Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting information

A Single Pot Organocatalytic Diastereoselective Synthesis of Fluorescent Ring Fused 2-Pyridone Decalines via Domino Knoevenagel/Michael/Hydrolactamisation Sequence

Sumit B. Kamble, *abc Ranjeet K. Bhore, a Santosh G. Tilve*c

^aDepartment of Salt and Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Gijubhai Badekha Marg, Waghawadi road Bhavnagar, Gujarat-364002, India. <u>sbkamble@csmcri.res.in</u> ^bAcademy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh, India,^cSchool of Chemical Sciences, Goa University, Taleigao Plateau, Goa 403206, India. stilve@unigoa.ac.in

Table of content

General InformationSI2
General procedure for the domino synthesis of 2-pyridonesSI2
Fluorescent Spectroscopy study of the 5k, 5i , and 5m compoundsSI2-SI3
COSY-GPSW NMR spectroscopy study of 5k compoundsSI3
FT-IR spectroscopy study of 5a SI4
Determination of diastereoselectivity of compound 5a and crude 5d SI4-SI5
Characterization data of synthesized compoundsSI5- SI12
¹ H and ¹³ C NMR spectra of all the synthesized compoundsSl13-Sl33
Single crystal XRD data of the 13a

General Information

A flame dried glass apparatus was used to carry out all the reactions under close atmosphere using A.R. grade solvents as purchased. All the chemicals procured from authentic dealers such as Sigma Aldrich, Alfa Aser, and Thomas Baker etc. Aluminum coated with silica gel 60 F₂₅₄ TLC plates purchased from Merck for TLC chromatography. Products were separated and purified over flash chromatography using 35% ethyl acetate in hexane as a mobile phase packed with 220-400 mesh silica. Products were characterized by using ¹H-NMR and ¹³C NMR using D₆-DMSO (Reference, 0.01% TMS) as a solvent on 400 MHz Bruker instrument and 500 MHz/600 MHz JEOL instruments. FT-IR has been done on the PerkinElmer frontier instrument in ATR (PIKE make) mode at room temperature. Fluorescent emission spectra were recorded on a HORIBA QM-400 instrument, equipped with a continuous Xenon arc lamp, samples were excited at 300-350 nm. The single-crystal structure was determined using a BRUKER SMART APEX (CCD) diffractometer. HRMS were done on the Agilent 6545 LC/Q-TOF.

General procedure for the domino synthesis of 2-pyridones

L-Proline (20 mol%) and PhCOOH (20 mol%) were added to the solution of aldehydes (1 mmol), cyclohexanone (2 mmol) and cyanoacetamides (1.1 mmol) in 25 mL R. B. flask containing 5 mL DMSO solvent. The reaction mixture was then stirred for 6-24 h, and after completion of the reaction monitored by TLC (45% EA in hexane), sat. aq. NaHCO₃ (5 mL) was added to quench the reaction. After that reaction mixture was extracted with ethyl acetate and washed subsequently with sat. aq. NaHCO₃, H₂O, and brine. Finally, the organic layer was dried using anhydrous Na₂SO₄, and the crude product was loaded over flash silica (220-400 mesh) to separate the compounds using column chromatography. Isolated yields were calculated after compound separations.

Fluorescent spectroscopy study of 5k, 5i and 5m compounds

For the proof of fluorescent nature of the synthesised compounds, studied the fluorescent spectroscopy of the **5k**, **5i** and **5m**. All the compounds were excited at λ 300-350 nm emitted the λ_{max} in visible region (**Figure SI1**) and thus also studied the aggregation-induced fluorescent of **5l**.

Figure SI1. Fluorescent spectroscopic study of 5k, 5i and 5m fused 2-pyridones.

COSY-GPSW NMR spectroscopy study

Figure SI2 . Study of interaction of protons in compound 5k using COSY-GPSW NMR

spectroscopy

FT-IR spectroscopy study of 5a

Figure SI3. Study of interaction of protons in compound 5k using COSY-GPSW NMR

spectroscopy

Determination of diastereoselectivity of compound 5a and crude 5d

Figure SI4. Diastereoselectivity determination using ¹H NMR study of 5a and crude 5d

Characterization data of synthesized compounds

8a-hydroxy-4-(4-methoxyphenyl)-2-oxodecahydroquinoline-3-carbonitrile *(Compound 5a)* Off white Solid (91%), MP: 145-147 °C, ¹H NMR (600 MHz, DMSO-D6) δ 8.63 (s, 1H), 7.22 (d, 2H), 6.91 (d, 2HJ = 8.5), 5.74 (s, 1H), 4.24 (d, 1H, J = 11.8 Hz), 3.75 (s, 3H), 3.26 (t, 1H, J = 11.8 Hz), 1.89 (d, 1H J = 12.5), 1.82 – 1.77 (m, 1H), 1.51 (d, 1H J = 9.5), 1.45 (t, 2H J = 10.4), 1.34 (dd, 1H J = 12.2, 5.8), 1.07 – 0.99 (m, 2H), 0.83 (d, 1H J = 8.8)ppm.¹³C NMR (101 MHz, DMSO-D6) δ 163.76, 158.31, 131.04, 118.05, 114.03, 80.13, 54.94, 45.64, 42.74, 37.14, 24.76, 21.06 ppm.FT-IR (ATR) 1/λ 3282.84 (N-H), 3140.11 (N-H), 2210.42 (C=N), 1693.50 (NH-C=O), 1566.20 (Ar-C-H), 1514.12 (Ar-C-H), 1492.90 (Ar-C=C), 1371.39 1332.8, 1359.82, 1301.95, 1230.59, 1134.14 (C-O-C), 742.59, 877.01, 594.09 cm⁻¹. HRMS (ESI, Q-TOF) m/z: [M+Na]⁺ Calculated for (C₁₇H₂₀N₂O₃+Na)⁺ 323.1372, found 323.1372.

8a-hydroxy-2-oxo-4-phenyldecahydroquinoline-3-carbonitrile (Compound 5b)

White Solid (89%), MP:170-172 °C, ¹H NMR(500 MHz, DMSO-D6) δ 8.67 (s, 1H), 7.51 – 7.17 (m, 5H), 5.79 (s, 1H), 4.31 (d, 1H, *J* = 11.8), 3.32 (t, 1H, *J* = 8.3), 1.96 – 1.77 (m, 2H), 1.58 – 1.28 (m, 4H), 1.04 (m, 2H), 0.80 (s, 1H) ppm. ¹³C NMR(126 MHz, DMSO-D6) δ 166.92, 142.77, 132.06, 130.68, 121.38, 83.39, 48.98, 47.02, 45.88, 40.68, 28.18, 24.46 ppm. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₆H₁₈N₂O₂+H)⁺ 271.1447, found 271.1451

8a-hydroxy-4-(3-hydroxy-4-methoxyphenyl)-2-oxodecahydroquinoline-3-carbonitrile *(Compound 5c)* **Off white solid (92%), MP:135-137 °C, ¹H NMR** (400 MHz, DMSO-D6) δ 8.95 (s, 1H), 8.63 (s, 1H), 6.88 (d, 1H, *J* = 7.6), 6.70 (s, 2H), 5.76 (s, 1H), 5.72 (s, 1H), 4.18 (d, 1H *J* = 11.8), 3.76 (s, 3H), 3.15 (t, 1H, *J* = 11.6), 1.96 – 1.84 (m, 1H), 1.73 (d, 1H *J* = 10.3), 1.41 (m, 4H), 1.03 (m, 2H), 0.88 (s, 1H) ppm. ¹³C NMR (101 MHz, DMSO-D6) δ 163.69, 146.72, 131.84, 118.16, 80.01, 55.47, 54.88, 45.78, 42.96, 42.74, 37.33, 24.95, 24.70, 21.14ppm. **HRMS** (ESI, Q-TOF) m/z: [M+H]⁺Calculated for ($C_{17}H_{20}N_2O_4$ +H)+ 317.1496, found 317.1490

4-(3,4-dimethoxyphenyl)-8a-hydroxy-2-oxodecahydroquinoline-3-carbonitrile *(Compound 5d)* **White solid (87%), MP:143-145** °**C**, ¹**H NMR** (500 MHz, DMSO-D6) δ 8.65 (s, 1H), 6.85 (d, 3H), 5.75 (s, 1H), 4.32 (d, 1H *J* = 11.3), 3.75 (d, 6H *J* = 3.7), 3.24 (t, 1H, *J* = 11.4), 2.53 (d, 1H *J* = 12.4), 2.02 – 1.74 (m, 2H), 1.48 (d, 2H *J* = 27.9), 1.38 – 1.20 (m, 2H), 0.95 (m, 3H) ppm. ¹³**C NMR**(126 MHz, DMSO-D6) δ 167.12, 151.25, 135.14, 121.55, 83.37, 58.81, 49.18, 46.75, 45.94, 40.74, 28.21, 24.51 ppm. **HRMS (ESI, Q-TOF)** m/z: [M+H]⁺ Calculated for ($C_{18}H_{22}N_2O_4$ +H)⁺ 331.1652, found 331.1645

8a-hydroxy-2-oxo-4-(3,4,5-trimethoxyphenyl)decahydroquinoline-3-carbonitrile (*Compound 5f*) White solid (78%), MP:143-144 °C, ¹H NMR (500 MHz, DMSO-D6) δ 8.67 (s, 1H), 6.62 (s, 2H), 4.39 (d, 1H J = 11.8), 3.78 (d, 6H J = 9.2), 3.65 (s, 3H), 3.25 (t, 1H, J = 11.7), 1.90 (d, 1H J = 12.6), 1.79 (dd, 1H J = 11.4, 8.4), 1.50 (m, 3H), 1.35 (m, 1H), 1.08 (m, 2H), 0.85 (m, 1H) ppm. ¹³C NMR (126 MHz, DMSO-D6) δ 167.06, 156.39, 139.67, 138.60, 121.56, 108.64, 83.33, 63.25, 59.25, 49.21, 47.45, 45.60, 40.71, 28.30, 28.08, 24.49ppm. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₉H₂₅N₂O₅+H)⁺ 361.1758, found 361.1749

8a-hydroxy-4-(2-nitrophenyl)-2-oxodecahydroquinoline-3-carbonitrile (Compound 5g)

White solid (90%), MP:150-153 °C, ¹H NMR (600 MHz,DMSO-D6) δ 8.75 (s, 1H), 7.80 (d, 3H J = 60.2), 7.58 (d, 1H J = 32.2), 5.88 (s, 1H), 4.46 (d, 1H J = 9.8), 3.93 (s, 1H), 1.92 (s, 2H), 1.48 (d, 4H J = 30.6), 1.12 (d, 2H J = 70.2), 0.76 (s, 1H) ppm. ¹³C NMR (151 MHz,DMSO-D6) 163.48, 151.85, 133.69, 133.10, 129.18, 124.10, 117.88, 80.42, 46.59, 42.62, 37.75, 37.57, 25.33, 24.84, 21.51 ppm. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₆H₁₇N₃O₄+H)⁺ 316.1292, found 316.1285

8a-hydroxy-4-(4-nitrophenyl)-2-oxodecahydroquinoline-3-carbonitrile (Compound 5h)

White solid (82%), MP:160-163 °C, ¹H NMR (400MHz, DMSO-D6) δ 8.79 (s, 1H), 8.24 (d, *J* = 8.2 Hz, 2H), 7.65 (br. s., 2H), 5.91 (s, 1H), 4.46 (s, 1H), 4.49 (s, 1H), 3.61 - 3.47 (m, 1H), 2.05 - 1.84 (m, 2H), 1.54 - 1.43 (m, 4H), 1.15 - 0.94 (m, 2H), 0.86 - 0.67 (m, 1H)ppm. ¹³C NMR (151 MHz,) 163.56, 147.75, 147.45, 124.41, 118.15, 80.54, 45.86, 44.13, 42.44, 37.76, 25.28, 21.52, 0.62 ppm. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for ($C_{16}H_{17}N_3O_4$ +H)⁺ 316.1292, found 316.1287

4-(4-chlorophenyl)-8a-hydroxy-2-oxodecahydroquinoline-3-carbonitrile (Compound 5i)

White Solid (91%), MP: 230-232 °C, ¹H NMR (400 MHz, DMSO-D6) δ 8.71 (s, 1H), 7.40 (t, 4H *J*= 16.3), 5.85 (s, 1H), 4.32 (d, 1H *J* =11.9), 3.34 (t, 1H *J* =11.8), 1.86 (dd, 2H *J* =23.2, 11.7), 1.47 (d, 3H *J* =21.7), 1.39 – 1.29 (m, 1H), 1.05 (dd, 2H *J* =17.9, 9.5), 0.79 (s, 1H)ppm.¹³C NMR (101 MHz, DMSO-D6) δ 163.44, 138.15, 131.99, 128.72, 117.80, 80.09, 45.30, 43.02, 42.32, 37.05, 24.65, 20.98 ppm. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₆H₁₇ClN₂O₂+H)⁺ 305.1051, found 305.1045

4-(4-fluorophenyl)-8a-hydroxy-2-oxodecahydroquinoline-3-carbonitrile (Compound 5j)

White Solid (85%), MP: 208-210 °C, ¹H NMR (400 MHz, DMSO-D6) δ 8.70 (s, 1H), 7.23 (dd, 4H J = 41.7, 33.1), 5.83 (s, 1H), 4.31 (d, 1H J = 11.8), 3.32 (d, 1H J = 11.8), 1.86 (dd, 2H J = 27.2, 11.6), 1.55 – 1.31 (m, 4H), 1.03 (t, 2H J = 9.0), 0.79 (s, 1H) ppm. ¹³C NMR (101 MHz, DMSO-D6) δ 163.54, 162.52, 160.10, 135.33, 117.86, 115.59, 115.38, 80.10, 45.45, 42.87, 42.57, 37.08, 24.66, 21.00 ppm. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₆H₁₇FN₂O₂+H)⁺ 289.1347, found 305.1342

4-(2-bromophenyl)-8a-hydroxy-2-oxodecahydroquinoline-3-carbonitrile(Compound 5k)

Off white solid (93%), MP: 150-152 °C, ¹H NMR (400 MHz, DMSO-D6) δ 8.74 (br. s.,1H), 7.63 (t, 2H *J* = 8.3 Hz,), 7.43 (t, 1H *J* = 7.3 Hz,), 7.30 - 7.11 (m, 1H), 5.92 (s, 1H), 4.37 (d, 1H *J* = 11.9 Hz,), 4.17 (t, 1H *J* = 11.7 Hz,), 1.91 (d, 1H *J* = 12.3 Hz,), 1.87 - 1.80 (m, 1H), 1.53 - 1.42 (m, 3H), 1.36 (dd, 1H *J* = 4.2, 11.7 Hz,), 1.27 - 1.09 (m, 1H), 1.03 (br. s., 1H), 0.76 (d, 1H *J* = 11.9 Hz) ppm. ¹³C NMR (101MHz, DMSO-D6) δ 163.4, 138.7, 132.7, 129.1, 128.5, 128.5, 125.4, 117.6, 80.0, 46.5,

41.9, 41.3, 37.1, 24.8, 23.9, 21.0ppm. **HRMS** (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₆H₁₇BrN₂O₂+H)⁺ 349.0546, found 349.0537

4-(4-bromophenyl)-8a-hydroxy-2-oxodecahydroquinoline-3-carbonitrile *(Compound 5I)* **Off white solid (90%), MP: 218-220** °**C**, ¹**H NMR** (500 MHz, DMSO-D₆) δ 8.71 (s, 1H), 7.56 (d, 2H *J* = 8.3), 7.30 (d, 2H *J* = 8.9), 5.82 (s, 1H), 4.35 – 4.32 (d, 1H *J* = 3.7), 3.08 (s, 1H), 1.91 – 1.85 (m, 2H), 1.50 – 1.35 (m, 4H), 1.05 (s, 2H), 0.79 (s, 1H) ppm. ¹³**C NMR** (101 MHz, DMSO-D6) δ 163.34, 138.76, 131.62, 120.49, 117.85, 79.99, 45.35, 43.14, 42.27, 37.20, 24.74, 21.02 ppm. **HRMS** (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₆H₁₇BrN₂O₂+H)⁺ 349.0546, found 349.0540

4-(benzo[d][1,3]dioxol-5-yl)-8a-hydroxy-2-oxodecahydroquinoline-3-carbonitrile (*Compound 5m***) White solid (93%), MP: 159-160** °**C**,¹**H NMR** (400 MHz, DMSO-D6) δ 8.67 (s, 5H), 6.98 (br. s., 5H), 6.91 - 6.82 (m, 6H), 6.79 - 6.65 (m, 5H), 6.01 (dd, 11H *J* = 1.0, 4.0 Hz,), 5.77 (s, 6H), 4.23 (s, 3H), 4.26 (s, 3H), 3.24 (t, 6H *J* = 11.8 Hz,), 1.87 (s, 3H), 1.90 (s, 3H), 1.84 - 1.72 (m, 6H), 1.56 - 1.47 (m, 6H), 1.44 (br. s., 10H), 1.40 - 1.27 (m, 6H), 1.12 - 0.96 (m, 11H), 0.93 - 0.80 (m, 6H) ppm.¹³**C NMR** (101MHz, DMSO-D6) δ 163.6, 146.3, 133.2, 118.0, 101.0, 80.0, 45.7, 43.4, 42.6, 37.3, 24.9, 24.7, 21.1 ppm. **HRMS** (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for ($C_{17}H_{18}N_2O_4$ +H)⁺ 315.1339, found 315.1356

8a-hydroxy-4-(6-nitrobenzo[d][1,3]dioxol-5-yl)-2-oxodecahydroquinoline-3-carbonitrile (Compound 5n)

Off white solid (87%), MP: 157-158 °**C**, ¹**H NMR**(600 MHz, DMSO-D6) δ 8.71 (s, 1H), 7.49 (s, 1H), 7.39 (s, 1H), 6.23 (d, 2H *J* = 14.1), 5.88 (s, 1H), 4.36 (d, 1H *J* = 11.9), 4.04 (t, 1H *J* = 11.6), 1.93 – 1.85 (m, 2H), 1.53 (d, 1H *J* = 12.1), 1.45 (s, 2H), 1.35 (dd, 1H *J* = 19.1, 10.8), 1.16 – 1.06 (m, 2H),

0.86 (d, 1H J = 11.7)ppm. ¹³**C NMR** (151 MHz, DMSO-D6) δ 163.57, 151.95, 147.25, 145.69, 129.30, 117.87, 107.27, 104.96, 103.85, 80.42, 46.41, 42.52, 37.65, 25.30, 24.73, 21.51, 0.61ppm. **HRMS** (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₇H₁₇N₃O₆+H)⁺ 360.1196, found missmatched

8a-hydroxy-2-oxo-4-(thiophen-2-yl)decahydroquinoline-3-carbonitrile (Compound 5o)

Brownish white solid (81%), MP: 138-140 °C,¹H NMR(600 MHz, DMSO-D6) δ 8.71 (s, 1H), 7.44 (s, 1H), 7.06 (d, 2H *J* = 32.3), 5.81 (s, 1H), 4.31 (d, 1H *J* = 11.2), 3.62 (t, 1H *J* = 11.1), 1.83 (dd, 2H *J* = 70.3, 10.7), 1.45 (t, 4H *J* = 67.3), 1.04 (dd, 3H *J* = 56.9, 7.2) ppm. ¹³C NMR (151 MHz, DMSO-D6) δ 163.59, 142.97, 127.86, 126.32, 125.44, 118.35, 80.43, 47.67, 44.26, 39.51, 37.76, 25.39, 21.61 ppm. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₄H₁₆N₂O₂S+H)⁺ 277.1005, found 277.1001

4-(benzo[b]thiophen-3-yl)-8a-hydroxy-2-oxodecahydroquinoline-3-carbonitrile (compound 5p)

White solid (89%), MP: 148-150 °C,¹H NMR (500 MHz, DMSO-D6) δ 8.79 (s, 1H), 8.02 (d, 1H), 7.83 (dd, 2H J = 22.9, 15.1), 7.43 (dd, 2H J = 18.1, 7.2), 5.93 (s, 1H,), 4.62 (d, 1H J = 11.8), 4.06 (t, 1H J = 11.5), 1.98 – 1.80 (m, 2H), 1.40 (d, 4H), 1.12 (m 2H), 0.76 (d, 1H). ¹³C NMR (126 MHz, DMSO-D6) δ 166.90, 142.76, 138.80, 127.99, 127.63, 126.48, 124.75, 121.53, 83.51, 51.53, 45.54, 40.69, 38.52, 28.27, 28.00, 24.48, 18.51. HRMS (ESI, Q-TOF) m/z: [M+H]⁺ Calculated for (C₁₈H₁₈N₂O₂S+H)⁺ 327.1162, found 327.1153

8a-hydroxy-4-(4-methoxyphenyl)-1-methyl-2-oxodecahydroquinoline-3-carbonitrile (Compound 5q)

White solid (41%), MP: 110-115°C, ¹H NMR (600 MHz, DMSO-D₆) 7.25 (d, 2H *J* = 8.3), 6.92 (d, 2H *J* = 8.9), 6.02 (s, 1H), 4.37 (d, 1H *J* = 12.2), 3.75 (S, 3H), 3.25 (d, 1H *J* = 23.9), 2.92 (s, 3H), 1.52 (d, 2H *J* = 19.0), 1.25 (d, 2H *J* = 13.9), 1.17 (m, 2H), 1.07 – 1.01 (m, 2H), 0.89 – 0.86 (m, 1H) ppm. ¹³C NMR (151 MHz, DMSO-D₆) δ 163.44, 158.95, 131.69, 129.45, 118.68, 114.45, 93.27, 84.90, 55.53, 47.01, 43.79, 42.43, 36.14, 31.24, 27.08, 25.97, 25.00, 22.20 ppm.

8a-hydroxy-1-methyl-4-(4-nitrophenyl)-2-oxodecahydroquinoline-3-carbonitrile *(Compound 5r)* **White solid (56%), MP: 125-127°C, ¹H NMR** (600 MHz, DMSO-D₆) 8.26 (d, 2H *J* = 8.0), 7.65 (s, 2H), 6.15 (s, 1H), 4.59 (d, 1H *J* = 12.2), 3.58 – 3.51 (t, 1H), 2.95 (s, 3H), 2.70 (s, 2H), 2.24 (m, 1H *J* = 12.2), 2.18 (t, 2H *J* = 7.9), 2.12 – 2.06 (m, 2H), 1.91 (m, 2H *J* = 14.3, 7.6) ppm. ¹³C NMR (151 MHz, DMSO-D6) δ 162.81, 147.66, 147.50, 124.50, 118.18, 84.83, 49.01, 46.47, 43.20, 42.96, 36.07, 30.64, 29.53, 27.16, 26.00, 24.85, 22.06, 17.75 ppm.

1-ethyl-8a-hydroxy-4-(4-methoxyphenyl)-2-oxodecahydroquinoline-3-carbonitrile (*Compound 5s*) White solid (65%), MP: 142-143°C, ¹H NMR (600 MHz, DMSO-D₆) 7.28 – 7.16 (d, 2H J = 8.0), 6.92 (d, 2H J = 8.1), 5.92 (s, 1H), 4.40 – 4.38 (d, 1H J = 12.2), 3.75 (s, 3H), 3.62-3.58 (dd, 1H), 2.19 (d, 1H J = 12.6), 1.93 – 1.88 (m, 1H), 1.52 (m, 4H), 1.40 – 1.37 (m, 1H), 1.24 (s, 1H), 1.12 – 1.09 (m, 3H), 1.05 (d, 2H J = 8.6), 0.87 (m, 1H J = 8.9) ppm. ¹³C NMR (151 MHz, DMSO-D6) δ 162.54, 158.28, 131.06, 118.03, 84.86, 54.88, 48.01, 46.64, 45.77, 43.15, 41.64, 35.84, 30.60, 25.34, 24.39, 21.60, 14.75 ppm.

4-(4-methoxyphenyl)-2-oxo-1,2,3,4,4a,5,6,7-octahydroquinoline-3-carbonitrile (Compound 13a)

White crystalline solid (90%), MP: 123-126°C, ¹H NMR (600 MHz, DMSO-D6) δ 10.20 (s, 1H), 7.29 (d, 2H J = 7.7), 6.94 (d, 2H J = 8.0), 5.12 (d, 1H, J = 1.7), 4.59 (d, 1H J = 12.0), 3.76 (s, 3H), 2.93 (t, 1H *J* = 12.0), 2.05 – 1.94 (m, 2H), 1.63 (d, 1H *J* = 12.2), 1.28 – 1.18 (m, 2H), 1.01 (dd, 1H *J* = 18.3, 7.3) ppm. ¹³**C NMR** (151 MHz, DMSO-D6) δ 162.05, 159.07, 135.47, 131.54, 117.74, 114.60, 104.93, 55.55, 46.49, 42.65, 38.26, 27.48, 23.76, 21.85 ppm.

4-(4-chlorophenyl)-2-oxo-2,3,4,4a,5,6,7,8-octahydro-1H-cyclohepta[b]pyridine-3-carbonitrile (Compound 15i)

White solid (92%), MP: 121-124°C, ¹H NMR (600 MHz, DMSO-D₆) 9.65 (s, 1H), 7.44 (d, 2H J = 8.2), 7.25 (d, 2H J = 8.2), 4.75 (d, 1H J = 7.6), 4.13 – 3.95 (m, 1H), 3.75 (d, 1H J = 7.5), 3.36 (m, 1 H), 2.31 – 2.28 (m, 1H), 2.19 – 2.14 (m, 1H), 1.99 – 1.93 (m, 1H), 1.67 (m, 1H), 1.60 – 1.54 (m, 2H), 1.44 – 1.43 (m, 2H), 1.09 – 1.04 (m, 1H) ppm. ¹³C NMR (151 MHz, DMSO-D₆) δ 162.04, 137.23, 135.85, 133.06, 130.63, 130.55, 129.31, 129.22, 116.92, 115.81, 46.63, 41.21, 31.90, 31.67, 31.55, 31.34, 27.17, 25.69 ppm.

¹H and ¹³C NMR spectra of the compounds

SI19 | P a g e

¹³C NMR

SI23 | P a g e

SK-PIP-CYNO.005.001.1r.esp Water DMSO <u>_</u>4.26 4.23 <u>___3.27</u> ___3.24 __3.21 -8.67 ОН νн ċм 5m U. 2.011.00 1.0 **U** 6.0 5.5 5.0 4.5 Chemical Shift (ppm) 0.97 0.83 1.09 0.86 4.162.04 1.03 1.00 2.06 1.03 4.0 3.5 0 10.0 9.5 8.0 7.5 6.5 3.0 2.5 9.0 7.0 0.5 8.5 2.0 1.5 1.0

$\begin{array}{c} 10.63 \\ 10.10 \\ 7.51 \\ 7.51 \\ 7.51 \\ 7.52 \\ 7.52 \\ 7.51 \\ 7.51 \\ 7.51 \\ 7.51 \\ 7.51 \\ 7.53 \\ 7.51 \\ 7.53 \\ 7.52 \\$

Single crystal XRD data of the 13a

Crystals were not grown by compounds **5** even after various tries while due to the high crystalline nature, we studied the structural confirmation of **13a** (Dehydrated **5a**) formed after prolonged reaction time. CCDC number is *CCDC 2070982* and also CIF file is attached separately.

Figure SI. ORETP diagram of the compound **13a** with atom numbering scheme (45% probability factor for the thermal ellipsoids), *CCDC Number: 2070982*

Datablockof compound 13a by single crystal study

Bond precision	C-C = 0.0031 A
Wavelength	= 0.71073
Cell	a = 12.8817(7) b=7.5056(4) c=16.1720(8)

alpha = 90 beta = 111.587(2) gamma = 90

Temperature = 300 K

Data	Calculated	Reported
Volume	1453.92(13)	1453.92(13)
Space group	P 21/c	P1 21/c1
Hall group	-P2ybc	-P2ybc
Moiety formula	$C_{17}H_{18}N_2O_2$	-
Sum formula	$C_{17}H_{18}N_2O_2$	$C_{17}H_{18}N_2O_2$
Mr	282.33	282.33
Dx,g cm-3	1.290	1.290
Z	4	4
Mu (mm-1)	0.086	0.086
F000	600.0	600.0
F000'	600.25	-

h,k,lmax	19,11,24	19,11,24
Nref	5564	5542
Tmin,Tmax	0.984,0.993	0.957,0.993
Tmin'	0.957	-

Correction method= # Reported T Limits: Tmin=0.957 Tmax=0.993 AbsCorr = MULTI SCAN Data completeness= 0.996 Theta(max)= 33.200 R(reflections)= 0.0655(2493) wR2(reflections)= 0.2294(5542) S = 1.028Npar= 223