Supporting Information

Metal-free regioselective C5-cyanoalkylation of the 8-aminoquinolineamides/sulfonamides via oxidative crossdehydrogenative coupling with alkylnitriles

Fatemeh Doraghi,^a Ebrahim Kianmehr,^{*a} Alireza Foroumadi^{*b}

- a. School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran. E-mail: kianmehr@khayam.ut.ac.ir
- b. Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran. E-mail: <u>aforoumadi@yahoo.com</u>

Contents

1.	General information		
2.	Experimental section		
	2.1 General procedure for the synthesis of starting materials		
	2.2 Optimization of solvent		
	2.3 General procedure for C5-cyanoalkylation of 8-aminoquinolineamiedes/sulfonamides		
	2.4 Removal of the acyl/aroyl moiety		
	2.5 Conversion of the cyano group to the carboxylic acid group		
	2.6 Reduction of pyridine ring		
	2.7 Mechanistic studies		
3.	References		
4.	4. ¹ H and ¹³ C NMR spectra		

1. General information

Reagents were commercially available and solvents were used after purification. All reactions were carried out in an oil bath using sealed tubes (15 mL) and were monitored by thin-layer chromatography (TLC) using pre-coated silica gel plates GF254 plates. TLC plates were visualized by exposure to ultraviolet light (UV). Products were purified by flash column chromatography on 230-400 mesh silica gel, SiO_2 .¹H NMR and ¹³C NMR spectra were recorded on a Varian INOVA-500 spectrometer (500 MHz, ¹H), and were referenced to the residual peaks of DMSO-d₆ at 2.50 ppm (¹H NMR) and DMSO-d₆ at 39.52 ppm (¹³C NMR). Data are reported as follows: chemical shift in ppm (δ), multiplicity (s = singlet, d = doublet, t = triplet dd = doublet of doublet, and m = multiplet), coupling constant (Hz), and integration. IR spectra were recorded on Bruker Tensor 27 Equinox 55 infrared spectrophotometer (v in cm⁻¹). Mass spectra were obtained using an Agilent 5975C VL MSD (Ion source: EI+, 70 eV, 230 °C). GC-MS analysis were performed on an Agilent GC 7890A (Column: Rtx 5 MS, length = 30 m, I.D = 0.250 mm, Film thickness = 25 μm) and 5975C VL MSD (Ion source: EI⁺, 70 eV, 230 °C). Temperature program: initial temperature = 45 °C, initial time = 3 min, program rate = 10 °C/min, final temperature = 270 °C, final time = 30 min, split ratio = 100 mL/min and flow rate = 1 mL/min. Conditions: 1. injection port temperature: 230 °C, 2. ion source temperature: 230 °C, 3. carrier gas: He 99.999%, 4. sample volume: 0.3 µL. Elemental analysis (CHNS) was recorded on a Thermo Finnigan Flash EA 1112 elemental analyzer. Melting points were recorded with a micro melting point apparatus.

2. Experimental Section

2.1 General procedure for the synthesis of starting materials

Amides were prepared according to literature procedures from 8-aminoquinoline and acyl chlorides (Procedure A, C)¹ or carboxylic acids (Procedure B).²

2.1.1 Synthesis of *N*-(quinolin-8-yl)amides

Procedure A:

To a stirred solution of a carboxylic acid (5 mmol) and DMF (5 drops) in CH_2Cl_2 (10 mL), (COCl)₂ (1.5 equiv) was added dropwise. The solution was magnetically stirred at room temperature for 1-2 h. The solvent was then removed by evaporation under reduced pressure, and the resulting residue was dissolved in CH_2Cl_2 (10 mL). After that to a solution of 8-aminoquinoline (2.5 mmol) and *N*,*N*-dimethyl-4-aminopyridine (DMAP) (0.25 mmol) in CH_2Cl_2 (10 mL), NEt₃ (5 mmol) was added, and the resulting solution was cooled to 0 °C, acyl chloride (5 mmol) was added dropwise and the reaction mixture was stirred at room temperature overnight. The mixture was washed with saturated aqueous NaHCO₃ (5 mL), and CH_2Cl_2 (3×10 mL). The combined organic phase was washed with aqueous 1 M HCl (10 mL) and was dried over Na₂SO₄. After filtration and evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the desired product.

2.1.2 Synthesis of 2-methoxy-*N*-(quinolin-8-yl)benzamide and *N*-(quinolin-8-yl)isonicotinamide

Procedure B:

Acid (5 mmol) and NEt₃ (5 mmol) were dissolved in CH_2Cl_2 (10 mL), the flask was flushed with nitrogen and the resulting mixture was cooled to 0 °C. Ethyl chloroformate (10 mmol) was added dropwise and the solution was stirred at 0 °C for 1-2 h followed by dropwise addition of 8-aminoquinoline (2.5 mmol) solution in CH_2Cl_2 (10 mL). The resulting mixture was warmed up to room temperature and stirred overnight. The mixture was washed with saturated aqueous NaHCO₃ (5 mL), and CH_2Cl_2 (3×10 mL). The combined organic phase was washed with aqueous 1 M HCl (10 mL) and was dried over Na₂SO₄. After filtration and evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the desired product.

2.1.3 Synthesis of N-(quinolin-8-yl)sulfonamides

Procedure C:

To a stirred solution of 8-aminoquinoline (2.5 mmol) and DMAP (0.25 mmol) in CH_2Cl_2 (10 mL), NEt₃ (5 mmol) was added and the resulting solution was cooled to 0 °C. Sulfonyl chloride (5 mmol) in CH_2Cl_2 was added dropwise to the mixture and the reaction was stirred at room temperature overnight. The mixture was washed with saturated aqueous NaHCO₃ (5 mL), and CH_2Cl_2 (3 × 10 mL). The combined organic phase was washed with aqueous 1 M HCl (10 mL) and was dried over Na₂SO₄. After filtration and evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the desired product.

2.2 Optimization of solvent

	+ CH ₃ CN DTBP (4.0 equiv.) solvent, 24 h, 120 °C	O N H N N
1a	2a	3a
Entry	Solvent	Yield (%)
1	Dimethyl sulfoxide	49
2	Methanol	33
3	Toluene	26
4	1,2-Dichloroethane	36
5	Chlorobenzene	22
6	Acetonitrile	64

^{*a*} Reaction conditions: **1a** (0.1 mmol), acetonitrile **2a** (10.0 equiv.), DTBP (4.0 equiv.), solvent (1 mL), stirred at 120 °C for 24 h.

2.3 General procedure for C5-cyanoalkylation of 8-aminoquinolineamides

In a 10 mL schlenk tube, the amide **1** (0.1 mmol), DTBP (3.0 equiv.) and alkylnitrile **2** (1 mL) was added. The tube was sealed and the resulting solution was heated in an oil bath at 130 °C with vigorous stirring for 24 h. Then the reaction mixture was cooled to room temperature. The mixture was poured into water (5 mL) and extracted with ethyl acetate (3×10 mL), and the combined organic layer was dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated under vacuum. The residue was purified by column chromatography on silica gel using petroleum ether/EtOAc (4:1) to give the desired product **3**.

N-(5-(cyanomethyl)quinolin-8-yl)benzamide (3a)

yellow solid, Yield: 82%, m.p. 131-133 °C; IR cm⁻¹: 3362, 2909, 2250, 1675, 1521, 1387, 1329, 1263, 1160, 1048, 900, 828, 788, 708, 651; ¹H NMR (500 MHz, DMSO- d_6) δ 4.51 (s, 2H), 7.63 (t, J = 7.2 Hz, 2H), 7.67 (d, J = 7.2 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.82 (dd, J = 8.5, 4.2 Hz, 1H), 8.04 (d, J = 7.2 Hz, 2H), 8.60 (d, J = 8.5 Hz, 1H), 8.72 (d, J = 7.9 Hz, 1H), 9.05 (d, J = 3.0 Hz, 1H), 10.71 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.69, 116.05, 118.89, 122.15, 122.69, 125.77, 127.05, 127.34, 129.06, 132.22, 132.95, 134.17, 134.31, 138.52, 149.31, 164.56. EI-MS *m*/*z* (%): 287 (M⁺, 32), 105 (100), 43 (79), 77 (60), 138 (40), 167 (4), 210 (4). C₁₈H₁₃N₃O (287): calcd. C, 75.25; H, 4.56; N, 14.63; found C, 75.61; H, 4.94; N, 14.23.

N-(5-(cyanomethyl)quinolin-8-yl)-4-methylbenzamide (3b)

yellow solid, Yield: 79%, m.p. 157-159 °C; IR cm⁻¹: 3340, 2906, 2249, 1658, 1607, 1499, 1390, 1255, 1178, 1025, 832, 788, 758, 673; ¹H NMR (500 MHz, DMSO- d_6) δ 2.36 (s, 3H), 4.04 (s, 2H), 7.17 (d, J = 13.7 Hz, 2H), 7.62 (d, J = 7.2 Hz, 2H), 7.67 (m, J = 7.8 Hz, 1H), 7.79 (d, J = 8.3, 1H), 8.44 (d, J = 8.3 Hz, 1H), 8.63 (d, J = 7.6 Hz, 1H), 8.87 (d, J = 4.2 Hz, 1H), 10.22 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 18.91, 19.70, 116.26, 118.89, 122.32, 122.60, 125.78, 127.32, 128.14, 132.83, 133.69, 134.06, 135.09, 138.27, 138.38, 149.27, 168.09. EI-MS m/z (%): 301 (M⁺, 3), 119 (100), 91 (59), 133 (54), 77 (34), 103 (27), 210 (10). C₁₉H₁₅N₃O (301): calcd. C, 75.73; H, 5.02; N, 13.94; found C, 75.96; H, 5.41; N, 13.55.

N-(5-(cyanomethyl)quinolin-8-yl)-4-methoxybenzamide (3c)

yellow solid, Yield: 91%, m.p. 174-175 °C; IR cm⁻¹: 3375, 2221, 1659, 1531, 1392, 1316, 1259, 1173, 996, 828, 761, 660; ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.87 (s, 3H), 4.49 (s, 2H), 7.14 (d, *J* = 8.2 Hz, 2H), 7.69 (d, *J* = 8.0 Hz, 1H), 7.79 (dd, *J* = 8.2, 4.2 Hz, 1H), 7.99 (d, *J* = 7.9 Hz, 2H), 8.57 (d, *J* = 8.8 Hz, 1H), 8.69 (d, *J* = 7.9 Hz, 1H), 9.03 (d, *J* = 4.4 Hz, 1H), 10.60 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 19.67, 55.50, 114.26, 115.70, 118.89, 121.70, 122.61, 125.73, 126.39, 127.34, 128.97, 132.88, 134.33, 138.42, 149.17, 162.32, 163.97. EI-MS *m*/*z* (%): 317 (M⁺, 55), 135 (100), 77 (54), 92 (45), 136 (31), 107 (21), 182 (5). C₁₉H₁₅N₃O₂ (317): calcd. C, 71.91; H, 4.76; N, 13.24; found C, 71.65; H, 4.52; N 13.50.

N-(5-(cyanomethyl)quinolin-8-yl)-3-methoxybenzamide (3d)

yellow solid, Yield: 79%, m.p. 179-182 °C; IR cm⁻¹: 3262, 2939, 2247, 1656, 1598, 1525, 1379, 1289, 1235, 1162, 1019, 908, 836, 748, 684; ¹H NMR (500 MHz, DMSO- d_6) δ 4.23 (s, 3H), 4.49 (s, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.34 (d, *J* = 8.2 Hz, 1H), 7.63 (t, *J* = 8.5 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.80 (dd, *J* = 8.5, 4.1 Hz, 1H), 8.17 (d, *J* = 9.2 Hz, 1H), 8.57 (d, *J* = 8.6 Hz, 1H), 8.86 (d, *J* = 7.9 Hz, 1H), 9.11 (d, *J* = 3.0 Hz, 1H), 12.44 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.67, 56.48, 112.66, 115.71, 118.64, 121.14, 121.45, 122.50, 125.72, 127.48,

131.50, 132.67, 132.99, 133.87, 135.23, 138.44, 149.30, 157.48, 162.59. EI-MS *m*/*z* (%): 317 (M⁺, 23), 135 (100), 149 (94), 77 (57), 43 (41), 167 (41), 105 (18). C₁₉H₁₅N₃O₂ (317): calcd. C, 71.91; H, 4.76; N, 13.24; found C, 71.73; H, 4.52; N, 13.53.

N-(5-(cyanomethyl)quinolin-8-yl)-2-methoxybenzamide (3e)

yellow solid, Yield: 72%, m.p. 168-170 °C; IR cm⁻¹: 3387, 2256, 1653, 1526, 1385, 1326, 1289, 1240, 992, 825, 759, 684; ¹H NMR (500 MHz, DMSO-*d*₆) δ 4.22 (s, 3H), 4.49 (s, 2H), 7.18 (t, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.63 (t, *J* = 7.7 Hz, 1H), 7.68 (d, *J* = 7.9 Hz, 1H), 7.79 (dd, *J* = 8.4, 3.7 Hz, 1H), 8.17 (d, *J* = 8.4 Hz, 1H), 8.56 (d, *J* = 8.5 Hz, 1H), 8.86 (d, *J* = 8.0 Hz, 1H), 9.10 (d, *J* = 3.9 Hz, 1H), 12.43 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 19.66, 56.54, 112.73, 115.74, 118.94, 120.99, 121.18, 121.53, 122.56, 125.76, 127.52, 131.51, 132.75, 133.92, 135.22, 138.46, 149.38, 157.50, 162.62. EI-MS *m*/*z* (%): 317 (M⁺, 13), 135 (100), 77 (62), 92 (33), 105 (32), 136 (19), 152 (12). C₁₉H₁₅N₃O₂ (317): calcd. C, 71.91; H, 4.76; N, 13.24; found C, 71.65; H, 4.84; N, 13.10.

N-(5-(cyanomethyl)quinolin-8-yl)-4-fluorobenzamide (3f)

yellow solid, Yield: 83%, m.p. 144-145 °C; IR cm⁻¹: 3332, 2976, 2250, 2001, 1677, 1598, 1414, 1231, 1059, 798, 679; ¹H NMR (500 MHz, DMSO- d_6) δ 4.51 (s, 2H), 7.45 (t, J = 8.8 Hz, 2H), 7.72 (d, J = 7.9 Hz, 1H), 7.81 (dd, J = 8.5, 4.2 Hz, 1H), 8.11 (dd, J = 8.7, 5.5 Hz, 2H), 8.59 (d, J = 8.5 Hz, 1H), 8.68 (d, J = 7.9 Hz, 1H), 9.04 (d, J = 4.1 Hz, 1H), 10.67 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.70, 115.92, 116.09, 116.35, 118.88, 122.30, 122.67, 125.78, 127.29, 129.88, 129.96, 132.92, 134.14, 138.63, 149.31, 163.61. EI-MS *m*/*z* (%): 305 (M⁺, 43), 123 (100), 95 (72), 75 (28), 142 (17), 155 (17), 182 (7). C₁₈H₁₂FN₃O (305): calcd. C, 70.81; H, 3.96; N, 13.76; found C, 70.98; H, 4.35; N, 13.47.

4-chloro-N-(5-(cyanomethyl)quinolin-8-yl)benzamide (3g)

yellow solid, Yield: 77%, m.p. 171-173 °C; IR cm⁻¹: 3335, 2916, 2249, 1671, 1516, 1381, 1323, 1260, 1103, 1039, 901, 833, 791; ¹H NMR (500 MHz, DMSO- d_6) δ 4.51 (s, 2H), 7.42 (d, J = 7.9 Hz, 1H), 7.67 (d, J = 8.5 Hz, 2H), 7.70 (d, J = 7.9 Hz, 2H), 8.04 (dd, J = 8.5, 4.3 Hz, 1H), 8.57 (d, J = 8.0 Hz, 1H), 8.67 (d, J = 8.7 Hz, 1H), 8.96 (d, J = 2.7 Hz, 1H), 10.29 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.71, 116.26, 118.87, 122.62, 125.75, 126.05, 127.24, 128.92, 129.05. 130.76, 132.84, 134.22, 134.94, 138.63, 149.26, 166.32. EI-MS m/z (%): 321 (M⁺ ³⁵Cl, 5), 323 (M^{+ 37}Cl, 3), 139 (100), 153 (73), 111 (53), 167 (51), 182 (9), 210 (5). C₁₈H₁₂ClN₃O (321): calcd. C, 67.19; H, 3.76; N, 13.06; found C, 67.45; H, 3.92; N, 12.90.

4-bromo-N-(5-(cyanomethyl)quinolin-8-yl)benzamide (3h)

yellow solid, Yield: 71%, m.p. 177-179 °C; IR cm⁻¹: 3389, 2927, 2250, 1723, 1670, 1520, 1381, 1269, 1018, 823, 759, 700; ¹H NMR (500 MHz, DMSO- d_6) δ 4.52 (s, 2H), 7.55 (t, J = 7.7 Hz, 1H), 7.63 (d, J = 6.8 Hz, 1H), 7.77

(d, J = 9.6 Hz, 2H), 8.04 (d, J = 7.4 Hz, 2H), 8.58 (d, J = 7.7 Hz, 1H), 8.72 (d, J = 8.9 Hz, 1H), 8.96 (d, J = 3.8 Hz, 1H), 10.37 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.76, 115.47, 115.78, 118.07, 119.41, 121.59, 122.37, 125.64, 126.82, 127.36, 128.77, 132.67, 134.25, 138.32, 148.83, 173.19. EI-MS m/z (%): 365 (M^{+ 79}Br, 4), 367 (M^{+ 81}Br, 4), 167 (100), 155 (83), 286 (71), 183 (54), 210 (43), 182 (33). C₁₈H₁₂BrN₃O (365): calcd. C, 59.04; H, 3.30; N, 11.47; found C, 59.41; H, 3.36; N, 11.49.

N-(5-(cyanomethyl)quinolin-8-yl)-3-fluorobenzamide (3i)

yellow solid, Yield: 88%, m.p. 166-168 °C; IR cm⁻¹: 3335, 2907, 2309, 1659, 1583, 1526, 1391, 1329, 1264, 1155, 1073, 860, 823, 746, 674; ¹H NMR (500 MHz, DMSO- d_6) δ 4.51 (s, 2H), 7.52 (t, J = 7.7 Hz, 1H), 7.65-7.70 (m, 1H), 7.72 (d, J = 7.9 Hz, 1H), 7.80 (dd, J = 8.4, 4.6 Hz, 2H), 7.88 (d, J = 7.7 Hz, 1H), 8.59 (d, J = 8.4 Hz, 1H), 8.66 (d, J = 7.9 Hz, 1H), 9.05 (d, J = 3.8 Hz, 1H), 10.70 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.73, 114.13, 114.31, 116.68, 118.88, 119.04, 119.21, 122.58, 122.70, 123.11, 123.13, 125.79, 127.26, 131.23, 131.30, 132.91, 134.00, 138.72, 149.39, 161.27, 163.22, 163.43. EI-MS m/z (%): 305 (M⁺, 30), 123 (100), 95 (87), 178 (45), 75 (32), 210 (26), 43 (13). C₁₈H₁₂FN₃O (305): calcd. C, 70.81; H, 3.96; N, 13.76; found C, 70.88; H, 4.07; N, 13.82.

3-chloro-N-(5-(cyanomethyl)quinolin-8-yl)benzamide (3j)

yellow solid, Yield: 69%, m.p. 178-181 °C; IR cm⁻¹: 3335, 2928, 2250, 1671, 1571, 1524, 1386, 1254, 1166, 1087, 1024, 908, 836, 794, 738, 686; ¹H NMR (500 MHz, DMSO- d_6) δ 4.52 (s, 2H), 7.65 (t, *J* = 7.9 Hz, 1H), 7.70-7.76 (m, 2H), 7.81 (dd, *J* = 8.4, 4.0 Hz, 1H), 8.00 (d, *J* = 8.0 Hz, 1H), 8.05 (s, 1H), 8.59 (d, *J* = 8.7 Hz, 1H), 8.65 (d, *J* = 8.1 Hz, 1H), 9.05 (d, *J* = 4.0 Hz, 1H), 10.71 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.75, 116.62, 118.82, 122.60, 122.98, 125.63, 127.87, 128.82, 129.37, 130.56, 130.87, 131.91, 132.64, 133.77, 133.97, 138.66, 149.27, 166.06. EI-MS *m*/*z* (%): 321 (M^{+ 35}Cl, 31), (M^{+ 37}Cl, 11), 139 (100), 111 (66), 141 (37), 75 (31), 155 (20), 210 (18). C₁₈H₁₂ClN₃O (321): calcd. C, 67.19; H, 3.76; N, 13.06; found C, 67.24; H, 4.01; N, 13.26.

3-bromo-N-(5-(cyanomethyl)quinolin-8-yl)benzamide (3k)

yellow solid, Yield: 82%, m.p. 170-172 °C; IR cm⁻¹: 3335, 2952, 2597, 2250, 1667, 1526, 1391, 1299, 1252, 1057, 996, 937, 835, 791, 740, 688; ¹H NMR (500 MHz, DMSO- d_6) δ 4.50 (s, 2H), 7.56 (t, J = 7.9 Hz, 1H), 7.69 (d, J = 7.9 Hz, 1H), 7.78 (dd, J = 8.5, 4.2 Hz, 1H), 7.84 (d, J = 7.7, 1H), 8.00 (d, J = 7.4 Hz, 1H), 8.15 (s, 1H), 8.56 (d, J = 8.4 Hz, 1H), 8.62 (d, J = 7.9 Hz, 1H), 9.02 (d, J = 2.8 Hz, 1H), 10.65 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.72, 116.75, 118.83, 122.17, 122.53, 122.60, 125.73, 126.03, 127.16, 129.97, 131.10, 132.82, 133.95, 134.81, 136.53, 138.70, 149.31, 163.19. EI-MS m/z (%): 365 (M⁺⁷⁹Br, 22), 367 (M⁺⁸¹Br, 21), 183 (100), 185 (94), 155 (90), 157 (63), 76 (44), 210 (26). C₁₈H₁₂BrN₃O (365): calcd. C, 59.04; H, 3.30; N, 11.47; found C, 59.25; H, 3.37; N, 11.48.

2-chloro-N-(5-(cyanomethyl)quinolin-8-yl)benzamide (3l)

yellow solid, Yield: 66%, m.p. 177-180 °C; IR cm⁻¹: 3355, 2903, 2250, 1672, 1590, 1522, 1387, 1327, 1232, 1121, 1041, 830, 786, 745, 661; ¹H NMR (500 MHz, DMSO- d_6) δ 4.52 (s, 2H), 7.52 (t, *J* = 7.4 Hz, 1H), 7.58 (t, *J* = 7.4 Hz, 1H), 7.63 (d, *J* = 7.8 Hz, 1H), 7.73 (d, *J* = 7.9 Hz, 1H), 7.79 (dd, *J* = 8.3, 4.5 Hz, 2H), 8.58 (d, 8.6 Hz, 1H), 8.72 (d, *J* = 7.4 Hz, 1H), 8.97 (d, *J* = 4.1 Hz, 1H), 10.50 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.80, 116.24, 118.85, 122.67, 125.78, 127.65, 127.84, 129.32, 129.62, 130.18, 131.62, 131.98, 132.82, 134.12, 135.62, 138.35, 149.29, 166.82. EI-MS *m*/*z* (%): 321 (M⁺³⁵Cl, 68), 323 (M⁺³⁷Cl, 26), 139 (100), 141 (83), 111 (57), 140 (29), 113 (20), 75 (23). C₁₈H₁₂ClN₃O (321): calcd. C, 67.19; H, 3.76; N, 13.06; found C, 67.02; H, 3.61; N, 12.66.

3,4-dichloro-N-(5-(cyanomethyl)quinolin-8-yl)benzamide (3m)

yellow solid, Yield: 55%, m.p. 166-169 °C; IR cm⁻¹: 3344, 2925, 2856, 2246, 1670, 1515, 1393, 1325, 1248, 1051, 946, 794, 669; ¹H NMR (500 MHz, DMSO- d_6) δ 4.52 (s, 2H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 9.3 Hz, 1H), 7.87 (d, *J* = 8.4 Hz, 1H), 8.00 (d, *J* = 8.5 Hz, 1H), 8.24 (s, 1H), 8.55-8.64 (m, 2H), 9.04 (d, *J* = 2.8 Hz, 1H), 10.73 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.75, 117.28, 118.86, 122.64, 122.89, 127.16, 127.34, 129.41, 129.59, 130.15, 131.18, 131.80, 132.87, 133.95, 134.89, 138.93, 149.40, 162.67. EI-MS *m*/*z* (%): 355 (M^{+ 35}Cl₂, 23), 357 (M^{+ 35}Cl, ³⁷Cl, 15), 359 (M^{+ 37}Cl₂, 3), 173 (100), 175 (86), 145 (51), 147 (34), 109 (21), 210 (19). C₁₈H₁₁C₁₂N₃O (355): calcd. C, 60.69; H, 3.11; N, 11.80; found C, 60.63; H, 3.22; N, 11.89.

N-(5-(cyanomethyl)quinolin-8-yl)-4-nitrobenzamide (3n)

yellow solid, Yield: 67%, m.p. 136-138 °C; IR cm⁻¹: 2919, 2852, 2254, 1684, 1555, 1453, 1259, 1095, 903, 808, 725, 657; ¹H NMR (500 MHz, DMSO- d_6) δ 4.53 (s, 2H), 7.74 (d, J = 7.9 Hz, 1H), 7.81 (dd, J = 8.6, 4.2 Hz, 1H), 8.27 (d, J = 8.8 Hz, 2H), 8.43 (d, J = 8.9 Hz, 2H), 8.60 (dd, J = 8.6, 1.7 Hz, 1H), 8.68 (d, J = 7.9 Hz, 1H), 9.05 (d, J = 3.7 Hz, 1H), 10.84 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.77, 117.10, 122.73, 123.00, 123.64, 124.08, 127.22, 128.84, 132.94, 133.90, 136.06, 138.83, 139.93, 149.44, 150.24. 163.23. EI-MS *m*/*z* (%): 332 (M⁺, 55), 150 (100), 210 (65), 104 (56), 164 (52), 76 (36), 183 (14). C₁₈H₁₂N₄O₃ (332): calcd. C, 65.06; H, 3.64; N, 16.86; found C, 65.33; H, 3.82; N, 16.92.

N-(5-(cyanomethyl)quinolin-8-yl)-1-naphthamide (30)

Cream solid, Yield: 80%, m.p. 153-156 °C; IR cm⁻¹: 3353, 2923, 2241, 1670, 1590, 1520, 1382, 1325, 1252, 1130, 1023, 909, 778, 662; ¹H NMR (500 MHz, DMSO- d_6) δ 4.53 (s, 2H), 7.61-7.64 (m, 2H), 7.65-7.68 (m, 1H), 7.77 (t, J = 7.7 Hz, 2H), 7.98 (d, J = 7.0 Hz, 1H), 8.04-8.08 (m, 1H), 8.15 (d, J = 8.2 Hz, 1H), 8.36-8.40 (m, 1H), 8.59 (d, J = 8.6 Hz, 1H), 8.81 (d, J = 7.8 Hz, 1H), 8.94 (d, J = 4.1 Hz, 1H), 10.48 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.74, 116.21, 118.89, 122.34, 122.61, 124.98, 125.18, 125.56, 125.76, 126.57, 127.31, 127.33, 128.49, 129.57, 131.08, 132.83, 133.37, 133.83, 134.39, 138.41, 149.22, 166.79. EI-MS m/z (%): 337 (M⁺, 69),

155 (100), 127 (79), 156 (25), 169 (24), 126 (18), 210 (6). $C_{22}H_{15}N_3O$ (337): calcd. C, 78.32; H, 4.48; N, 12.46; found C, 78.34; H, 4.45; N, 12.40.

N-(5-(cyanomethyl)quinolin-8-yl)isonicotinamide (3p)

orange solid, Yield: 71%, m.p. 189-191 °C; IR cm⁻¹: 3393, 2251, 1659, 1529, 1386, 1261, 997, 824, 758, 639; ¹H NMR (500 MHz, DMSO- d_6) δ 4.55 (s, 2H), 7.66 (d, J = 8.1 Hz, 1H), 7.68 (dd, J = 8.2, 4.4 Hz, 1H), 7.95 (d, J = 5.8 Hz, 2H), 8.47 (d, J = 8.3 Hz, 1H), 8.68 (d, J = 7.6 Hz, 1H), 8.86 (d, J = 5.8 Hz, 2H), 8.98 (d, J = 4.1 Hz, 1H), 10.77 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 25.40, 116.52, 117.61, 121.09, 122.41, 123.16, 126.94, 127.87, 133.56, 136.77, 138.54, 141.49, 149.35, 150.66, 163.17. EI-MS m/z (%): 288 (M⁺, 29), 106 (100), 78 (43), 52 (14), 262 (3), 210 (2), 182 (2). C₁₇H₁₂N₄O (288): calcd. C, 70.82; H, 4.20; N, 19.43; found C, 71.01; H, 4.49; N, 19.31.

N-(5-(cyanomethyl)quinolin-8-yl)thiophene-2-carboxamide (3q)

yellow solid, Yield: 68%, m.p. 143-145 °C; IR cm⁻¹: 3361, 3098, 2903, 2250, 1727, 1649, 1525, 1413, 1393, 1329, 1240, 1105, 1049, 827, 787, 721, 638; ¹H NMR (500 MHz, DMSO-*d*₆) δ 4.51 (s, 2H), 7.26-7.32 (m, 1H), 7.71 (d, *J* = 7.9 Hz, 1H), 7.81 (dd, *J* = 8.6, 4.2 Hz, 1H), 7.95 (d, *J* = 4.6 Hz, 1H), 8.00 (d, *J* = 3.6 Hz, 1H), 8.57-8.60 (m, 2H), 9.05 (d, *J* = 4.2 Hz, 1H), 10.59 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 19.71, 116.45, 118.85, 122.26, 122.67, 127.28, 128.18, 128.18, 128.52, 129.30, 132.46, 132.89, 134.65, 139.01, 149.32, 162.90. EI-MS *m*/*z* (%): 293 (M⁺, 79), 111 (100), 125 (45), 83 (16), 142 (11), 182 (7), 210 (6). C₁₆H₁₁N₃OS (293): calcd. C, 65.51; H, 3.78; N, 14.32; found C, 65.73; H, 3.80; N, 14.36.

N-(5-(cyanomethyl)quinolin-8-yl)furan-2-carboxamide (3r)

yellow solid, Yield: 75%, m.p. 141-143 °C; IR cm⁻¹: 3320, 2969, 2309, 2209, 1667, 1519, 1380, 1322, 1155, 1077, 1002, 823, 788; ¹H NMR (500 MHz, DMSO- d_6) δ 4.49 (s, 2H), 6.69 (d, J = 3.0 Hz, 1H), 7.61-7.65 (m, 1H), 7.73 (d, J = 8.1 Hz, 1H), 7.81 (dd, J = 8.4, 4.1 Hz, 1H), 8.06 (d, J = 1.3 Hz, 1H), 8.45 (d, J = 8.1 Hz, 1H), 8.58 (d, J = 8.3 Hz, 1H), 9.05 (d, J = 3.9 Hz, 1H), 10.68 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.67, 112.86, 115.71, 116.64, 118.84, 122.08, 122.45, 127.03, 127.81, 132.96, 133.39, 136.79, 146.21, 147.69, 149.27, 155.39. MS (EI): 277 (M⁺, 55), 95 (100), 209 (82), 43 (26), 109 (21), 67 (13), 182 (7). C₁₆H₁₁N₃O₂ (277): calcd. C, 69.31; H, 4.00; N, 15.15; found C, 69.38; H, 4.36; N, 15.19.

N-(5-(cyanomethyl)quinolin-8-yl)acetamide (3s)

Cream solid, Yield: 79%, m.p. 99-101 °C; IR cm⁻¹: 3346, 2926, 2852, 2247, 1675, 1519, 1450, 1326, 1180, 941, 817, 674; ¹H NMR (500 MHz, DMSO- d_6) δ 2.28 (s, 3H), 4.44 (s, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.73 (dd, J = 8.5, 4.2 Hz, 1H), 8.51 (d, J = 8.6 Hz, 1H), 8.58 (d, J = 8.0 Hz, 1H), 8.97 (d, J = 4.2 Hz, 1H), 10.13 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.64, 24.54, 115.97, 118.90, 121.29, 122.34, 125.67, 127.25, 132.58, 134.85, 138.27,

148.81, 169.00. EI-MS *m*/*z* (%): 225 (M⁺, 28), 183 (100), 43 (77), 182 (55), 57 (43), 167 (25), 210 (13). C₁₃H₁₁N₃O (225): calcd. C, 69.32; H, 4.92; N, 18.66; found C, 69.37; H, 5.11; N, 18.69.

N-(5-(cyanomethyl)quinolin-8-yl)pivalamide (3t)

Light yellow solid, Yield: 74%, m.p. 116-119 °C; IR cm⁻¹: 3361, 2963, 2255, 1730, 1676, 1521, 1380, 1323, 1148, 1030, 927, 832, 787, 655; ¹H NMR (500 MHz, DMSO- d_6) δ 1.33 (s, 9H), 4.45 (s, 2H), 7.62 (d, J = 7.9 Hz, 1H), 7.75 (dd, J = 8.5, 4.5 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.61 (d, J = 7.9 Hz, 1H), 8.98 (d, J = 2.2 Hz, 1H), 10.18 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.63, 27.24, 37.68, 114.95, 118.86, 121.29, 122.53, 125.62, 127.31, 132.85, 134.24, 138.17, 149.11, 176.10. EI-MS m/z (%): 267 (M⁺, 23), 57 (100), 210 (86), 41 (75), 266 (48), 182 (42), 224 (39). C₁₆H₁₇N₃O (267): calcd. C, 71.89; H, 6.41; N, 15.72; found C, 71.98; H, 6.48; N, 16.10.

N-(5-(cyanomethyl)quinolin-8-yl)cyclohexanecarboxamide (3u)

Cream solid, Yield: 93%, m.p. 128-131 °C; IR cm⁻¹: 3344, 2927, 2853, 2250, 1674, 1519, 1450, 1390, 1323, 1255, 942, 845, 790, 671; ¹H NMR (500 MHz, DMSO- d_6) δ 1.19-1.24 (m, 1H), 1.29-1.37 (m, 2H), 1.42-1.50 (m, 2H), 1.64-1.67 (m, 1H), 1.74-1.77 (m, 2H), 1.90-1.93 (m, 2H), 2.63-2.68 (m, 1H), 4.45 (s, 2H), 7.61 (d, J = 8.0 Hz, 1H), 7.75 (dd, J = 8.5, 4.2 Hz, 1H), 8.52 (d, J = 8.5 Hz, 1H), 8.60 (d, J = 8.0 Hz, 1H), 8.99 (d, J = 4.0 Hz, 1H), 10.05 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.65, 25.10, 25.39, 29.31, 45.05, 115.65, 118.88, 121.21, 122.38, 125.66, 127.26, 132.66, 134.68, 138.26, 148.86, 174.37. EI-MS m/z (%): 293 (M⁺, 36), 183 (100), 210 (91), 182 (44), 55 (44), 83 (30), 155 (15). C₁₈H₁₉N₃O (293): calcd. C, 73.69; H, 6.53; N, 14.32; found C, 73.58; H, 6.88; N 14.29.

N-(5-(1-cyanoethyl)quinolin-8-yl)benzamide (4a)

Light yellow solid, Yield: 57%, m.p. 127-129 °C; IR cm⁻¹: 3316, 3004, 2246, 1647, 1525, 1384, 1312, 1169, 1039, 940, 876, 807, 722, 635; ¹H NMR (500 MHz, DMSO-*d*₆) δ 1.69 (d, *J* = 7.1 Hz, 3H), 5.08 (q, *J* = 7.1 Hz, 1H), 7.16 (d, *J* = 7.6 Hz, 1H), 7.24 (t, *J* = 7.5 Hz, 1H), 7.50 (t, *J* = 6.5 Hz, 1H), 7.63 (t, *J* = 7.4 Hz, 2H), 8.04 (d, *J* = 7.0 Hz, 2H), 8.69 (d, *J* = 8.9 Hz, 1H), 8.76 (d, *J* = 8.0 Hz, 1H), 9.04 (d, *J* = 4.1 Hz, 1H), 10.73 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 15.75, 28.86, 116.05, 120.32, 122.71, 125.44, 127.45, 128.17, 128.43, 128.86, 129.05, 131.91, 132.23, 132.48, 138.48, 149.21, 164.54. EI-MS *m*/*z* (%): 301 (M⁺, 39), 105 (100), 77 (84), 51 (23), 142 (6), 224 (5), 180 (4). C₁₉H₁₅N₃O (301): calcd. C, 75.73; H, 5.02; N, 13.94; found C, 75.87; H, 4.92; N, 14.03.

N-(5-(1-cyanopropyl)quinolin-8-yl)benzamide (4b)

Light yellow solid, Yield: 26%, m.p. 119-121 °C; IR cm⁻¹: 3333, 2967, 2243, 1666, 1584, 1521, 1384, 1319, 1263, 1025, 896, 836, 791, 699; ¹H NMR (500 MHz, DMSO-*d*₆) δ 0.95 (t, *J* = 7.3 Hz, 3H), 2.10-2.13 (m, 2H), 4.65 (m, 1H), 7.51 (d, *J* = 7.7 Hz, 2H), 7.71 (dd, *J* = 8.6, 4.5 Hz, 1H), 7.84-7.91 (m, 2H), 8.04 (d, *J* = 6.1 Hz, 3H), 8.36 (d, *J* = 8.1 Hz, 1H), 8.87 (d, *J* = 3.7 Hz, 1H), 10.19 (s, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 10.05, 20.84, 29.56, 116.14, 120.90, 122.27, 123.72, 127.03, 127.49, 127.81, 128.39, 128.43, 129.03, 132.12, 135.97, 148.75, 150.02, 164.41. EI-MS *m/z* (%): 315 (M⁺, 35), 105 (100), 275 (50), 77 (47), 238 (6), 142 (4), 290 (3). C₂₀H₁₇N₃O (315): calcd. C, 76.17; H, 5.43; N, 13.32; found C, 75.88; H, 5.82; N, 12.93.

Ethyl 2-(8-benzamidoquinolin-5-yl)-2-cyanoacetate (4c)

yellow solid, Yield: 34%, m.p. 154-167 °C; IR cm⁻¹: 3336, 2982, 2231, 1743, 1674, 1522, 1378, 1227, 1095, 1015, 899, 849, 791, 696; ¹H NMR (500 MHz, DMSO- d_6) δ 1.23 (t, J = 7.1 Hz, 3H), 4.41 (q, J = 7.1 Hz, 2H), 6.29 (s, 1H), 7.58 (d, J = 8.4 Hz, 1H), 7.60-7.66 (m, 2H), 7.68 (d, J = 6.4 Hz, 1H), 7.89 (dd, J = 8.9, 4.3 Hz, 1H), 8.05 (d, J = 7.3 Hz, 2H), 8.80 (d, J = 8.4 Hz, 1H), 8.94 (d, J = 8.7 Hz, 1H), 9.13 (d, J = 3.9 Hz, 1H), 10.86 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 14.37, 43.30, 64.01, 115.90, 120.91, 123.01, 123.57, 125.89, 127.09, 127.82, 128.40, 129.43, 131.54, 134.45, 136.57, 149.43, 149.99, 162.25, 163.57. EI-MS *m*/*z* (%): 359 (M⁺, 10), 105 (100), 358 (39), 77 (26), 106 (8), 286 (2), 261 (1). C₂₁H₁₇N₃O₃ (359): calcd. C, 70.18; H, 4.77; N, 11.69; O; found C, 70.24; H, 4.93; N, 12.03.

N-(5-(nitromethyl)quinolin-8-yl)benzamide (4f)

Light yellow solid, Yield: 88%, m.p. 179-180 °C; IR cm⁻¹: 3366, 2915, 1667, 1525, 1370, 1322, 1261, 1186, 1069, 893, 830, 789, 695, 615; ¹H NMR (500 MHz, DMSO- d_6) δ 6.29 (s, 2H), 7.63 (t, J = 7.3 Hz, 2H), 7.66-7.70 (m, 1H), 7.78 (dd, J = 8.5, 4.1 Hz, 1H), 7.85 (d, J = 7.9 Hz, 1H), 8.04 (d, J = 7.3 Hz, 2H), 8.64 (d, J = 8.5 Hz, 1H), 8.76 (d, J = 7.9 Hz, 1H), 9.03 (d, J = 3.9 Hz, 1H), 10.78 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 75.76, 115.45, 121.35, 123.02, 127.03, 127.07, 129.06, 131.70, 132.30, 133. 25, 134.22, 135.71, 138.17, 149.23, 164.65. EI-MS m/z (%): 307 (M⁺, 1), 105 (100), 261 (88), 77 (38), 262 (21), 155 (15), 156 (6). C₁₇H₁₃N₃O₃ (307): calcd. C, 66.44; H, 4.26; N, 13.67; found C, 66.02; H, 4.71; N, 14.05.

N-(5-(2-oxopropyl)quinolin-8-yl)benzamide (4g)

Cream solid, Yield: 73%, m.p. 162-163 °C; IR cm⁻¹: 3362, 3051, 1705, 1662, 1525, 1387, 1323, 1260, 1157, 1069, 1001, 898, 830, 789, 696, 641; ¹H NMR (500 MHz, DMSO- d_6) δ 2.24 (s, 3H), 4.29 (s, 2H), 7.49 (d, J = 7.7 Hz, 1H), 7.62 (t, J = 6.8 Hz, 2H), 7.65-7.68 (m, 2H), 8.03 (d, J = 7.5 Hz, 2H), 8.38-8.40 (m, 1H), 8.66 (d, J = 7.8 Hz, 1H), 8.96 (d, J = 3.8 Hz, 1H), 10.69 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 29.48, 46.27, 116.17, 122.02, 126.96, 126.98, 127.13, 128.62, 129.02, 132.09, 133.10, 134.10, 134.47, 138.40, 148.65, 164.41, 205.90. EI-MS m/z (%): 304 (M⁺, 39), 105 (100), 261 (76), 77 (41), 155 (9), 43 (4), 184 (1). C₁₉H₁₆N₂O₂ (304): calcd. C, 74.98; H, 5.30; N, 9.20; found C, 75.27; H, 4.89; N, 8.81.

N-(5-(cyanomethyl)quinolin-8-yl)benzenesulfonamide (6a)

Cream solid, Yield: 77%, m.p. 124-127 °C; IR cm⁻¹: 3177, 2924, 2316, 2255, 1667, 1582, 1505, 1473, 1370, 1305, 1162, 1090, 883, 832, 755, 723; ¹H NMR (500 MHz, DMSO- d_6) δ 4.42 (s, 2H), 7.48 (t, J = 7.6 Hz, 2H), 7.54 (d, J = 7.3 Hz, 1H), 7.58 (d, J = 8.1 Hz, 1H), 7.69-7.71 (m, 2H), 7.93 (d, J = 7.6 Hz, 2H), 8.46 (d, J = 7.8 Hz, 1H), 8.91 (d, J = 3.3 Hz, 1H), 10.07 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.61, 115.93, 118.72, 122.59, 122.78, 125.95, 126.89, 126.93, 129.13, 132.61, 133.15, 133.78, 138.86, 139.28, 149.37. MS (EI): 323 (M⁺, 19), 77 (100), 182 (81), 142 (75), 259 (74), 258 (62), 219 (28). C₁₇H₁₃N₃O₂S (323): calcd. C, 63.14; H, 4.05; N, 12.99; found C, 63.38; H, 3.91; N, 12.67.

N-(5-(cyanomethyl)quinolin-8-yl)-4-methylbenzenesulfonamide (6b)

Light Yellow solid, Yield: 81%, m.p. 147-149 °C; IR cm⁻¹: 3244, 2924, 2256, 1593, 1504, 1473, 1418, 1356, 1301, 1159, 1089, 1062, 880, 825, 784, 662; ¹H NMR (500 MHz, DMSO- d_6) δ 2.26 (s, 3H), 4.41 (s, 2H), 7.27 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 7.0 Hz, 1H), 7.67-7.72 (m, 2H), 7.82 (d, J = 6.8 Hz, 2H), 8.46 (d, J = 8.5 Hz, 1H), 8.92 (d, J = 4.7 Hz, 1H), 9.93 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.59, 20.86, 115.28, 118.73, 122.49, 122.63, 125.95, 126.94, 127.00, 129.60, 132.65, 133.85, 136.33, 138.65, 143.68, 149.36. MS (EI): 337 (M⁺, 21), 273 (100), 91 (78), 142 (28), 272 (67), 182 (50), 155 (64). C₁₈H₁₅N₃O₂S (337): calcd. C, 64.08; H, 4.48; N, 12.45; found C, 64.23; H, 4.52; N, 12.27.

N-(5-(cyanomethyl)quinolin-8-yl)methanesulfonamide (6c)

Light Yellow solid, Yield: 73%, m.p. 118-121 °C; IR cm⁻¹: 3241, 2931, 2254, 1506, 1476, 1424, 1371, 1324, 1150, 1023, 887, 829, 761, 693; ¹H NMR (500 MHz, DMSO- d_6) δ 3.17 (s, 3H), 4.49 (s, 2H), 7.67 (d, J = 8.1 Hz, 1H), 7.74 (d, J = 7.8 Hz, 1H), 7.78 (dd, J = 8.4, 4.1 Hz, 1H), 8.57 (d, J = 8.3 Hz, 1H), 9.01 (d, J = 3.5 Hz, 1H), 9.45 (s, 1H); ¹³C NMR (125 MHz, DMSO- d_6) δ 19.61, 43.13, 116.25, 118.85, 122.46, 122.74, 126.18, 127.26, 133.03, 134.37, 138.93, 149.43. MS (EI): 261 (M⁺, 42), 182 (100), 142 (87), 183 (63), 155 (52), 77 (31), 196 (11). C₁₂H₁₁N₃O₂S (261): calcd. C, 55.16; H, 4.24; N, 16.08; found C, 55.50; H, 4.46; N, 16.32.

2.4 Removal of the acyl moiety

To a solution of **3a** (2 mmol) in methanol (10 mL), NaOH (4.0 equiv.) was added and the reaction mixture was refluxed for 24 h. Then, methanol was removed and the mixture was diluted with EtOAc (100 mL) and washed with aqueous 1 M HCl (3×20 mL). After filtration and evaporation of the solvent under reduced pressure, the desired product **13** was obtained through recrystallization in absolute ethanol (63% yield).

2-(8-aminoquinolin-5-yl)acetonitrile (13)

Cream solid, Yield: 63%, m.p. 145-147 °C; IR cm⁻¹: 3411, 3322, 2914, 2253, 1619, 1508, 1413, 1368, 1328, 1259, 1125, 1041, 926, 821, 776, 688; ¹H NMR (500 MHz, DMSO-*d*₆) δ 3.98 (s, 2H), 5.14 (br, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 7.37 (d, *J* = 7.8 Hz, 1H), 7.50 (dd, *J* = 8.5, 4.1 Hz, 1H), 8.15 (d, *J* = 9.8 Hz, 1H), 8.82 (d, *J* = 2.6 Hz, 1H); ¹³C NMR (125 MHz, DMSO-*d*₆) δ 20.77, 109.01, 113.25, 118.10, 122.12, 126.65, 128.42, 129.01, 131.17, 144.87, 147.60. MS (EI): 183 (M⁺, 97), 182 (100), 105 (29), 155 (19), 77 (18), 128 (7), 51 (6). C₁₁H₉N₃ (183): calcd. C, 72.11; H, 4.95; N, 22.94; found C, 72.50; H, 4.55; N, 23.32.

2.5 Conversion of the cyano group to the carboxylic acid group

To a solution of **3a** (2 mmol) in methanol (10 mL), NaOH (10.0 equiv.) was added and the reaction mixture was refluxed for 24 h. Then, methanol was removed from the mixture and the combined organic phase was diluted with EtOAc (100 mL) and washed with aqueous 1 M HCl (3×20 mL). After filtration

and evaporation of the solvent under reduced pressure, the crude product was purified by column chromatography on silica gel (petroleum ether/EtOAc) to give the desired product 14 in 38% yield.

yellow oil, Yield: 38%, IR cm⁻¹: 3348, 3213, 2987, 2931, 2789, 2753, 1715, 1657, 1622, 1564, 1488, 1382, 1323, 1222, 1178, 1098, 1021, 818, 767, 666, 624; ¹H NMR (500 MHz, DMSO- d_6) δ 3.73 (s, 2H), 7.56 (dd, *J* = 8.6, 4.0 Hz, 1H), 8.43 (d, *J* = 8.2 Hz, 1H), 8.75 (d, *J* = 7.4 Hz, 1H), 8.81 (d, *J* = 4.1 Hz, 1H), 9.56 (d, *J* = 8.7 Hz, 1H), 10.09 (s, 1H). ¹³C NMR (125 MHz, DMSO- d_6) δ 20.96, 110.81, 116.41, 121.43, 127.59, 129.11, 136.55, 138.28, 143.83, 147.50, 177.33. MS (EI): 202 (M⁺, 28), 84 (100), 66 (62), 188 (59), 45 (37), 143 (26), 116 (20). C₁₁H₁₀N₂O₂ (202): calcd. C, 65.34; H, 4.98; N, 13.85; found C, 65.70; H, 5.28; N, 14.01.

2.6 Reduction of the pyridine ring

To a solution of **3a** (2 mmol) in methanol (5 mL) and CH_2Cl_2 (5 mL), Pd/C 10% (1.0 equiv.) was added, and the reaction mixture was stirred under H_2 (3100 torr) for 24 h. Then, the solvent was removed from the mixture and the desired product **15** was obtained through recrystallization in absolute ethanol (89% yield).

N-(5-(cyanomethyl)-1,2,3,4-tetrahydroquinolin-8-yl)benzamide (15)

Goldish solid, Yield: 89%, m.p. 86-87 °C; IR cm⁻¹: 3371, 3387, 2922, 2850, 2245, 1637, 1587, 1515, 1446, 1315, 1267, 1192, 1074, 1024, 918, 894, 697; ¹H NMR (500 MHz, DMSO- d_6) δ 1.95 (dt, J = 11.5, 6.0 Hz, 2H), 2.70 (t, J = 6.3 Hz, 2H), 3.26-3.30 (m, 2H), 3.57 (s, 2H), 6.73 (d, J = 7.9 Hz, 1H), 7.20 (d, J = 7.4 Hz, 1H), 7.46 (t, J = 7.4 Hz, 2H), 7.55 (t, J = 7.1 Hz, 1H), 7.80 (s, 1H), 7.89 (d, J = 7.0 Hz, 2H); ¹³C NMR (125 MHz, DMSO- d_6) δ 21.59, 21.75, 24.37, 41.54, 117.84, 118.08, 122.08, 123.62, 123.86, 127.03, 127.43, 128.87, 132.15, 134.09, 139.97, 166.26. MS (EI): 291 (M⁺, 50), 105 (100), 274 (51), 77 (45), 186 (26), 145 (17), 214 (5). C₁₈H₁₇N₃O (291): calcd. C, 74.20; H, 5.88; N, 14.42; O; found C, 74.58; H, 6.28; N, 14.44.

2.7 Mechanistic studies

2.7.1 The kinetic isotopic effect studies on the solvent (competition reaction)

2.7.2 The kinetic isotopic effect studies on the solvent (parallel reaction)

Eight parallel sealed tubes were charged with *N*-(quinolin-8-yl)benzamide **1a** (0.1 mmol), DTBP (3.0 equiv.), and CH₃CN or CD₃CN (four experiments for each). The reactions were stirred at 130 °C for 24 h. Then the reaction mixture cooled to room temperature and was analyzed by GC-MS to record the yield of products **3a** or **3a-D**. A considerable intermolecular kinetic isotope effect ($k_H/k_D = 8.92$) showed that the C-H bond activation of acetonitrile contributes to the rate-limiting step.

2.7.3 Trapping of the Reaction Intermediate

A 10 mL sealed tube was equipped with a magnetic stir bar and charged with *N*-(quinolin-8-yl)benzamide **1a** (0.1 mmol), DTBP (3.0 equiv.), TEMPO (3.0 equiv.) and CH₃CN **2a** (1 mL). The vessel was heated at 130 °C for 24 h and then it was cooled to room temperature. The mixture was analyzed by GC-MS. Product **3a** was not observed under the reaction conditions, and **12** was detected (1.8%).

3. References

- 1 (a) M. Nishino, K. Hirano, T. Satoh, M. Miura, *Angew. Chem., Int. Ed.*, 2013, **52**, 4457; (b) Y. Aihara, N. Chatani, *Chem. Sci.*, 2012, **4**, 664.
- 2 L. D. Tran, I. Popov, O. Daugulis, J. Am. Chem. Soc., 2012, 134, 18237.

4. ¹H and ¹³C NMR spectra

¹H NMR spectrum of 3a

¹³C NMR spectrum of 3b

¹³C NMR spectrum of 3c

S25

¹³C NMR spectrum of 3e

S29

¹³C NMR spectrum of 3f

HH-COSY NMR spectrum of 3k

¹H NMR spectrum of 3l

S42

¹³C NMR spectrum of 3m

¹H NMR spectrum of 3n

¹³C NMR spectrum of 3n

¹H NMR spectrum of 30

¹³C NMR spectrum of 30

¹³C NMR spectrum of 3p

¹³C NMR spectrum of 3r

¹³C NMR spectrum of 3t

¹³C NMR spectrum of 4a

¹³C NMR spectrum of 4c

¹H NMR spectrum of 4f

¹³C NMR spectrum of 6a

S73

¹³C NMR spectrum of 6b

S75

¹H NMR spectrum of 6c

¹³C NMR spectrum of 6c