text{ mol}}{2.5 * 10^{-9} \text{ E s}^{-1} * 7200 * 0.868} = 0.15$$

6. Data for compounds 1, 3, 6.

2,4,6-triphenyl-1-(thiophen-2-ylmethyl)pyridin-1-ium tetrafluoroborate (1m). The product (651.0 mg, 53% yield) was purified with silica gel chromatography (DCM/ MeOH = 100:1) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (s, 2H), 7.72 – 7.71 (m, 2H), 7.66 (d, *J* = 6.8 Hz, 4H), 7.52 – 7.47 (m, 9H), 6.06 (s, 1H), 6.39 (s, 1H), 6.26 (s, 1H), 5.71 (s, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.62 (minor, ¹¹BF₄), -152.67 (major, ¹⁰BF₄). ¹³C NMR (101 MHz, CDCl₃) δ 157.0, 156.1, 133.8, 133.6, 132.6, 132.2, 130.9, 129.6, 129.1, 128.9, 128.0, 126.9, 126.5, 125.5, 123.7, 54.0. MS (ESI): m/z (%) 404.1 ([M-BF₄]⁺, 100). HRMS (ESI): calculated for C₂₈H₂₂NS ([M-BF₄]⁺): 404.1467; Found: 404.1469.

1-(4-methoxy-4-oxobutan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate (1x). The product (520.1 mg, 42% yield) was purified with silica gel chromatography (DCM/ MeOH = 100:1) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (s, 2H),

7.70 – 7.64 (m, 6H), 7.60 – 7.55 (m, 6H), 7.49 – 7.46 (m, 1H), 7.41 – 7.37 (m, 2H), 5.41 – 5.32 (m, 1H), 3.54 (s, 3H), 2.84 – 2.78 (m, 1H), 2.33 – 2.27 (m, 1H), 1.47 (d, J= 7.2 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -152.94 (minor, ¹¹BF₄), -153.00 (major, ¹⁰BF₄). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 155.1, 133.7, 133.4, 131.9, 130.9, 129.4, 129.1 – 128.6 (m), 128.1, 61.6, 52.1, 39.5, 22.0 (three carbon signal missing due to signal broadening). MS (ESI): m/z (%) 408.2 ([M-BF₄]⁺, 100). HRMS (ESI): calculated for C₂₈H₂₆NO₂ ([M-BF₄]⁺): 408.1958; Found: 408.1958.

2,2-difluoro-3-(4-iodophenyl)-1-phenylpropan-1-one (3a). The product (60.3 mg, 81% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 8.0 Hz, 2H), 7.66 – 7.61 (m, 3H), 7.48 (t, *J* = 7.6 Hz, 2H), 7.06 (d, *J* = 8.0 Hz, 2H), 3.46 (t, *J* = 17.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.48 (t, *J* = 17.1 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.0 (t, *J* = 31.4 Hz), 137.5, 134.4, 132.8, 131.8 (t, *J* = 2.7 Hz), 130.9 (t, *J* = 3.6 Hz), 130.1 (t, *J* = 3.3 Hz), 128.6, 118.0 (t, *J* = 256.3 Hz), 93.4, 39.5 (t, *J* = 23.4 Hz). MS (EI): m/z (%) 372 (M⁺), 105 (100). HRMS (EI): calculated for C₁₅H₁₁F₂IO: 371.9823; Found: 371.9819.

3-(4-Chlorophenyl)-2,2-difluoro-1-phenylpropan-1-one (3b). This compound is known^[2]. The product (44.3 mg, 79% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, *J* = 7.6 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 8.0 Hz, 2H), 7.31 – 7.24 (m, 4H), 3.49 (t, *J* = 17.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.58 (t, *J* = 17.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.1 (t, *J* = 31.4 Hz), 134.4,

133.7, 132.2, 131.9 (t, *J* = 2.5 Hz), 130.1 (t, *J* = 3.4 Hz), 129.8 (t, *J* = 3.7 Hz), 128.7, 128.6, 118.1 (t, *J* = 256.2 Hz), 39.3 (t, *J* = 23.4 Hz).

2,2-Difluoro-3-(4-fluorophenyl)-1-phenylpropan-1-one (3c). This compound is known^[2]. The product (40.2 mg, 76% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.29 – 7.27 (m, 2H), 7.01 (t, *J* = 8.6 Hz, 2H), 3.49 (t, *J* = 17.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.80 (t, *J* = 17.7 Hz, 2F), -114.95 – -115.02 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 189.3 (t, *J* = 31.3 Hz), 162.4 (d, *J* = 247.3 Hz), 134.3, 132.4 (d, *J* = 8.2 Hz), 132.0 (t, *J* = 2.5 Hz), 130.1 (t, *J* = 3.4 Hz), 128.6, 127.0 – 126.9 (m), 118.2 (t, *J* = 256.3 Hz), 115.3 (d, *J* = 21.6 Hz), 39.2 (t, *J* = 23.5 Hz).

4-(2,2-Difluoro-3-oxo-3-phenylpropyl)benzonitrile (3d). This compound is known^[2]. The product (46.1 mg, 85% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 50:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 8.4 Hz, 2H), 7.66 – 7.62 (m, 3H), 7.51 – 7.44 (m, 4H), 3.58 (t, *J* = 17.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -97.98 (t, *J* = 17.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.5 (t, *J* = 31.5 Hz), 137.0 (t, *J* = 3.5 Hz), 134.6, 132.1, 131.7, 131.6, 130.1 (t, *J* = 3.3 Hz), 128.7, 118.6, 117.9 (t, *J* = 257.1 Hz), 111.6, 39.8 (t, *J* = 23.4 Hz).

Methyl 4-(2,2-difluoro-3-oxo-3-phenylpropyl)benzoate (3e). This compound is known^[2]. The product (51.1 mg, 84% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 50:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.6 Hz, 2H), 7.99 (d, *J* = 8.0 Hz, 2H), 7.61 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.8 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 3.90 (s, 3H), 3.57 (t, *J* = 17.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.24 (t, *J* = 17.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.9 (t, *J* = 31.4 Hz), 166.8, 136.6 (t, *J* = 3.5 Hz), 134.4, 131.8 (t, *J* = 2.8 Hz), 130.9, 130.1 (t, *J* = 3.3 Hz), 129.6, 129.4, 128.6, 118.1 (t, *J* = 256.5 Hz), 52.1, 39.9 (t, *J* = 23.4 Hz).

Me CF₂COPh

2,2-Difluoro-1-phenyl-3-(p-tolyl)propan-1-one (3f). This compound is known^[2]. The product (33.3 mg, 64% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.0 Hz, 2H), 7.62 (d, J = 7.4 Hz, 1H), 7.48 (t, J = 7.6 Hz, 2H), 7.22 – 7.14 (m, 4H), 3.50 (t, J = 18.0 Hz, 2H), 2.35 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.79 (t, J = 17.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.5 (t, J = 31.2 Hz), 137.3, 134.2, 132.1 (t, J = 2.7 Hz), 130.7, 130.1 (t, J = 3.3 Hz), 129.1, 128.6, 128.0 (t, J = 3.6 Hz), 118.3 (t, J = 255.5 Hz), 39.7 (t, J = 23.3 Hz), 21.1.

3-(2-Bromophenyl)-2,2-difluoro-1-phenylpropan-1-one (3g). This compound is known^[2]. The product (50.1 mg, 77% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0 Hz, 2H), 7.65 – 7.59 (m, 2H), 7.49 (t, *J* = 7.6 Hz, 2H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.30 (t, *J* = 7.6 Hz, 1H), 7.17 (t, *J* = 7.8 Hz, 1H), 3.76 (t, *J* = 18.0 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.86 (t, *J* = 18.0 Hz, 2F).

¹³C NMR (101 MHz, CDCl₃) δ 189.1 (t, *J* = 30.9 Hz), 134.4, 133.1, 132.6, 131.8 (t, *J* = 2.6 Hz), 131.5 (t, *J* = 2.6 Hz), 130.2 (t, *J* = 3.4 Hz), 129.3, 128.6, 127.3, 126.1, 118.2 (t, *J* = 256.7 Hz), 39.3 (t, *J* = 23.1 Hz).

2,2-difluoro-1-phenyl-3-(2-(trifluoromethyl)phenyl)propan-1-one (**3h**). This compound is known^[2]. The product (45.9 mg, 73% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.12 (d, *J* = 8.4 Hz, 2H), 7.71 (d, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.58 – 7.41 (m, 5H), 3.77 (t, *J* = 18.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -58.64 (t, *J* = 5.8 Hz, 3F), -98.34 – -98.45 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.0 (t, *J* = 31.4 Hz), 134.4, 133.1, 131.6, 130.5, 130.2 (t, *J* = 3.4 Hz), 130.0, 128.7, 127.7, 126.4 (q, *J* = 5.7 Hz), 124.2 (q, *J* = 275.2 Hz), 117.8 (t, *J* = 256.9 Hz), 35.7 (t, *J* = 22.7 Hz).

2,2-difluoro-1-phenyl-3-(o-tolyl)propan-1-one (3i). This compound is known^[2]. The product (40.1 mg, 77% yield) was purified with silica gel chromatography Petroleum ether/ Dichloromethane = 200:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.48 (t, *J* = 7.8 Hz, 2H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.22 - 7.15 (m, 3H), 3.57 (t, *J* = 18.4 Hz, 2H), 2.38 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.67 (t, *J* = 18.4 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.8 (t, *J* = 31.3 Hz), 138.0, 134.2, 132.1 (t, *J* = 2.4 Hz), 131.7, 130.5, 130.1 (t, *J* = 3.4 Hz), 129.8 (t, *J* = 2.8 Hz), 128.6, 127.7, 125.8, 118.8 (t, *J* = 255.7 Hz), 36.7 (t, *J* = 23.3 Hz), 19.9 (t, *J* = 1.9 Hz).

2,2-Difluoro-1-phenyl-3-(3-(trifluoromethyl)phenyl)propan-1-one (3j). This compound is known^[2]. The product (54.7 mg, 87% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 7.2 Hz, 2H), 7.65 – 7.44 (m, 7H), 3.58 (t, J = 17.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -62.68 (s, 3F), -98.54 (t, J = 17.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.8 (t, J = 31.4 Hz), 134.5, 134.3, 132.4 (t, J = 3.5 Hz), 131.7 (t, J = 3.0 Hz), 130.8 (q, J = 32.3 Hz), 130.2 (t, J = 3.3 Hz), 128.8, 128.7, 127.6 (q, J = 3.8 Hz), 124.5 (q, J = 3.8 Hz), 123.9 (q, J = 273.6 Hz), 118.0 (t, J = 256.6 Hz), 39.6 (t, J = 23.4 Hz).

2,2-difluoro-1,3-diphenylpropan-1-one (3k). This compound is known^[2]. The product (36.4 mg, 74% yield) was purified with silica gel chromatography Petroleum ether/ Dichloromethane = 200:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.05 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.8 Hz, 2H), 7.33 (s, 5H), 3.54 (t, J = 17.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.68 (t, J = 17.9 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.5 (t, J = 31.3 Hz), 134.2, 132.1 (t, J = 2.6 Hz), 131.2 (t, J = 3.7 Hz), 130.8, 130.1 (t, J = 3.4 Hz), 128.6, 128.4, 127.6, 118.3 (t, J = 255.7 Hz), 40.1 (t, J = 23.4 Hz).

2,2-Difluoro-1-phenyl-3-(pyridin-3-yl)propan-1-one (31). This compound is known^[2]. The product (40.1 mg, 81% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 10:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.58 – 8.55 (m, 2H), 8.07 (d, *J* = 7.6 Hz, 2H), 7.70 (d, *J* = 7.6 Hz, 1H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.30 – 7.28 (m, 1H), 3.53 (t, *J* =

17.6 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.34 (t, J = 17.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.6 (t, J = 31.6 Hz), 151.5, 148.7, 138.4, 134.5, 131.6, 130.1 (t, J = 3.3 Hz), 128.7, 127.4 (t, J = 3.0 Hz), 123.3, 117.9 (t, J = 256.6 Hz), 37.2 (t, J = 23.7 Hz).

2,2-difluoro-1-phenyl-3-(thiophen-2-yl)propan-1-one (3m). The product (37.8 mg, 75% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 120:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.29 – 7.27 (m, 1H), 7.19 (s, 1H), 7.06 (d, *J* = 4.8 Hz, 1H), 3.58 (t, *J* = 17.4 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -98.47 (t, *J* = 17.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.4 (t, *J* = 31.4 Hz), 134.2, 132.1, 131.0 (t, *J* = 4.1 Hz), 130.1 (t, *J* = 3.4 Hz), 129.5, 128.6, 125.6, 124.9, 118.1 (t, *J* = 256.0 Hz), 34.8 (t, *J* = 24.2 Hz). MS (ESI): m/z (%) 275 ([M+Na]⁺, 100). HRMS (ESI): calculated for C₁₃H₁₀F₂OSNa ([M+Na]⁺): 275.0420; Found: 275.0313.

Tert-butyl 3-(1,1-difluoro-2-oxo-2-phenylethyl)pyrrolidine-1-carboxylate (**3n**). This compound is known^[2]. The product (49.5 mg, 76% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 20:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl3) δ 8.11 (d, *J* = 7.2 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 3.68 – 3.14 (m, 6H), 2.16 – 2.08 (m, 1H), 1.45 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.61 – -105.94 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.7 (t, *J* = 32.1 Hz), 154.3, 134.6, 131.7, 130.2(t, *J* = 3.3 Hz), 128.7, 119.1 (t, *J* = 257.1 Hz), 79.5, 45.23, 45.17, 41.7 (br), 28.5, 24.6.

Tert-butyl 4-(1,1-difluoro-2-oxo-2-phenylethyl)piperidine-1-carboxylate (30). This compound is known^[2]. The product (58.4 mg, 86% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 20:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.6 Hz, 2H), 4.19 (br, 2H), 2.69 (t, *J* = 11.8 Hz, 2H), 2.50 – 2.37 (m, 1H), 1.78 (d, *J* = 12.8 Hz, 2H), 1.52 – 1.47 (m, 2H), 1.44 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.87 (t, *J* = 13.3 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.5 (t, *J* = 31.0 Hz), 154.6, 134.3, 132.4, 130.0 (t, *J* = 3.5 Hz), 128.7, 119.4 (t, *J* = 256.5 Hz), 79.6, 43.1 (br), 40.2 (t, *J* = 22.2 Hz), 28.4, 24.2.

2,2-Difluoro-1-phenyl-2-(tetrahydro-2H-pyran-4-yl)ethan-1-one (**3p**). This compound is known^[2]. The product (22.6 mg, 47% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 50:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 2H), 7.64 (t, *J* = 7.6 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 4.04 (d, *J* = 11.2 Hz, 2H), 3.46 – 3.38 (m, 2H), 2.64 – 2.49 (m, 1H), 1.74 – 1.61 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.57 (d, *J* = 14.3 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.4 (t, *J* = 31.0 Hz), 134.3, 132.4 (t, *J* = 2.3 Hz), 130.0 (t, *J* = 3.6 Hz), 128.7, 119.2 (t, *J* = 256.3 Hz), 67.0, 39.1 (t, *J* = 22.4 Hz), 24.8 (t, *J* = 4.4 Hz).

2-Cyclododecyl-2,2-difluoro-1-phenylethan-1-one (**3q**). This compound is known^[2]. The product (45.8 mg, 71% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as colorless oil. ¹H NMR (400 MHz,

CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.62 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 2.53 – 2.41 (m, 1H), 1.61 – 1.23 (m, 22H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.25 (d, J = 16.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 190.4 (t, J = 30.6 Hz), 134.0, 132.8, 129.9 (t, J = 3.3 Hz), 128.6, 121.6 (t, J = 256.7 Hz), 38.4 (t, J = 20.6 Hz), 24.3, 23.6, 23.5, 23.4, 22.4.

2-Cyclooctyl-2,2-difluoro-1-phenylethan-1-one (3r). This compound is known^[2]. The product (32.5 mg, 61% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 2.59 – 2.46 (m, 1H), 1.80 – 1.75 (m, 4H), 1.61 – 1.49 (m, 10H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.04 (d, *J* = 15.0 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 190.5 (t, *J* = 31.0 Hz), 134.0, 132.9, 129.9 (t, *J* = 3.5 Hz), 128.6, 121.4 (t, *J* = 256.9 Hz), 41.2 (t, *J* = 20.4 Hz), 26.6, 26.2, 25.6 (t, *J* = 4.1 Hz), 25.4.

2-Cycloheptyl-2,2-difluoro-1-phenylethan-1-one (3s). This compound is known^[2]. The product (36.3 mg, 72% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 6.8 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 2.50 – 2.35 (m, 1H), 1.88 – 1.82 (m, 2H), 1.78 – 1.72 (m, 2H), 1.60 – 1.41 (m, 8H). ¹⁹F NMR (376 MHz, CDCl₃) δ -106.95 (d, *J* = 16.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 190.5 (t, *J* = 30.8 Hz), 134.0, 132.9, 129.9 (t, *J* = 3.6 Hz), 128.6, 121.1 (t, *J* = 256.6 Hz), 43.3 (t, *J* = 20.7 Hz), 28.2, 26.49, 26.46, 26.4.

2-Cyclohexyl-2,2-difluoro-1-phenylethan-1-one (3t). This compound is known^[2]. The product (41.5 mg, 87% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.62 (t, *J* = 7.6 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 2.31 – 2.18 (m, 1H), 1.82 (t, *J* = 9.2 Hz, 4H), 1.70 – 1.68 (m, 1H), 1.34 – 1.16 (m, 5H). ¹⁹F NMR (376 MHz, CDCl₃) δ -108.55 (d, *J* = 15.0 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 190.4 (t, *J* = 30.4 Hz), 134.0, 132.9 (t, *J* = 1.8 Hz), 130.0 (t, *J* = 3.6 Hz), 128.6, 120.3 (t, *J* = 255.5 Hz), 42.1 (t, *J* = 21.8 Hz), 25.9, 25.4, 24.8 (t, *J* = 4.2 Hz).

2-(2,3-Dihydro-1H-inden-2-yl)-2,2-difluoro-1-phenylethan-1-one (3u). This compound is known^[2]. The product (40.8 mg, 75% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 200:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.17 (d, *J* = 7.6 Hz, 2H), 7.66 (t, *J* = 7.4 Hz, 1H), 7.53 (t, *J* = 7.8 Hz, 2H), 7.24 – 7.16 (m, 4H), 3.54 – 3.37 (m, 1H), 3.21 (d, *J* = 1.6 Hz, 2H), 3.18 (d, *J* = 2.8 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -105.6 (d, *J* = 16.5 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.3 (t, *J* = 31.8 Hz), 141.3, 134.3, 132.2 (t, *J* = 2.3 Hz), 130.2 (t, *J* = 3.4 Hz), 128.7, 126.6, 124.4, 120.2 (t, *J* = 255.7 Hz), 42.4 (t, *J* = 22.5 Hz), 32.8 (t, *J* = 4.6 Hz).

2-(4,4-difluorocyclohexyl)-2,2-difluoro-1-phenylethan-1-one (3v). This compound is known^[2]. The product (39.5 mg, 72% yield) was purified with silica gel chromatography Petroleum ether/ Dichloromethane = 200:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 2.46 – 2.33 (m, 1H), 2.22 – 2.18 (m, 2H), 1.97 – 1.95 (m, 2H), 1.83 – 1.63 (m, 4H). ¹⁹F NMR (376 MHz, CDCl₃) δ -92.23 (d, *J* = 237.3 Hz, 1F), -102.42 – -103.23 (m,

1F), -107.02 (d, J = 14.3 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 189.4 (t, J = 31.1 Hz), 134.4, 132.3 (t, J = 2.1 Hz), 130.1 (t, J = 3.6 Hz), 128.7, 122.5 (dd, J = 243.5, 240.9 Hz), 119.5 (td, J = 257.0, 2.2 Hz), 39.6 (td, J = 22.0, 1.1 Hz), 32.7 (dd, J = 25.7, 23.8 Hz), 21.5 – 21.3(m).

2,2-Difluoro-3-methyl-1,5-diphenylpentan-1-one (3w). This compound is known^[2]. The product (35.2 mg, 61% yield) was purified with silica gel chromatography (Petroleum ether/ Dichloromethane = 150:1) as colorless oil. ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 8.0 Hz, 2H), 7.62 (t, *J* = 7.4 Hz, 1H), 7.47 (t, *J* = 7.8 Hz, 2H), 7.26 (t, *J* = 7.6 Hz, 2H), 7.19 – 7.14 (m, 3H), 2.84 – 2.77 (m, 1H), 2.62 – 2.54 (m, 1H), 2.49 – 2.35 (m, 1H), 2.05 – 1.96 (m, 1H), 1.67 – 1.58 (m, 1H), 1.13 (d, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.58 (t, *J* = 16.7 Hz, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 190.0 (t, *J* = 30.5 Hz), 141.3, 134.1, 132.6, 129.9 (t, *J* = 3.6 Hz), 128.6, 128.4, 128.3, 126.0, 120.7 (t, *J* = 256.4 Hz), 37.0 (t, *J* = 21.7 Hz), 33.0, 30.6 (t, *J* = 3.8 Hz), 12.2 (t, *J* = 5.1 Hz).

MeOOC CF₂COPh

Methyl-4,4-difluoro-3-methyl-5-oxo-5-phenylpentanoate (**3x**). The product (33.3 mg, 65% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.09 (d, *J* = 8.0 Hz, 2H), 7.64 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 2H), 3.70 (s, 3H), 3.13 – 2.97 (m, 1H), 2.77 (m, 1H), 2.35 (m, 1H), 1.11 (d, *J* = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ - 105.41 (dd, *J* = 278.4, 11.8 Hz, 1F), -110.67 (dd, *J* = 278.4, 17.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 189.1 (t, *J* = 30.6 Hz), 172.1, 134.4, 132.2 (t, *J* = 2.0 Hz), 130.0 (t, *J* = 3.4 Hz), 128.7, 119.8 (dd, *J* = 257.8, 256.3 Hz), 51.9, 34.7 (t, *J* = 22.2 Hz), 34.2

(t, J = 4.4 Hz), 13.2 (t, J = 4.8 Hz). MS (ESI): m/z (%) 279 ([M+Na]⁺, 100). HRMS (ESI): calculated for C₁₃H₁₄F₂O₃Na ([M+Na]⁺): 279.0911; Found: 279.0803.

MeOOC CF₂COPh

Methyl-3,3-difluoro-2-methyl-4-oxo-4-phenylbutanoate (3y). The product (32.9 mg, 68% yield, procedure b) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 8.0 Hz, 2H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 3.69 (s, 3H), 3.63 – 3.50 (m, 1H), 1.46 (d, *J* = 7.6 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.41 (dd, *J* = 293.3, 9.0 Hz, 1F), -109.42 (dd, *J* = 293.3, 19.9 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 189.2 (t, *J* = 30.8 Hz), 170.7 (d, *J* = 10.8 Hz), 134.2, 132.1, 130.0, 128.6, 117.7 (dd, *J* = 264.1, 254.8 Hz), 52.3, 43.6 (t, *J* = 23.7 Hz), 9.8 (t, *J* = 4.6 Hz). MS (ESI): m/z (%) 265 ([M+Na]⁺, 100). HRMS (ESI): calculated for C₁₂H₁₂F₂O₃Na ([M+Na]⁺): 265.0755; Found: 265.0647.

Methyl-2-(cyclohexylmethyl)-3,3-difluoro-4-oxo-4-phenylbutanoate (3z). The product (48.7 mg, 75% yield, procedure b) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 150:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.64 (t, J = 7.4 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 3.71 (s, 3H), 3.56 – 3.45 (m, 1H), 1.89 – 1.82 (m, 2H), 1.70 – 1.58 (m, 4H), 1.25 – 1.13 (m, 4H) , 1.00 – 0.83 (m, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.24 (dd, J = 292.9, 13.5 Hz, 1F), -104.29 (dd, J = 293.3, 15.8 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.8 (t, J = 30.9 Hz), 170.5 (d, J = 8.6 Hz), 134.3, 132.0 (t, J = 2.8 Hz), 130.1 (t, J = 3.4 Hz), 128.7, 118.0 (dd, J = 262.7, 258.2 Hz), 52.2, 46.7 (dd, J = 23.4, 21.2 Hz), 35.3, 33.7,

32.8 (t, J = 3.1 Hz), 32.1, 26.4, 26.0 (d, J = 15.4 Hz). MS (ESI): m/z (%) 325 ([M+H]⁺, 100). HRMS (ESI): calculated for C₁₈H₂₃F₂O₃ ([M+H]⁺): 325.1611; Found: 325.1537.

Methyl-2-(1,1-difluoro-2-oxo-2-phenylethyl)hexanoate (3aa). The product (40.9 mg, 72% yield, procedure b) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 150:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, J = 8.0 Hz, 2H), 7.63 (t, J = 7.4 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 3.71 (s, 3H), 3.44 – 3.33 (m, 1H), 1.93 – 1.79 (m, 2H), 1.43 – 1.33 (m, 4H), 0.91 (t, J = 6.8 Hz, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.70 (dd, J = 294.6, 11.5 Hz, 1F), -104.80 (dd, J = 294.8, 16.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.9 (dd, J = 31.6, 30.6 Hz), 170.3 (d, J = 8.6 Hz), 134.3, 132.0 (t, J = 2.9 Hz), 130.1 (t, J = 3.4 Hz), 128.6, 117.9 (dd, J = 263.3, 257.2 Hz), 52.1, 49.2 (dd, J = 23.8, 21.2 Hz), 29.4, 25.2 (t, J = 3.6 Hz), 22.4, 13.7. MS (ESI): m/z (%) 307 ([M+Na]⁺, 100). HRMS (ESI): calculated for C₁₅H₁₈F₂O₃Na ([M+Na]⁺): 307.1116; Found: 307.1224.

Methyl 3,3-difluoro-2-(2-(methylthio)ethyl)-4-oxo-4-phenylbutanoate (3ab). This compound is known^[2]. The product (49.6 mg, 82% yield, procedure a) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, J = 8.4 Hz, 2H), 7.63 (t, J = 7.6 Hz, 1H), 7.49 (t, J = 7.8 Hz, 2H), 3.75 – 3.62 (m, 4H), 2.69 – 2.67 (m, 1H), 2.60 – 2.55 (m, 1H), 2.28 – 2.15 (m, 2H), 2.10 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.76 (dd, J = 293.7, 11.7 Hz, 1F), -105.22 (dd, J = 293.5, 18.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.6

(t, *J* = 30.9 Hz), 169.7 (d, *J* = 9.6 Hz), 134.4, 131.8, 130.0 (t, *J* = 3.4 Hz), 128.7, 117.8 (dd, *J* = 264.0, 257.4 Hz), 52.3, 47.8 (t, *J* = 22.7 Hz), 31.6, 24.7, 15.0.

Dimethyl 2-(1,1-difluoro-2-oxo-2-phenylethyl)pentanedioate (3ac). This compound is known^[2]. The product (44.6 mg, 71% yield, procedure a) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 10:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 3.70 (s, 3H), 3.69 (s, 3H), 3.56 – 3.46 (m, 1H), 2.60 – 2.43 (m, 2H), 2.29 – 2.17 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.21 – -100.99 (m, 1F), -105.72 – 106.51 (m, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.6 (t, *J* = 30.7 Hz), 172.7, 169.6 (d, *J* = 10.2 Hz), 134.4, 131.8 (t, *J* = 2.7 Hz), 130.1 (t, *J* = 2.9 Hz), 128.7, 117.7 (dd, *J* = 264.6, 256.8 Hz), 52.3, 51.8, 48.1 (dd, *J* = 23.7, 21.7 Hz), 31.4, 20.5 (t, *J* = 4.0 Hz).

Dimethyl 2-(1,1-difluoro-2-oxo-2-phenylethyl)succinate (3ad). This compound is known^[2]. The product (46.8 mg,78% yield, procedure a) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 10:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 7.6 Hz, 2H), 7.65 (t, *J* = 7.4 Hz, 1H), 7.51 (t, *J* = 7.8 Hz, 2H), 4.12 – 4.02 (m, 1H), 3.74 (s, 3H), 3.68 (s, 3H), 3.08 – 3.01 (m, 1H), 2.87 – 2.81 (m, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -99.74 (dd, *J* = 288.0, 10.5 Hz, 1F), -105.58 (dd, *J* = 288.2, 18.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.1 (t, *J* = 29.9 Hz), 171.2, 168.5 (dd, *J* = 7.3, 2.5 Hz), 134.5, 131.8, 130.0 (t, *J* = 3.1 Hz), 128.7, 117.3 (dd, *J* = 262.5, 259.1 Hz), 52.7, 52.3, 45.9 (t, *J* = 23.1 Hz), 30.0 (t, *J* = 4.1 Hz).

Methyl 6-((tert-butoxycarbonyl)amino)-2-(1,1-difluoro-2-oxo-2-phenylethyl)hexanoate (3ae). This compound is known^[2]. The product (71.1 mg, 89% yield, procedure b) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 10:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 4.55 (br, 1H), 3.70 (s, 3H), 3.44 – 3.33 (m, 1H), 3.12 (s, 2H), 1.97 – 1.80 (m, 2H), 1.59 – 1.50 (m, 4H), 1.42(s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.45 (dd, *J* = 295.0, 11.5 Hz, 1F), -104.96 (dd, *J* = 294.8, 17.3 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.7 (t, *J* = 31.1 Hz), 170.1 (d, *J* = 9.5 Hz), 155.9, 134.4, 131.8 (t, *J* = 2.7 Hz), 130.1 (t, *J* = 3.2 Hz), 128.6, 117.7 (dd, *J* = 263.8, 257.2 Hz), 79.1, 52.2, 49.0 (dd, *J* = 23.8, 21.3 Hz), 40.1, 29.8, 28.3, 25.1 (t, *J* = 3.6 Hz), 24.5.

Methyl 2-benzyl-3,3-difluoro-4-oxo-4-phenylbutanoate (3af). This compound is known^[2]. The product (52.2 mg, 82% yield, procedure b) was purified with silica gel chromatography Petroleum ether/ Ethyl acetate = 70:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, *J* = 8.0 Hz, 2H), 7.66 (t, *J* = 7.2 Hz, 1H), 7.51 (t, *J* = 7.6 Hz, 2H), 7.32 – 7.24 (m, 5H), 3.78 – 3.67 (m, 1H), 3.58 (s, 3H), 3.19 (d, *J* = 7.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.90 (dd, *J* = 294.9, 13.7 Hz, 1F), -103.69 (dd, *J* = 295.0, 15.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.4 (t, *J* = 31.0 Hz), 169.5, 137.4, 134.5, 131.8, 130.1 (t, *J* = 3.3 Hz), 128.9, 128.7, 128.5, 126.8, 117.6 (dd, *J* = 263.4, 259.5 Hz), 52.1, 51.5 (dd, *J* = 23.0, 21.1 Hz), 31.7 (t, *J* = 4.3 Hz).

Methyl 3,3-difluoro-2-(4-fluorobenzyl)-4-oxo-4-phenylbutanoate (3ag). This compound is known^[2]. The product (58.5 mg, 87% yield, procedure a) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.6 Hz, 2H), 7.65 (t, J = 7.6 Hz, 1H), 7.51 (t, J = 7.8 Hz, 2H), 7.22 – 7.18 (m, 2H), 7.01 – 6.96 (m, 2H), 3.74 – 3.63 (m, 1H), 3.58 (s, 3H), 3.16 (d, J = 7.2 Hz, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.88 (dd, J = 295.9, 13.2 Hz, 1F), -103.55 (dd, J = 295.9, 14.7 Hz, 1F), -116.02 (s, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.3 (t, J = 30.9 Hz), 169.3 (d, J = 7.7 Hz), 161.8 (d, J = 246.2 Hz), 134.6, 133.1 (d, J = 3.1 Hz), 131.7 (t, J = 2.9 Hz), 130.5 (d, J = 8.1 Hz), 130.1 (t, J = 3.4 Hz), 128.7, 117.5 (dd, J = 263.5, 259.7 Hz), 115.4 (d, J = 21.5 Hz) 52.2, 51.5 (t, J = 22.2 Hz), 30.9 (t, J = 4.5 Hz).

HO Methyl 3,3-difluoro-2-(4-hydroxybenzyl)-4-oxo-4-phenylbutanoate (3ah). The product (58.2 mg, 87% yield, procedure a) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, J = 7.6 Hz, 2H), 7.65 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.8 Hz, 2H), 7.07 (d, J =8.4 Hz, 2H), 6.74 (d, J = 8.4 Hz, 2H), 5.66 (br, 1H), 3.73 – 3.62 (m, 1H), 3.58 (s, 3H), 3.12 – 3.10 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.04 (dd, J = 295.5, 13.9 Hz, 1F), -103.40 (dd, J = 295.5, 15.4 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.5 (t, J =31.1 Hz), 169.9 (d, J = 7.3 Hz), 154.6, 134.6, 131.7, 130.2 (t, J = 3.4 Hz), 130.1, 129.1, 128.7, 117.5 (t, J = 261.4 Hz), 115.4, 52.2, 51.7 (t, J = 21.9 Hz), 30.9 (t, J = 4.4 Hz). MS (ESI): m/z (%) 357 ([M+Na]⁺, 100). HRMS (ESI): calculated for C₁₈H₁₆F₂O₄Na ([M+Na]⁺): 357.1017; Found: 357.0908.

Methyl -2-(4-(tert-butoxy)benzyl)-3,3-difluoro-4-oxo-4-phenylbutanoate (3ai). This compound is known^[2]. The product (66.4 mg, 85% yield, procedure b) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.6 Hz, 2H), 7.64 (t, *J* = 7.4 Hz, 1H), 7.50 (t, *J* = 7.8 Hz, 2H), 7.11 (d, *J* = 8.4 Hz, 2H), 6.92 (d, *J* = 8.4 Hz, 2H), 3.74 – 3.63 (m, 1H), 3.54 (s, 3H), 3.15 (s, 1H), 3.13 (d, *J* = 2.8 Hz, 1H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.99 (dd, *J* = 295.5, 13.5 Hz, 1F), -103.72 (dd, *J* = 295.2, 15.4 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.4 (t, *J* = 30.9 Hz), 169.5 (d, *J* = 8.2 Hz), 154.1, 134.5, 132.2, 131.8 (t, *J* = 2.7 Hz), 130.1 (t, *J* = 3.2 Hz), 129.3, 128.7, 124.2, 117.5 (dd, *J* = 263.2, 259.5 Hz), 78.3, 52.0, 51.5 (dd, *J* = 23.0, 20.8 Hz), 31.1 (t, *J* = 4.4 Hz), 28.8.

Methyl-3,3-difluoro-2-(4-nitrobenzyl)-4-oxo-4-phenylbutanoate (3aj). The product (51.6 mg, 71% yield, procedure b) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 50:1) as pale yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.8 Hz, 2H), 8.10 (d, *J* = 7.6 Hz, 2H), 7.67 (t, *J* = 7.6 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H), 7.43 (d, *J* = 8.4 Hz, 2H), 3.81 – 3.70 (m, 1H), 3.60 (s, 3H), 3.31 – 3.28 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -101.72 (dd, *J* = 297.2, 13.0 Hz, 1F), -104.25 (dd, *J* = 297.0, 15.4 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.1 (t, *J* = 30.8 Hz), 168.8 (d, *J* = 8.0 Hz), 147.0, 145.2, 134.7, 131.4, 130.2, 130.0, 128.8, 123.8, 117.4 (dd, *J* = 264.2, 260.0 Hz), 52.4, 50.7 (t, *J* = 22.2 Hz), 31.5 (t, *J* = 4.3 Hz). MS (ESI): m/z (%) 386 ([M+Na]⁺, 100). HRMS (ESI): calculated for C₁₈H₁₅F₂NO₅Na ([M+Na]⁺): 386.0813; Found: 386.0918.

Methyl-3,3-difluoro-2-(naphthalen-1-ylmethyl)-4-oxo-4-phenylbutanoate(3ak).

The product (67.8 mg, 92% yield, procedure b) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 100:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.18 – 8.13 (m, 3H), 7.89 (d, *J* = 8.0 Hz, 1H), 7.80 – 7.78 (m, 1H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.60 – 7.50 (m, 4H), 7.43 – 7.39 (m, 2H), 3.89 – 4.00 (m, 1H), 3.78 (dd, *J* = 14.0, 4.0 Hz, 1H), 3.62 – 3.55 (m, 1H), 3.49 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.27 (dd, *J* = 297.0, 14.3 Hz, 1F), -103.47 (dd, *J* = 297.2, 14.5 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 188.4 (t, *J* = 31.1 Hz), 169.5 (d, *J* = 7.2 Hz), 134.6, 134.0, 133.2, 131.8, 131.7, 130.2 (t, *J* = 3.3 Hz), 129.0, 128.8, 127.9, 127.6, 126.5, 125.7, 125.4, 117.8 (dd, *J* = 262.7, 260.1 Hz), 52.1, 50.5 (t, *J* = 21.9 Hz), 29.2 (t, *J* = 4.5 Hz). MS (ESI): m/z (%) 369 ([M+H]⁺, 100). HRMS (ESI): calculated for C₂₂H₁₉F₂O₃([M+H]⁺): 369.1300; Found: 369.1224.

Methyl-3,3-difluoro-4-oxo-2,4-diphenylbutanoate (3al). This compound is known^[8]. The product (44.4 mg, 73% yield, procedure a) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 150:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.63 (t, *J* = 7.4 Hz, 1H), 7.49 (t, *J* = 7.8 Hz, 2H), 7.43 – 7.39 (m, 5H), 4.72 (dd, *J* = 22.4, 8.8 Hz, 1H), 3.72 (s, 3H). ¹⁹F NMR (376 MHz, CDCl₃) δ -99.35 (dd, *J* = 300.2, 8.8 Hz, 1F), -107.53 (dd, *J* = 300.4, 22.2 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 189.3 (t, *J* = 32.6, 29.5 Hz), 168.9 (d, *J* = 12.8 Hz), 135.0, 134.4, 132.0 (t, *J* = 3.1 Hz), 130.3, 130.2 (dd, *J* = 4.4, 2.2 Hz), 128.70, 128.67, 128.6, 116.4 (dd, *J* = 267.8, 254.1 Hz), 54.4 (dd, *J* = 25.2, 20.6 Hz), 52.6.

Methyl 2-((1H-indol-3-yl)methyl)-3,3-difluoro-4-oxo-4-phenylbutanoate (3am). The product (36.5 mg, 51% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 5:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, J = 7.6 Hz, 2H), 8.08 (s, 1H), 7.66 (t, J = 7.8 Hz, 2H), 7.52 (t, J = 7.8 Hz, 2H), 7.35 (d, J = 8.0 Hz, 1H), 7.23 – 7.13 (m, 2H), 7.04 (s, 1H), 3.93 – 3.82 (m, 1H), 3.57 (s, 3H), 3.44 – 3.31 (m, 2H). ¹⁹F NMR (376 MHz, CDCl₃) δ -102.09 – -103.92 (m, 2F). ¹³C NMR (101 MHz, CDCl₃) δ 188.4 (t, J = 30.6 Hz), 169.9, 136.1, 134.4, 131.8, 130.1 (t, J = 3.4 Hz), 128.7, 127.0, 122.7, 122.1, 119.6, 118.5, 117.7 (t, J = 261.1 Hz), 111.5, 111.2, 52.1, 50.6 (t, J = 21.7 Hz), 21.7 (t, J = 4.8 Hz). MS (ESI): m/z (%) 380 ([M+Na]⁺, 100). HRMS (ESI): calculated for C₂₀H₁₇F₂NO₃Na ([M+Na]⁺): 380.1176; Found: 380.1068.

Tert-butyl 2-(3-(1,1-difluoro-2-oxo-2-phenylethyl)-2-oxo-2,3,4,5-tetrahydro-1Hbenzo[b]azepin-1-yl)acetate (3an). The product (37.8 mg, 44% yield) was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 30:1) as pale yellow oil. ¹H NMR (400 MHz, CDCl₃) δ 8.07 (d, *J* = 8.0 Hz, 2H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.46 (t, *J* = 7.6 Hz, 2H), 7.36 – 7.31 (m, 1H), 7.29 – 7.27 (m, 1H), 7.24 – 7.20 (m, 2H), 4.66 (d, *J* = 17.2 Hz, 1H), 4.19 (d, *J* = 17.2 Hz, 1H), 3.62 – 3.50 (m, 1H), 3.44 – 3.35 (m, 1H), 2.78 – 2.65 (m, 2H), 2.40 – 2.30 (m, 1H), 1.39 (s, 9H). ¹⁹F NMR (376 MHz, CDCl₃) δ -107.77 (d, *J* = 20.3 Hz, 1F), -108.55 (d, *J* = 20.3 Hz, 1F). ¹³C NMR (101 MHz, CDCl₃) δ 189.9 (dd, *J* = 33.2, 28.4 Hz), 169.5 (d, *J* = 12.3 Hz), 167.6, 141.3, 135.7, 133.8, 132.6, 130.1 (d, *J* = 5.0 Hz), 129.4, 128.4, 127.9, 126.9, 122.5, 118.2 (dd, *J* = 268.8, 247.8 Hz), 82.0, 50.6, 45.6 (dd, *J* = 25.7, 19.9 Hz), 28.5, 27.9, 23.8. MS (ESI): m/z (%) 452 ([M+Na]⁺, 100). HRMS (ESI): calculated for $C_{24}H_{25}F_2NO_4Na$ ([M+Na]⁺): 452.1752; Found: 452.1645.

Diethyl 2,6-dimethylpyridine-3,5-dicarboxylate (6). This compound is known^[9]. The product was purified with silica gel chromatography (Petroleum ether/ Ethyl acetate = 10:1) as white solid. ¹H NMR (400 MHz, CDCl₃) δ 8.67 (s, 1 H), 4.38 (q, J = 6.8 Hz, 4 H), 2.84 (s, 6 H), 1.40 (t, J = 6.8 Hz, 6 H); ¹³C NMR (101 MHz, CDCl₃) δ 165.7, 162.1, 141.3, 123.3, 61.5, 24.6, 14.3.

7. References.

- [1] Y. Xu, Z. J. Xu, Z. P. Liu, Z. P. Liu and H. Lou, Org. Chem. Front., 2019, 6, 3902.
- [2] Y. Huang, J. Jia, Q.-P. Huang, L. Zhao, P. Wang, J. W. Gu and C.-Y. He, Chem. Commun., 2020, 56, 14247.
- [3] F. J. R. Klauck, M. J. James and F. Glorius, Angew. Chem., Int. Ed., 2017, 56, 12336.
- [4] F. J. Klauck, H. Yoon, M. J. James, M. Lautens and F. Glorius, ACS Catal., 2018, 9, 236.
- [5] I. Kim, H. Im, H. Lee and S. Hong, Chem. Sci., 2020, 11, 3192.
- [6] X. Jiang, M. M. Zhang, W. Xiong, L. Q. Lu and W. J. Xiao, Angew. Chem., Int. Ed., 2019, 58, 2402.
- [7] M. E. Hoerrner, K. M. Baker, C. H. Basch, E. M. Bampo and M. P. Watson, Org. Lett., 2019, 21, 7356.
- [8] F. M. Liao, Z. Y. Cao, J. S. Yu and J. Zhou, Angew. Chem. Int. Ed., 2017, 129, 2499.
- [9] D. Yu, W.-P. To, G. S. M. Tong, L.-L. Wu, K.-T. Chan, L. Du, D. L. Phillips, Y. Liu, and C.-M. Che, *Chem. Sci.*, 2020, **11**, 6370.

8. Copies of NMR spectra of 1, 3, 5, 6.

2,4,6-triphenyl-1-(thiophen-2-ylmethyl)pyridin-1-ium tetrafluoroborate (1m).

1-(4-methoxy-4-oxobutan-2-yl)-2,4,6-triphenylpyridin-1-ium tetrafluoroborate

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

Compound 3s ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

2,2-Difluoro-3-methyl-1,5-diphenylpentan-1-one (3w). 8,22-Difluoro-3-methyl-1,5-diphenylpentan-1-one (3w). 8,202-2,203-2,202-2,2

Compound 3w ¹H NMR (400 MHz, CDCl₃)

Compound 3w ¹⁹F NMR (376 MHz, CDCl₃)

4.5 4.0 f1 (ppm) 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0

Methyl 6-((tert-butoxycarbonyl)amino)-2-(1,1-difluoro-2-oxo-2-phenylethyl)hexanoate (3ae).

MeO BocHN *F*)4

Compound 3ae ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

Tert-butyl 2-(3-(1,1-difluoro-2-oxo-2-phenylethyl)-2-oxo-2,3,4,5-tetrahydro-1Hbenzo[b]azepin-1-yl)acetate (3an).

8.076 8.056 7.608 7.589 7.571 7.477 7.477 7.457 7.457 7.457 7.439 7.335 7.338	7.334 7.317 7.313 7.313 7.288 7.288 7.288 7.288 7.245	7.241 7.223 7.224 7.224 7.224 4.681 4.681 4.173 3.597 3.597 3.5477 3.547 3.5477 3.5477 3.5477 3.5477 3.5477 3.5477 3.5477 3.5477 3.5	3.385 3.370 3.371 3.351 3.351 2.782 2.782 2.7731 2.681 2.681 2.681 2.683 2.3688 2.368 2.368 2.368 2.36

Boc 0 <mark>℃F₂</mark>COPh

Compound 3an ¹H NMR (400 MHz, CDCl₃)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

