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General Information  

All manipulations of oxygen- and moisture-sensitive materials were conducted 

with a standard Schlenk technique under an nitrogen atmosphere or in a glovebox 

under a nitrogen atmosphere. Analytical thin layer chromatography (TLC) was 

performed on Merk TLC silica gel 60 F254 (0.25 mm) plates. Visualization was 

accomplished with UV light (254 nm) and/or an aqueous alkaline KMnO4 solution 

followed by heating using hot air gun. 

Proton, carbon and fluorine nuclear magnetic resonance spectra (
1
H, 

13
C, and 

19
F 

NMR were recorded on a Bruke-400M Advance III (
1
H NMR, 400 MHz; 

13
C NMR, 

101 MHz; 
19

F NMR, 376 MHz) spectrometer with solvent resonance as the internal 

standard (
1
H NMR, CDCl3 at 7.26 ppm; 

13
C NMR, 77.0 ppm). NMR data are reported 

as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, 

sept = septet, m = multiplet), coupling constants (Hz), and integration. GC-MS data 

was obtained using electron ionization (Agilent 7890B-5977A). GC data was 

performed on a Nexis GC 2030. High resolution mass spectra were obtained with 

Waters Xevo G2-Xs QTof (ESI or APCI).  

All the commercially available materials were used without further purification. 

Ni(COD)2 was purchased from Laajoo Chemicals. 1,2-Bis(diphenylphosphino)- 

benzene (DPPBz), trialkylaluminum reagents and other anhydrous solvents 

(1,4-dioxane, THF, DMF and DCE) were purchased from Beijing Inno-chem Science 

& Technology Company Ltd. Anhydrous toluene was distilled from sodium 

benzophenone ketyl. 

Aryl fluorides were purchased from Beijing Inno-chem Science & Technology 

Company Ltd. and used as received or were prepared by following the literature 

procedures. All vinyl monofluorides and vinyl gem-difluorides were synthesized 

according to the literature precedents.
[1-2]

 

Flash chromatography was performed with Haiyang Chem silica gel 60 (300-400 

mesh). Thin layer chromatography was carried out using CCIS TLC Silica gel 60 

F254. 
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Optimization studies 
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General Procedure for Nickel catalyzed C–F alkylation with Trialkyl aluminum 

An oven dried Schlenk tube containing a stirring bar was charged with aryl fluoride 1 

(0.20 mmol, 1.0 eq.). The tube was introduced in nitrogen-filled glovebox and 

Ni(COD)2 (5.4 mg, 10 mol %), dppbz (8.9 mg, 10 mol %), Toluene (1.0 mL) and 

Triethylaluminum or Trimethylaluminum 2a (0.1 mL, 0.40 mmol, 2.0 eq.) were then 

added. The tube with the mixture was taken out of the glovebox and stirred at 100 ºC 

for 16 h. The mixture was then allowed to warm to room temperature, the mixture 

was diluted with EtOAc (3 mL), concentrated under reduced pressure and purified by 

column chromatography on silica gel to afford the corresponding final product 3aa. 

Characterization Data 

4-Ethyl-1,1'-biphenyl   

 
Isolated yield: 91% 

Colorless viscous liquid. This compound is known in the literature.
[3]

 
1
H NMR (400 
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MHz, CDCl3) δ 7.58 (d, J = 7.9 Hz, 2H), 7.52 (d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 

2H), 7.35 – 7.25 (m, 3H), 2.70 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H).
 13

C NMR 

(101 MHz, CDCl3) δ 143.45, 141.26, 138.68, 128.78, 128.37, 127.16, 127.09, 127.04, 

28.61, 15.69. 

 

4,4'-Diethylbiphenyl 

 
Isolated yield: 89% 

Colorless viscous liquid. This compound is known in the literature.
[4] 1

H NMR (400 

MHz, CDCl3) δ 7.53 (d, J = 8.2 Hz, 4H), 7.28 (d, J = 8.1 Hz, 4H), 2.71 (q, J = 7.6 Hz, 

4H), 1.30 (t, J = 7.7 Hz, 6H). 
13

C NMR (101 MHz, CDCl3) δ 143.08, 138.61, 128.25, 

126.95, 28.53, 15.60. 

 

4-Ethyl-4'-methoxy-1,1'-biphenyl 

 
Isolated yield: 88% 

Colorless viscous liquid. This compound is known in the literature.
[5]

 
1
H NMR (400 

MHz, CDCl3) δ 7.55 – 7.45 (m, 4H), 7.29 – 7.22 (m, 2H) 6.97 (d, J = 8.7 Hz, 2H), 

3.85 (s, 3H), 2.69 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 
13

C NMR (101 MHz, 

CDCl3) δ 158.95, 142.77, 138.25, 133.80, 128.28, 128.02, 126.69, 114.18, 55.35, 

28.52, 15.67. 

 

 

4'-ethyl-2-methoxy-1,1'-biphenyl 

 
Isolated yield: 84% 

Colorless viscous liquid. 
1
H NMR (400 MHz, CDCl3) δ 7.45 (d, J = 8.1 Hz, 2H), 7.35 

– 7.24 (m, 2H), 7.24 (d, J = 8.1 Hz, 2H), 7.05 – 6.93 (m, 2H), 3.79 (s, 3H), 2.68 (q, J 

= 7.6 Hz, 2H), 1.27 (t, J = 7.6 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 156.53, 

142.91, 135.85, 130.88, 129.50, 128.40, 127.58, 120.84, 111.18, 55.56, 28.65, 15.55. 

HRMS Calcd for C15H17O
+
 [M+H]

+
 213.1274, found 213.1275. 
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1-Ethylnaphthalene 

 

Isolated yield: 83% 

Colorless Liquid. This compound is known in the literature.
[6]

 
1
H NMR (400 MHz, 

CDCl3) δ 8.06 (d, J = 7.7 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.70 (d, J = 8.1 Hz, 1H), 

7.55 – 7.38 (m, 3H), 7.34 (d, J = 7.0 Hz, 1H), 3.12 (q, J = 7.5 Hz, 2H), 1.38 (t, J = 7.5 

Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 140.28, 133.81, 131.77, 128.75, 126.39, 

125.68, 125.39, 124.85, 123.74, 25.92, 15.07. 

 

2-Ethylnaphthalene 

 
Isolated yield: 78% 

Colorless liquid. This compound is known in the literature.
[7]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.83 – 7.73 (m, 3H), 7.61 (s, 1H), 7.46 – 7.31 (m, 3H), 2.80 (q, J = 7.6 Hz, 

2H), 1.32 (t, J = 7.6 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 141.77, 133.69, 131.92, 

127.79, 127.60, 127.41, 127.09, 125.83, 125.53, 125.01, 29.06, 15.55. 

 

2-Ethyl-6-methoxynaphthalene 

 

Isolated yield: 75% 

Colorless liquid. This compound is known in the literature.
[8]

 
1
H NMR (400 MHz, 

CDCl3) 7.70 – 7.64 (m, 2H), 7.55 (s, 1H), 7.31 (d, J = 10.0 Hz, 1H), 7.11 (d, J = 7.5 

Hz, 2H), 3.90 (s, 3H), 2.78 (q, J = 7.6 Hz, 2H), 1.31 (t, J = 7.6 Hz, 3H). 
13

C NMR 

(101 MHz, CDCl3) δ 157.06, 139.45, 132.88, 129.16, 128.90, 127.55, 126.68, 125.42, 

118.59, 105.65, 55.29, 28.84, 15.64. 

 

1-ethyl-4-methoxybenzene 

 
GC yield: 56% 
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Colorless liquid. This compound is known in the literature.
[9]

 
1
H NMR (400 MHz, 

CDCl3) 7.11 (d, J = 8.5 Hz, 2H), 6.83 (d, J = 8.5 Hz, 2H), 3.78 (s, 3H), 2.59 (q, J = 7.6 

Hz, 2H), 1.21 (t, J= 7.6 Hz, 3H). 

 

1-(4-Ethylphenyl)-1H-pyrrole 

 

Isolated yield: 62% 

Yellow viscous liquid. This compound is known in the literature.
[10]

 
1
H NMR (400 

MHz, CDCl3) δ 7.31 (d, J = 8.5 Hz, 2H), 7.24 (d, J = 8.6 Hz, 2H), 7.06 (t, J = 2.1 Hz, 

2H), 6.33 (t, J = 2.1 Hz, 2H), 2.67 (q, J = 7.6 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H). 
13

C 

NMR (101 MHz, CDCl3) δ 141.78, 138.66, 128.86, 120.65, 119.43, 110.04, 28.28, 

15.63. 

 

(E)-1-ethyl-4-styrylbezene 

 

Isolated yield: 85% 

Colorless viscous liquid. This compound is known in the literature.
[11]

 
1
H NMR (400 

MHz, CDCl3) δ 7.43 (d, J = 7.5 Hz, 2H), 7.37 (d, J = 8.1 Hz, 2H), 7.27 (t, J = 7.6 Hz, 

2H), 7.19 – 7.10 (m, 3H), 7.01 (d, J = 3.2 Hz, 2H), 2.58 (q, J = 7.6 Hz, 2H), 1.17 (t, J 

= 7.6 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 143.96, 137.58, 134.85, 128.67, 

128.23, 127.81, 127.42, 126.54, 126.43, 28.67, 15.54. 

 

(8R,9S,13S,14S)-3-(4-ethylphenyl)-17-methoxy-13-methyl-7,8,9,11,12,13,14,15,16,

17-decahydro-6H-cyclopenta[a]phenanthrene 

 

Isolated yield: 89%  

Colorless viscous liquid. 
1
H NMR (400 MHz, CDCl3) δ 7.49 (d, J = 8.2 Hz, 2H), 7.35 

(s, 2H), 7.29 (s, 1H), 7.26 – 7.21 (m, 2H), 3.38 (s, 3H), 3.31 (t, J = 8.3 Hz, 1H), 2.97 – 

2.89 (m, 2H), 2.68 (q, J = 7.6 Hz, 2H), 2.39 – 2.21 (m, 2H), 2.14 – 2.00 (m, 2H), 1.96 

– 1.86 (m, 1H), 1.76 – 1.31 (m, 8H), 1.27 (t, J = 7.6 Hz, 3H), 0.80 (s, 3H). 
13

C NMR 



S9 
 

(101 MHz, CDCl3) δ 143.07, 139.28, 138.55, 136.62, 128.68, 128.20, 127.59, 127.04, 

126.53, 125.80, 124.31, 90.82, 57.94, 51.50, 44.36, 43.26, 38.46, 37.65, 29.72, 28.53, 

27.79, 27.27, 26.30, 23.09, 15.60, 11.58. HRMS Calcd for C27H35O
+
 [M+H]

+ 

375.2682, found 375.2688. 

 

4-(4-ethylphenyl)pyridine 

 

Isolated yield: 80% 

Colorless liquid. This compound is known in the literature.
[12]

 
1
H NMR (400 MHz, 

CDCl3) δ 8.64 (d, J = 5.2 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.54 – 7.47 (m, 2H), 7.32 (d, 

J = 8.0 Hz, 2H), 2.72 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 

 

3-(4-ethylphenyl)pyridine 

 

Isolated yield: 76% 

Colorless liquid. This compound is known in the literature.
[13]

 
1
H NMR (400 MHz, 

CDCl3) δ 8.64 (d, J = 5.2 Hz, 2H), 7.62 – 7.54 (m, 2H), 7.54 – 7.47 (m, 2H), 7.32 (d, 

J = 8.0 Hz, 2H), 2.72 (q, J = 7.6 Hz, 2H), 1.28 (t, J = 7.6 Hz, 3H). 

 

 

 

 

6-(4-ethylphenyl)quinoline 

 

Isolated yield: 89% 

Colorless viscous liquid. 
1
H NMR (400 MHz, CDCl3) δ 8.64 (d, J = 5.2 Hz, 2H), 

7.62 – 7.54 (m, 2H), 7.54 – 7.47 (m, 2H), 7.32 (d, J = 8.0 Hz, 2H), 2.72 (q, J = 7.6 Hz, 
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2H), 1.28 (t, J = 7.6 Hz, 3H).
 13

C NMR (101 MHz, CDCl3) δ 150.19, 147.61, 144.01, 

139.30, 137.66, 136.19, 129.82, 129.22, 128.53, 127.38, 125.11, 121.41, 28.57, 15.58.
 

HRMS Calcd for C17H16N
+
 [M+H]

+
 234.1277, found 234.1278. 

 

4-Methyl-1,1'-biphenyl 

 
Isolated yield: 89% 

Colorless viscous liquid. This compound is known in the literature.
[14]

 
1
H NMR (400 

MHz, CDCl3) δ 7.50 (d, J = 7.0 Hz, 2H), 7.42 (d, J = 8.1 Hz, 2H), 7.34 (t, J = 7.7 Hz, 

2H), 7.24 (t, J = 7.3 Hz, 1H), 7.17 (d, J = 7.8 Hz, 2H), 2.32 (s, 3H). 
13

C NMR (101 

MHz, CDCl3) δ 140.15, 137.34, 135.99, 128.45, 127.68, 125.97, 125.95, 20.06. 

 

4,4'-Dimethylbiphenyl 

 
Isolated yield: 86% 

Colorless viscous liquid. This compound is known in the literature.
[15]

 
1
H NMR (400 

MHz, CDCl3) δ 6.59 (d, J = 8.1 Hz, 4H), 6.35 (d, J = 8.0 Hz, 4H), 1.50 (s, 6H). 
13

C 

NMR (101 MHz, CDCl3) δ 138.31, 136.72, 129.45, 126.83, 21.10. 

 

4-Methyl-4'-methoxy-1,1'-biphenyl 

 
Isolated yield: 72% 

Colorless viscous liquid. This compound is known in the literature.
[16]

 
1
H NMR (400 

MHz, CDCl3) δ 7.52 (d, J = 8.8 Hz, 2H), 7.46 (d, J = 8.1 Hz, 2H), 7.23 (d, J = 7.8 Hz, 

2H), 6.97 (d, J = 8.8 Hz, 2H), 3.85 (s, 3H), 2.39 (s, 3H). 
13

C NMR (101 MHz, CDCl3) 

δ 158.95, 137.99, 136.37, 133.77, 129.45, 127.97, 126.60, 114.18, 55.36, 21.06. 

 

1-Methylnaphthalene 
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Isolated yield: 81% 

Colorless liquid. This compound is known in the literature.
[17]

 
1
H NMR (400 MHz, 

CDCl3) δ 8.04 (d, J = 9.6 Hz, 1H), 7.92 – 7.85 (m, 1H), 7.75 (d, J = 8.1 Hz, 1H), 7.60 

– 7.49 (m, 2H), 7.45 – 7.34 (m, 2H), 2.74 (s, 3H). 
13

C NMR (101 MHz, CDCl3) δ 

134.30, 133.59, 132.66, 128.56, 126.60, 126.41, 125.75, 125.61, 125.58, 124.15, 

19.42. 

 

2-Methyl-6-methoxynaphthalene 

 

Isolated yield: 84% 

Colorless liquid. This compound is known in the literature.
[18]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.68 (dd, J = 8.9, 3.2 Hz, 2H), 7.58 (s, 1H), 7.31 (dd, J = 8.3, 1.8 Hz, 1H), 

7.19 – 7.12 (m, 2H), 3.94 (s, 3H), 2.51 (s, 3H). 
13

C NMR (101 MHz, CDCl3) δ 157.03, 

133.04, 132.67, 129.17, 128.73, 128.60, 126.73, 126.59, 118.64, 105.68, 55.28, 21.47. 

 

(E)-1-methyl-4-styrylbezene 

 
Isolated yield: 91% 

Colorless viscous liquid. This compound is known in the literature.
[11]

 
1
H NMR (400 

MHz, CDCl3) δ 7.57 – 7.52 (m, 2H), 7.49 – 7.43 (m, 2H), 7.39 (t, J = 7.7 Hz, 2H), 

7.32 – 7.25 (m, 1H), 7.21 (d, J = 7.9 Hz, 2H), 7.12 (d, J = 2.5 Hz, 2H), 2.40 (s, 3H). 
13

C NMR (101 MHz, CDCl3) δ 137.55, 134.58, 129.42, 128.68, 127.73, 127.43, 

126.46, 126.42, 21.28. 

 

 

 

(E)-4-(But-1-ene-1-yl)-1,1'-biphenyl 
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Isolated yield: 78% 

Colorless liquid. This compound is known in the literature.
[19]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.59 (d, J = 7.1 Hz, 2H), 7.53 (d, J = 8.3 Hz, 2H), 7.42 (t, J = 7.9 Hz, 4H), 

7.32 (t, J = 7.3 Hz, 1H), 6.41 (d, J = 15.9 Hz, 1H), 6.31 (dt, J = 15.8, 6.2 Hz, 1H), 

2.25 (dq, J = 8.6, 7.4 Hz, 2H), 1.10 (t, J = 7.4 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) 

δ 140.90, 139.52, 137.04, 132.88, 128.77, 128.37, 127.20, 127.15, 126.91, 126.34, 

26.18, 13.71. 

 

(E)-2-(but-1-en-1-yl)naphthalene 

 

Isolated yield: 88% 

Colorless liquid. This compound is known in the literature.
[20]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.79 – 7.73 (m, 3H), 7.67 (s, 1H), 7.58 (dd, J = 8.5, 1.7 Hz, 1H), 7.41 (t, J = 

8.5 Hz, 2H), 6.54 (d, J = 15.9 Hz, 1H), 6.40 (dt, J = 15.8, 6.4 Hz, 1H), 2.35 – 2.22 (m, 

2H), 1.13 (t, J = 7.5 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 135.43, 133.75, 133.16, 

132.66, 128.94, 128.05, 127.83, 127.64, 126.11, 125.42, 125.33, 123.60, 26.23, 13.72. 

 

(Z/E)-1-(but-1-en-1-yl)-4-methoxybenzene 

 
(Z)-/(E)- 1:1 

Isolated yield: 60%  

Colorless liquid. This compound is known in the literature
[21]

. 
1
H NMR (400 MHz, 

CDCl3) δ 7.35 – 7.22 (m, 2H), 6.89 (dd, J = 13.9, 8.7 Hz, 2H), 6.36 (d, J = 11.7 Hz, 

1H), 6.16 (dt, J = 15.8, 6.5 Hz, 1H), 5.60 (dt, J = 11.6, 7.2 Hz, 1H), 3.85 (s, 1H), 3.83 

(s, 1H), 2.42-2.34 (m, J = 7.5, 2.1 Hz, 1H), 2.31 – 2.19 (m, 1H), 1.11 (q, J = 7.5 Hz, 

3H). 
13

C NMR (101 MHz, CDCl3) δ 158.63, 158.18, 133.19, 130.82, 130.52, 130.49, 

129.92, 128.15, 127.67, 126.97, 113.92, 113.56, 55.25, 26.04, 21.97, 14.54, 13.81. 

 

(E)-4-(prop-1-en-1-yl)-1,1'-biphenyl 

 

Isolated yield: 91% 

Colorless liquid. This compound is known in the literature.
[19]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.51 (d, J = 8.0 Hz, 2H), 7.45 (d, J = 8.3 Hz, 2H), 7.33 (q, J = 7.8 Hz, 4H), 

7.24 (t, J = 7.4 Hz, 1H), 6.36 (d, J = 17.6 Hz, 1H), 6.26 – 6.15 (m, 1H), 1.82 (dd, J = 
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6.6, 1.6 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 140.90, 139.51, 137.03, 130.61, 

128.78, 127.21, 127.16, 126.91, 126.25, 125.93, 18.61. 

 

(Z)-1-Methoxy-4-(prop-1-en-1-yl)benzene 

 

Isolated yield: 89% 

Colorless liquid. This compound is known in the literature.
[20]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.27 – 7.21 (m, 2H), 6.91 – 6.78 (m, 2H), 6.36 (dd, J = 11.5, 2.0 Hz, 1H), 

5.69 (dq, J = 11.6, 7.2 Hz, 1H), 3.80 (s, 3H), 1.88 (dd, J = 7.2, 1.7 Hz, 3H). 
13

C NMR 

(101 MHz, CDCl3) δ 158.12, 130.35, 130.00, 129.29, 125.10, 113.56, 55.25, 14.60. 

 

(Z)-1-(prop-1-en-1-yl)naphthalene 

 

Isolated yield: 93% 

Colorless liquid. This compound is known in the literature.
[22]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.95 – 7.86 (m, 1H), 7.80 – 7.71 (m, 1H), 7.66 (d, J = 8.3 Hz, 1H), 7.43 – 

7.31 (m, 3H), 7.27 (d, J = 7.0 Hz, 1H), 6.81 (d, J = 11.4 Hz, 1H), 5.95 (dq, J = 11.4, 

7.0 Hz, 1H), 1.66 (dd, J = 7.0, 1.8 Hz, 3H). 
13

C NMR (101 MHz, CDCl3) δ 134.61, 

133.64, 131.96, 128.57, 128.39, 127.94, 127.13, 126.52, 125.79, 125.70, 125.26, 

125.08, 14.67. 

 

4-(2-ethyl-1-propen-1-yl)-1,1'-biphenyl 

 
Isolated yield: 91% 

Colorless viscous liquid. 
1
H NMR (400 MHz, CDCl3) δ 7.60 (d, J = 7.2 Hz, 2H), 7.55 

(d, J = 8.2 Hz, 2H), 7.43 (t, J = 7.6 Hz, 2H), 7.31 (dd, J = 14.5, 7.8 Hz, 3H), 6.26 (s, 

1H), 2.32 (q, J = 7.5 Hz, 2H), 2.22 (q, J = 6.9, 6.4 Hz, 2H), 1.12 (q, J = 7.4 Hz, 6H). 
13

C NMR (101 MHz, CDCl3) δ 146.97, 141.00, 138.54, 137.77, 129.01, 128.75, 

127.07, 126.95, 126.77, 122.82, 29.62, 23.95, 13.13, 12.84. HRMS Calcd for C18H21
+
 

[M+H]
+
 237.1643, found 237.1646. 

2-(2-ethylbut-1-en-1-yl)naphthalene 
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Isolated yield: 89% 

Colorless viscous liquid. 
1
H NMR (400 MHz, CDCl3) δ 7.78 (t, J = 7.8 Hz, 3H), 7.65 

(s, 1H), 7.47 – 7.34 (m, 3H), 6.38 (s, 1H), 2.34 (q, J = 7.5 Hz, 2H), 2.29 – 2.22 (m, 

2H), 1.13 (dt, J = 15.1, 7.5 Hz, 6H). 
13

C NMR (101 MHz, CDCl3) δ 147.16, 136.31, 

133.50, 131.89, 127.83, 127.57, 127.56, 127.47, 126.86, 125.90, 125.33, 123.28, 

29.57, 23.97, 13.19, 12.87. HRMS Calcd for C16H19
+
 [M+H]

+
 211.1481, found 

211.1478. 

 

1-(2-Ethyl-1-buten-1-yl)-4-methoxybenzene 

 
Isolated yield: 89% 

Colorless viscous liquid. This compound is known in the literature.
[23]

 
1
H NMR (400 

MHz, CDCl3) δ 7.15 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.17 (s, 1H), 3.80 

(s, 3H), 2.25 (q, J = 7.5 Hz, 2H), 2.18 (q, J = 7.4 Hz, 2H), 1.08 (dt, J = 11.4, 7.5 Hz, 

6H). 
13

C NMR (101 MHz, CDCl3) δ 157.70, 145.24, 131.28, 129.64, 122.60, 113.49, 

55.24, 29.48, 23.73, 13.09, 12.85. 

 

1-(2-ethylbut-1-en-1-yl)naphthalene 

 

Isolated yield: 72% 

Colorless viscous liquid. This compound is known in the literature.
[24]

 
1
H NMR (400 

MHz, CDCl3) δ 8.03 (dd, J = 6.1, 3.5 Hz, 1H), 7.88 (dd, J = 6.5, 3.0 Hz, 1H), 7.78 (d, 

J = 8.2 Hz, 1H), 7.54 – 7.45 (m, 3H), 7.33 (d, J = 7.0 Hz, 1H), 6.64 (s, 1H), 2.37 (q, J 

= 7.4 Hz, 2H), 2.14 (q, J = 7.5 Hz, 2H), 1.27 (t, J = 7.5 Hz, 3H), 1.01 (t, J = 7.6 Hz, 

3H). 
13

C NMR (101 MHz, CDCl3) δ 147.83, 136.26, 133.55, 132.34, 128.26, 126.61, 

126.28, 125.60, 125.54, 125.38, 125.35, 121.04, 28.73, 24.20, 13.22, 12.98. 

 

(E)-(4-Ethylhexa-1,3-dien-1-yl)benzene 

 

Isolated yield: 90% 
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Colorless viscous liquid. This compound is known in the literature.
[25]

 
1
H NMR (400 

MHz, CDCl3) δ 7.40 (d, J = 7.5 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.18 (t, J = 7.3 Hz, 

1H), 7.03 (dd, J = 15.5, 11.0 Hz, 1H), 6.47 (d, J = 15.5 Hz, 1H), 5.97 (d, J = 11.0 Hz, 

1H), 2.30 (q, J = 7.6 Hz, 2H), 2.16 (q, J = 7.4 Hz, 2H), 1.07 (td, J = 7.5, 2.5 Hz, 6H). 
13

C NMR (101 MHz, CDCl3) δ 148.10, 138.17, 129.99, 128.55, 126.90, 126.10, 

125.44, 123.17, 29.78, 24.17, 13.70, 12.70. 

 

4-ethyl-4'-(2-ethylbut-1-en-1-yl)-1,1'-biphenyl 

 

Isolated yield: 92% 

Colorless viscous liquid. 
1
H NMR (400 MHz, CDCl3) δ 7.52 (dd, J = 8.1, 3.7 Hz, 4H), 

7.30 – 7.22 (m, 4H), 6.25 (s, 1H), 2.67 (q, J = 7.6 Hz, 2H), 2.31 (q, J = 7.5 Hz, 2H), 

2.21 (qd, J = 7.4, 1.4 Hz, 2H), 1.26 (t, J = 7.6 Hz, 3H), 1.11 (q, J = 7.2 Hz, 6H). 
13

C 

NMR (101 MHz, CDCl3) δ 146.83, 143.24, 138.58, 138.44, 137.51, 129.03, 128.34, 

126.92, 126.67, 122.97, 29.69, 28.60, 15.67, 13.18, 12.90. HRMS Calcd for C20H25
+
 

[M+H]
+
 265.1951, found 265.1950. 

 

 

4-(2-methyl-1-propen-1-yl)-1,1'-biphenyl 

 
Isolated yield: 89% 

Colorless viscous liquid. This compound is known in the literature.
[26]

 
1
H NMR (400 

MHz, CDCl3) δ 7.52 (d, J = 7.8 Hz, 2H), 7.48 (d, J = 8.2 Hz, 2H), 7.35 (t, J = 7.6 Hz, 

2H), 7.24 (dd, J = 12.0, 8.2 Hz, 3H), 6.22 (s, 1H), 1.85 (dd, J = 6.2 Hz, 6H). 
13

C 

NMR (101 MHz, CDCl3) δ 141.01, 138.52, 137.78, 135.85, 129.14, 128.75, 127.09, 

126.97, 126.75, 124.76, 27.03, 19.56. 

 

1-Methoxy-4(2-Methylprop-1-en-1-yl)benzene 

 
Isolated yield: 82% 

Colorless viscous liquid. This compound is known in the literature.
[23]

 
1
H NMR (400 

MHz, CDCl3) δ 7.15 (d, J = 8.5 Hz, 2H), 6.85 (d, J = 8.7 Hz, 2H), 6.20 (s, 1H), 3.78 

(s, 3H), 1.88 (s, 3H), 1.84 (s, 3H). 
13

C NMR (101 MHz, CDCl3) δ 157.68, 133.94, 

131.38, 129.81, 124.55, 113.49, 55.22, 26.83, 19.34. 
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(4-ethylhex-3-en-1-yl)benzene 

 

Isolated yield: 65% 

Colorless liquid. This compound is known in the literature.
[27]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.30 – 7.23 (m, 2H), 7.18 (m, J = 8.3, 2.3 Hz, 3H), 5.13 (t, J = 7.2 Hz, 1H), 

2.64 (dd, J = 9.0, 6.7 Hz, 2H), 2.35 – 2.27 (m, 2H), 2.00 (dq, J = 7.5, 0.9 Hz, 4H), 

0.98 (t, J = 7.4 Hz, 3H), 0.90 (t, J = 7.6 Hz, 3H). 

 

(4-methylpent-3-en-1-yl)benzene 

 

Isolated yield: 58% 

Colorless liquid. This compound is known in the literature.
[28]

 
1
H NMR (400 MHz, 

CDCl3) δ 7.30 – 7.24 (m, 2H), 7.22 – 7.13 (m, 3H), 5.25 – 5.06 (m, 1H), 2.68 – 2.58 

(m, 2H), 2.29 (dd, J = 14.3, 8.6 Hz, 2H), 1.69 (s, 3H), 1.56 (s, 3H). 
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