# **Supporting Information**

# Revised structural assignment of azalomycins based on

# genomic and chemical analysis

Seoung Rak Lee,<sup>a,b</sup> Huijuan Guo,<sup>c</sup> Jae Sik Yu,<sup>a</sup> Minji Park,<sup>d</sup> Hans-Martin Dahse,<sup>c</sup> Won Hee Jung,<sup>d</sup>

Christine Beemelmanns,<sup>c,\*</sup> Ki Hyun Kim<sup>a,\*</sup>

<sup>a</sup>School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea

<sup>b</sup>Department of Chemistry, Princeton University, New Jersey 08544, United States

<sup>c</sup>Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstraße 11a, 07745, Jena, Germany

<sup>d</sup>Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea

\* Corresponding authors:

Ki Hyun Kim, Tel: +82-31-290-7700; Fax: +82-31-290-7730; E-mail: khkim83@skku.edu Christine Beemelmanns, E-mail: Christine.Beemelmanns@hki-jena.de

| Experimental section                                                                                           | 3    |
|----------------------------------------------------------------------------------------------------------------|------|
| Table S1. <sup>1</sup> H (800 MHz) and <sup>13</sup> C (200 MHz) NMR data of compounds 1–4 in MeOH- $d_4$      | 7    |
| <b>Table S2.</b> Comparison of the <sup>13</sup> C chemical shift of azalomycin $F_{5a}/F_{5b}$ in MeOH- $d_4$ | 8    |
| Table S3. Azalomycin biosynthetic protein (Azu) annotations based on sequence homology. (137 K                 | .bp, |
| 40 regions)                                                                                                    | 9    |
| Table S4. Determination of KR domain specificity (CLUSTAL multiple sequence alignment                          | by   |
| MUSCLE (3.8))                                                                                                  | 10   |
| Table S5. Determination of ER domain specificity (CLUSTAL multiple sequence alignment                          | by   |
| MUSCLE (3.8))                                                                                                  | 11   |
| Table S6. Antifungal activity of compounds 1-4                                                                 | 12   |
| Table S7. Antiproliferative and cytotoxicity activity of compounds 1-4.         S1. URD (32)                   | 12   |
| Figure S1. HRMS <sup>2</sup> -based GNPS analysis                                                              | 13   |
| Figure S2. Graphical comparison of azalomycins biosynthesis gene cluster                                       | .14  |
| Figure S3. Sequence alignment of arginine monooxygenase.                                                       | 15   |
| Figure S4. <sup>1</sup> H NMR spectrum of azalomycin $F_{4b}$ (1) (CD <sub>3</sub> OD, 300K, 800 MHz)          | 1/   |
| Figure S5. <sup>15</sup> C NMR spectrum of azalomycin $F_{4b}$ (1) (CD <sub>3</sub> OD, 300K, 200 MHZ)         |      |
| Figure S0. $H^{-1}H$ COSY spectrum of azalomycin F <sub>4b</sub> (1) (CD OD 200K, 800 MHz).                    | 10   |
| Figure S7. II-II TOCST spectrum of azalomycin $F_{4b}(1)$ (CD <sub>3</sub> OD, 500K, 800 MHz).                 | .10  |
| Figure S0. HISQC spectrum of azalomycin $F_{4b}(1)$ (CD <sub>3</sub> OD, 500K, 800 MHz).                       | 10   |
| Figure S9. Invide spectrum of azalomycin $F_{45}(1)$ (CD <sub>3</sub> OD, 300K, 800 MHz).                      | 20   |
| Figure S10: ROEST spectrum of azalomycin $F_{4b}$ (2) (CD <sub>3</sub> OD, 300K, 800 MHz).                     | 20   |
| Figure S12 HSOC spectrum of azalomycin $F_{5b}$ (2) (CD <sub>2</sub> OD 300K 800 MHz)                          | 21   |
| Figure S13. HMBC spectrum of azalomycin $F_{5b}$ (2) (CD <sub>3</sub> OD, 300K, 800 MHz).                      |      |
| Figure S14. <sup>1</sup> H NMR spectrum of azalomycin $F_{4_2}$ (3) (CD <sub>3</sub> OD, 300K, 800 MHz)        | 22   |
| Figure S15. HSQC spectrum of azalomycin $F_{4a}$ (3) (CD <sub>3</sub> OD, 300K, 800 MHz).                      | 22   |
| Figure S16. HMBC spectrum of azalomycin F <sub>4a</sub> (3) (CD <sub>3</sub> OD, 300K, 800 MHz).               | 23   |
| Figure S17. <sup>1</sup> H NMR spectrum of azalomycin F <sub>5a</sub> (4) (CD <sub>3</sub> OD, 300K, 800 MHz)  | 23   |
| Figure S18. HSQC spectrum of azalomycin F <sub>5a</sub> (4) (CD <sub>3</sub> OD, 300K, 800 MHz).               | 24   |
| Figure S19. HMBC spectrum of azalomycin F <sub>5a</sub> (4) (CD <sub>3</sub> OD, 300K, 800 MHz).               | 24   |
| Figure S20. ESI-HRMS (+) spectrum of azalomycin F <sub>4b</sub> (1)                                            | 25   |
| Figure S21. ESI-HRMS <sup>2</sup> (+) spectrum of azalomycin $F_{4b}$ (1).                                     | 25   |
| Figure S22. ESI-HRMS (+) spectrum of azalomycin F <sub>5b</sub> (2)                                            | 26   |
| Figure S23. ESI-HRMS <sup>2</sup> (+) spectrum of azalomycin $F_{5b}$ (2).                                     | 26   |
| Figure S24. ESI-HRMS (+) spectrum of azalomycin $F_{4a}$ (3).                                                  | 27   |
| Figure S25. ESI-HRMS <sup>2</sup> (+) spectrum of azalomycin $F_{4a}$ (3)                                      | 27   |
| Figure S26. ESI-HRMS (+) spectrum of azalomycın $F_{5a}$ (4).                                                  | 28   |
| Figure S27. ESI-HRMS <sup>2</sup> (+) spectrum of azalomycin $F_{5a}$ (4)                                      | 28   |
| Figure 528. The homonuclear <i>J</i> -resolved spectroscopy (JRES) of compound 1.                              | 29   |
| Figure 529. The HSQU-HEUADE data of compound 1.                                                                |      |
| Figure S30. The ECD data of compound 1.                                                                        |      |
| Figure S31. The ECD data of compound 2.                                                                        |      |
| Figure S32. The ECD data of compound A                                                                         |      |
| Figure S33. The induced circular dichroism (ICD) data of compound 1                                            |      |
| rigure set. The induced encound dientoisin (ICD) data of compound 1                                            |      |

#### **Experimental section**

General experimental procedures. Optical rotations were obtained utilizing a Jasco P-1020 polarimeter (Jasco, Easton, MD, USA). Experimental ECD spectra in MeOH were acquired in a quartz cuvette of 1 mm optical path length on a JASCO J-1500 spectropolarimeter (Tokyo, Japan). IR spectra were acquired on a Bruker IFS-66/S FT-IR spectrometer. NMR spectra, including <sup>1</sup>H-<sup>1</sup>H COSY, HSOC, HMBC, and ROESY experiments, were carried out using a Varian UNITY INOVA 800 NMR spectrometer operating at 800 MHz (<sup>1</sup>H) and 200 MHz (<sup>13</sup>C), with chemical shifts given in ppm ( $\delta$ ). Preparative high-performance liquid chromatography (HPLC) utilized a Waters 1525 Binary HPLC pump with a Waters 996 Photodiode Array Detector (Waters Corporation, Milford, CT, USA). Semi-preparative HPLC used a Shimadzu Prominence HPLC System with SPD-20A/20AV Series Prominence HPLC UV-Vis Detectors (Shimadzu, Tokyo, Japan). LC/MS analysis was carried out on an Agilent 1200 Series HPLC system (Agilent Technologies, Santa Clara, CA, USA) equipped with a diode array detector and a 6130 Series ESI mass spectrometer by using an analytical Kinetex (4.6  $\times$  100 mm, 3.5  $\mu$ m). LC-ESI-HRMS based metabolomics were performed on a Dionex Ultimate3000 system coupled with a Luna Omega C18 column (100  $\times$  2.1 mm, particle size 1.6  $\mu$ m, pore diameter 100 Å, Phenomenex) combined with Q-Exactive Pluse mass spectrometer (Thermo Scientific) equipped with an electrospray ion (HESI) source. Column oven was set to 40 °C; scan range of full MS was set to m/z 150 to 2,000 with resolution of 70,000 and AGC target 3e6 and maximum IT 100 ms under positive and negative mode with centroid data type. MS<sup>2</sup> was performed to choose top10 intensive ions under positive mode with resolution of 17,500 and AGC target 1e5 and maximum IT 50 ms and (N)CE 28 with centroid data type. The spray voltage (+) was set to 4000 volt, and (-) was set to 3300 volt. The capillary temperature (+/-) was set to 340 °C and probe heater temperature (+/-) was set to 200 °C. The sheath gas flow (+/-) was set to 35 L/min and Aux gas flow (+/-) to 5 L/min. Max spray current (+) and (-) was set to 100 volt. S-Lens RF level was set to 50. Merck precoated silica gel F254 plates and RP-18 F254s plates were used for thin layer chromatography (TLC). Spots were detected on TLC under UV light or by heating after spraying with anisaldehyde-sulfuric acid.

**LC-HRMS/MS mediated molecular networking.** *Streptomyces* sp. M56 was grown on 50 mL ISP-2 liquid (in 250 mL Erlenmeyer flask) for 7 days at 30 °C under shaking 180 rpm. The resultant culture broth was extracted twice by 50 mL of ethyl acetate (EtOAc), and evaporated under reduced pressure to give the EtOAc extract, which was dissolved into MeOH to reach the concentration of 0.1 mg/mL. The extract was submitted to LC-ESI-HRMS metabolomics analysis under standard condition; The metabolites were separated under the gradient: 0 - 0.5 min, 5% B; 0.5 - 18 min, 5% - 97% B; 18 - 23 min, 97% B; 23 - 25 min, 97% - 5% B; 25 - 30 min, 5% B (A: H<sub>2</sub>O with 0.1% formic acid (FA); B:

MeCN with 0.1% FA), with flow rate of 0.3 mL/min and injection volume is 5 µL. Metabolomics raw data acquired on a Thermo QExactive Plus mass spectrometer was converted to 32-bit mzXML files using MSConvert GUI (ProteoWizard) [1], in order to generate a mass spectral molecular networking using the GNPS platform (https://gnps.ucsd.edu) [2]. Data analysis used default parameters, except for the cosine threshold, set to 0.7, minimum matched fragment ions of 4, network TopK 10, and for the tolerances of the precursor- and fragment ion masses, both set to 0.02 Da. The mass spectral network was assembled and visualized using Cytoscape (www.cytoscape.org).

**Cultivation and secondary metabolite extraction.** *Streptomyces* sp. M56 was cultivated on 150 ISP-2 (ISP-2 medium and 2.0% Agar-Agar) agar plates (10 days, 30 °C) [3,4]. Mycelium covered agar was cut into small squares and extracted overnight with 100% MeOH. The MeOH soluble layer was filtered, and then the solvent was evaporated *in vacuo* to give the crude MeOH extract (30 g). The crude MeOH extract was suspended in 700 mL distilled water, and then solvent-partitioned with EtOAc, yielding 6 g of a residue.

**Isolation of compounds.** The EtOAc-soluble fraction (6 g) was fractionated by silica gel column chromatography eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH (100:1–0:1 of gradient solvent system) to afford six fractions (A–F). The fraction F (730 mg) was loaded onto RP-C18 silica-gel column chromatography and fractionated using MeOH–H<sub>2</sub>O (1:9–1:0 of gradient solvent system) to afford four subfraction (F1–F4). Subfraction F4 (80 mg) was purified by a semi-preparative HPLC applying a Phenomenex Luna C18 column (250 × 10.0 mm i.d.) with 57% MeOH/H<sub>2</sub>O of isocratic solvent system (flow rate = 2 mL/min) to yield compounds **1** ( $t_R$  = 22.0 min, 8.1 mg), **2** ( $t_R$  = 23.5 min, 3.3 mg), **3** ( $t_R$  = 46.0 min, 10.5 mg), and **4** ( $t_R$  = 51.0 min, 8.4 mg). All the isolation procedures were monitored by LC/MS analysis.

#### Physical constants and spectroscopic data of compounds 1-4.

*Azalomycin*  $F_{4b}$  (1). White amorphous powder; [ $\alpha$ ]**Error!**+21.3 (*c* 0.20 in MeOH); IR (KBr)  $\nu_{max}$  3405, 2950, 2838, 1663, 1453, 1030 cm<sup>-1</sup>; ECD (in MeOH)  $\lambda_{max}$  ( $\Delta \varepsilon$ ) 231 (-1.2), 259 (3.9) nm; <sup>1</sup>H (800 MHz) and <sup>13</sup>C NMR (200 MHz) see Table S1; HR-ESI-MS *m/z* 1082.6688 [M+H]<sup>+</sup> (Calcd. for C<sub>56</sub>H<sub>96</sub>N<sub>3</sub>O<sub>17</sub>, 1082.6734).

*Azalomycin*  $F_{5b}$  (**2**). White amorphous powder; [ $\alpha$ ]**Error!**+15.3 (*c* 0.14 in MeOH); IR (KBr)  $\nu_{max}$  3404, 2948, 2838, 1663, 1453, 1029 cm<sup>-1</sup>; ECD (in MeOH)  $\lambda_{max}$  ( $\triangle \varepsilon$ ) 232 (-1.0), 260 (3.6) nm; <sup>1</sup>H (800 MHz) and <sup>13</sup>C NMR (200 MHz) see Table S1; HR-ESI-MS *m/z* 1096.6840 [M+H]<sup>+</sup> (Calcd. for C<sub>57</sub>H<sub>98</sub>N<sub>3</sub>O<sub>17</sub>, 1096.6891).

*Azalomycin*  $F_{4a}$  (**3**). White amorphous powder; [ $\alpha$ ]**Error!**+19.7 (*c* 0.18 in MeOH); IR (KBr)  $\nu_{max}$  3405, 2949, 2839, 1663, 1453, 1030 cm<sup>-1</sup>; ECD (in MeOH)  $\lambda_{max}$  ( $\triangle \varepsilon$ ) 232 (-1.3), 260 (3.8) nm; <sup>1</sup>H (800 MHz) and <sup>13</sup>C NMR (200 MHz) see Table S1; HR-ESI-MS *m*/*z* 1082.6696 [M+H]<sup>+</sup> (Calcd. for C<sub>56</sub>H<sub>96</sub>N<sub>3</sub>O<sub>17</sub>, 1082.6734).

*Azalomycin*  $F_{5a}$  (4). White amorphous powder; [ $\alpha$ ]**Error!**+23.1 (*c* 0.22 in MeOH); IR (KBr)  $\nu_{max}$  3407, 2949, 2838, 1663, 1452, 1028 cm<sup>-1</sup>; ECD (in MeOH)  $\lambda_{max}$  ( $\Delta \epsilon$ ) 230 (-1.5), 258 (4.1) nm; <sup>1</sup>H (800 MHz) and <sup>13</sup>C NMR (200 MHz), see Table S1; HR-ESI-MS *m/z* 1096.6849 [M+H]<sup>+</sup> (Calcd. for C<sub>57</sub>H<sub>98</sub>N<sub>3</sub>O<sub>17</sub>, 1096.6891).

Absolute configuration of 1,2-diols (C-18/C-19) in 1. Compound 1 (0.3 mg) and  $Mo_2(OAc)_4$  (0.7 mg) were co-dissolved in DMSO (0.9 mL; ligand to metal ratio of approx. 1.0:1.2), and the mixture was directly subjected to ECD measurements. The first ECD spectrum was recorded immediately after mixing. Then, the mixture was kept for 30 min to enable complexation and then the ECD spectrum was acquired. The inherent ECD was subtracted and the diagnostic induced ECD curve was monitored at approx. 305 nm.

Gene cluster analysis. For the analysis the genome of *Streptomyces* sp. M56 was downloaded from NCBI (access number CP025018.1) and putative secondary metabolite-related biosynthetic gene clusters (BGC) were predicted by antiSMASH 5.0 [5]. Manual blast analysis resulted in the identification of a gene cluster (*azu*) with overall high homologies to the previously reported *azl* gene cluster (azalomycins  $F_{3a}$  biosynthesis in *Streptomyces* 211726) [6-8], and moderate homolog to *npm* gene cluster reported for the biosynthesis of niphimycins C-E in a marine-derived *Streptomyces* sp. IMB7-145 [9]. The putative functions of each gene were determined by comparing the deduced amino acid sequence with other bacterial homologues (Table S5).

Antifungal assay. Antifungal activity was tested against three major human pathogens including *Cryptococcus neoformans* H99, *Candida albicans* SC5314 and *Malassezia pachydermatis* CBS1879. Except for *M. pachydermatis*, minimum inhibitory concentrations (MIC) were measured using a standard broth serial dilution method from the CLSI (Clinical and laboratory standards institute) guideline [10]. MIC of *M. pachydermatis* was determined using the methods modified from the CLSI guideline [11]. The tested compounds were serially diluted 2-fold with mDixon medium and then  $2.5 \times 10^3$  CFU/mL of *M. pachydermatis* cells were inoculated into a 96 well plate and incubated at 34 °C for 3 days. Antifungal

drug concentrations tested ranged from 0.2 to 250  $\mu$ g/mL for tested compounds; from 0.03 to 32.0  $\mu$ g/mL for fluconazole (FLZ); and from 0.001 to 1.0  $\mu$ g/mL for ketoconazole (KTZ). FLZ was used as a reference antifungal drug for *C. albicans*, *C. neoformans* and KTZ was used as a reference antifungal drug for *M. pachydermatis*.

Antiproliferative and cytotoxic properties. Antiproliferative and cytotoxic assays, and cells and culture conditions are described elsewhere [12]. Compounds were evaluated for the antiproliferative effects ( $GI_{50}$ ) against human umbilical vein endothelial cells HUVEC (ATCC CRL-1730) and human chronic myeloid leukemia cells K-562 (DSM ACC 10) and for the cytotoxic effects ( $CC_{50}$ ) against human cervix carcinoma cells HeLa (DSM ACC 57).

### Reference

- 1. Chambers, M. C.; Maclean, B.; Burke, R.; Amodei, D.; Ruderman, D. L.; Neumann, S. et al., Nat. Biotechnol. 2012, 30, 918.
- 2. Wang, M.; Carver, J. J.; Phelan, V. V.; Sanchez, L. M.; Garg, N.; Peng, Y.; Nguyen, D. D. Nat. Biotechnol. 2016, 34, 828-837.
- 3. Kim, K. H.; Ramadhar, T. R.; Beemelmanns, C.; Cao, S.; Poulsen, M.; Currie, C. R.; Clardy, J. *Chem. Sci.* **2014**, *5*, 4333-4338.
- 4. Klassen, J. L.; Lee, S. R.; Poulsen, M.; Beemelmanns, C.; Kim, K. H. *Front. Microbiol.* **2019**, *10*, 1739.
- 5. Blin, K.; Shaw, S.; Steinke, K.; Villebro, R.; Ziemert, N.; Lee, S. Y.; Medema, M. H.; Weber, T. *Nucleic Acids Res.* 2019, 47, W81-W87.
- 6. Hong, H.; Fill, T.; Leadlay, P. F. Angew. Chem. Int. Ed. 2013, 52, 13096–13099.
- Hong, H.; Sun, Y.; Zhou, Y.; Stephens, E.; Samborskyy, M.; Leadlay, P. F. *Beilstein J. Org. Chem.* 2016, *12*, 2164–2172.
- 8. Zhai, G.; Wang, W.; Xu, W.; Sun, G.; Hu, C.; Wu, X.; Cong, Z.; Deng, L.; Shi, Y.; Leadlay, P. F.; Song, H.; Hong, K.; Deng, Z.; Sun, Y. *Angew. Chem. Int. Ed.* **2020**, *59*, 22738-22742.
- Hu, Y.; Wang, M.; Wu, C.; Tan, Y.; Li, J.; Hao, X.; Duan, Y.; Guan, Y.; Shang, X.; Wang, Y.; Xiao, C.; Gan, M. J. Nat. Prod. 2018, 81, 178-187.
- 10. Wayne P. Clinical and Laboratory Standards Institute: Reference method for broth dilution antifungal susceptibility testing of yeasts; approved standard, CLSI document M27-A3. *Volume 28*: 2008, pp 6-12.
- 11. Kim, M.; Cho, Y. J.; Park, M.; Choi, Y.; Hwang, S. Y.; Jung, W. H. J. Microbiol. Biotechnol. 2018, 28, 1937-1945.
- 12. Krauth, F.; Dahse, H. M.; Ruttinger, H. H.; Frohberg, P. Bioorg. Med. Chem. 2010, 18, 1816-1821.
- 13. Yuan, G.; Hong, K.; Lin, H.; She, Z.; Li, J. Mar. Drugs 2013, 11, 817-829.

| C-  | $R/S^b$ |                    | 1 (F <sub>4b</sub> )                    |                    | 2 (F <sub>5b</sub> )              | 3 (F <sub>4a</sub> ) |                                         | 4 (F <sub>5a</sub> ) |                                         |
|-----|---------|--------------------|-----------------------------------------|--------------------|-----------------------------------|----------------------|-----------------------------------------|----------------------|-----------------------------------------|
| Nr  |         | $\delta_{ m C}$    | $\delta_{\rm H}(J  {\rm in}  {\rm Hz})$ | $\delta_{ m C}$    | $\delta_{\rm H}(J \text{ in Hz})$ | $\delta_{ m C}$      | $\delta_{\rm H}(J  {\rm in}  {\rm Hz})$ | $\delta_{ m C}$      | $\delta_{\rm H}(J  {\rm in}  {\rm Hz})$ |
| 1   | -       | 170.3 s            | -                                       | 170.0 s            | -                                 | 170.1 s              | -                                       | 170.0 s              | -                                       |
| 2   | -       | 126.9 s            | -                                       | 126.8 s            | -                                 | 126.7 s              | -                                       | 126.6 s              | -                                       |
| 3   | -       | 140.4 d            | 7.10 d (11.0)                           | 140.3 d            | 7.09 d (11.0)                     | 140.7 d              | 7.09 d (11.0)                           | 140.0 d              | 7.08 d (11.0)                           |
| 4   | -       | 127.9 d            | 6.44 dd (15.0, 11.0)                    | 127.4 d            | 6.43 dd (15.0, 11.0)              | 128.3 d              | 6.43 dd (15.0, 11.0)                    | 128.2 d              | 6.43 dd (15.0, 11.0)                    |
| 5   | -       | 146.2 d            | 6.08 dd (15.0, 9.0)                     | 146.0 d            | 6.07 dd (15.0, 9.0)               | 146.7 d              | 6.05 dd (15.0, 9.0)                     | 145.8 d              | 6.05 dd (15.0, 9.0)                     |
| 6   | R       | 44.7 d             | 2.44 m                                  | 44.6 d             | 2.42 m                            | 44.9 d               | 2.44 m                                  | 44.2 d               | 2.43 m                                  |
| 7   | R       | 75.7 d             | 3.77 m                                  | 75.7 d             | 3.76 m                            | 75.8 d               | 3.77 m                                  | 75.0 d               | 3.76 m                                  |
| 8   | -       | 39.3 t             | 1.48 m, 1.76 m                          | 39.1 t             | 1.46 m, 1.77 m                    | 39.8 t               | 1.49 m, 1.77 m                          | 39.0 t               | 1.45 m, 1.76 m                          |
| 9   | R       | 75.2 d             | 3.80 m                                  | 75.1 d             | 3.80 m                            | 75.7 d               | 3.78 m                                  | 75.2 d               | 3.77 m                                  |
| 10  | R       | 44.6 d             | 1.54 m                                  | 44.5 d             | 1.52 m                            | 44.6 d               | 1.51 m                                  | 44.5 d               | 1.50 m                                  |
| 11  | S       | 72.5 d             | 3.85 m                                  | 72.1 d             | 3.85 m                            | 72.6 d               | 3.87 m                                  | 72.2 d               | 3.86 m                                  |
| 12  | -       | 33.6 t             | 1.59 m, 1.97 m                          | 33.3 t             | 1.56 m, 1.96 m                    | 33.8 t               | 1.61 m, 1.99 m                          | 33.4 t               | 1.60 m, 1.97 m                          |
| 13  | -       | 30.4 t             | 1.30 m, 1.41 m                          | 30.3 t             | 1.29 m, 1.40 m                    | 30.7 t               | 1.29 m, 1.40 m                          | 30.3 t               | 1.28 m, 1.39 m                          |
| 14  | R       | 40.6 d             | 1.59 m                                  | 40.4 d             | 1.58 m                            | 41.1 d               | 1.59 m                                  | 40.6 d               | 1.58 m                                  |
| 15  | R       | 72.3 d             | 3.85 m                                  | 72.5 d             | 3.85 m                            | 72.6 d               | 3.86 m                                  | 72.1 d               | 3.85 m                                  |
| 16  | -       | 41.9 t             | 1.77 m                                  | 41.6 t             | 1.75 m                            | 42.2 t               | 1.78 m                                  | 42.0 t               | 1.77 m                                  |
| 17  | -       | 100.1 s            | -                                       | 99.7 s             | -                                 | 99.7 s               | -                                       | 99.9 s               | -                                       |
| 18  | -       | 77.6 d             | 3.32 d (9.0)                            | 77.3 d             | 3.33 d (9.0)                      | 77.7 d               | 3.34 d (9.0)                            | 77.0 d               | 3.34 d (9.0)                            |
| 19  | S       | 69.8 d             | 3.86 m                                  | 69.6 d             | 3.86 m                            | 70.1 d               | 3.87 m                                  | 69.5 d               | 3.86 m                                  |
| 20  | -       | 41.4 t             | 1.30 m, 1.88 m                          | 41.2 t             | 1.29 m, 1.88 m                    | 41.7 t               | 1.28 m, 1.89 m                          | 41.1 t               | 1.27 m, 1.86 m                          |
| 21  | R       | 65.7 d             | 3.85 m                                  | 65.5 d             | 3.85 m                            | 66.2 d               | 3.86 m                                  | 65.6 d               | 3.87 m                                  |
| 22  | -       | 44.4 t             | 1.50 m                                  | 44.3 t             | 1.47 m                            | 44.7 t               | 1.50 m                                  | 44.1 t               | 1.49 m                                  |
| 23  | S       | 66.2 d             | 4.16 m                                  | 66.1 d             | 4.16 m                            | 71.4 d               | 5.24 m                                  | 71.0 d               | 5.23 m                                  |
| 24  | -<br>D  | 44.6 t             | 1.64 m                                  | 44.4 t             | 1.65 m                            | 44.3 t               | 1.60 m                                  | 43.8 t               | 1.58 m                                  |
| 25  | R       | /1.0 d             | 5.28 m                                  | /0.5 d             | 5.28 m                            | 66.0 d               | 5.80 m                                  | 05.5 d               | 3.86 m                                  |
| 20  | -<br>c  | 44.0 l             | 1.02 m, 1.// m                          | 43.8 l             | 1.01 m, 1.70 m                    | 44.3 l               | 1.51 m, 1.70 m                          | 43./l                | 1.50 m, 1.69 m                          |
| 21  | 3       | 03.8 U             | 5.65 III<br>1.76 m                      | 05.5 U             | 5.62 III<br>1.76 m                | 44.2 t               | 5.65 III<br>1.79 m                      | 03.8 U               | 5.62 III<br>1.75 m                      |
| 20  | -<br>D  | 44.2 l<br>74 2 d   | 1./0 III<br>4.16 m                      | 44.1 t<br>72 0 d   | 1./0 III<br>4.16 m                | 44.5 l<br>74 6 d     | 1./0 III<br>4.17 dd (0.0. 2.0)          | 45.5 L<br>72 0 d     | 1.75  III<br>4.17  dd (0.0, 2.0)        |
| 29  | Λ       | 140.2 a            | 4.10 III                                | 140.0 c            | 4.10 III                          | 140.2 a              | 4.17 du (9.0, 5.0)                      | 140.0 s              | 4.17 dd (9.0, 5.0)                      |
| 30  | -       | 140.2 S            | -5.08 d(11.0)                           | 140.0 S            | $\frac{-}{5074(110)}$             | 140.2 S              | -5.00 d(11.0)                           | 140.0 S              | $\frac{-}{5.08}$ d (11.0)               |
| 32  | -       | 123.0 u<br>128.7 d | 6 23 dd                                 | 123.1 u<br>128.4 d | 6 22 dd                           | 129.0 d              | 6 22 dd                                 | 129.0 d              | 6.22 dd                                 |
| 52  | -       | 120.7 u            | (15.0, 11.0)                            | 120.4 u            | (15.0, 11.0)                      | 129.0 <b>u</b>       | (15.0, 11.0)                            | 120.5 u              | (15.0, 11.0)                            |
| 33  | -       | 136 4 d            | 5 45 m                                  | 136 1 d            | 5 44 m                            | 136 7 d              | 5 45 m                                  | 136 0 d              | 5 42 m                                  |
| 34  | R       | 41.0 d             | 2.57 m                                  | 40.8 d             | 2.56 m                            | 41.3 d               | 2.56 m                                  | 40.8 d               | 2.55 m                                  |
| 35  | R       | 81.0 d             | 4.78 dd (7.5. 4.5)                      | 80.6 d             | 4.78 dd (7.5. 4.5)                | 81.2 d               | 4.78 dd (7.5, 4.5)                      | 80.6 d               | 4.78 dd (7.5, 4.5)                      |
| 36  | S       | 34.9 d             | 1.80 m                                  | 35.0 d             | 1.79 m                            | 35.6 d               | 1.82 m                                  | 35.0 d               | 1.81 m                                  |
| 37  | -       | 34.3 t             | 1.13 m. 1.34 m                          | 34.2 t             | 1.13 m. 1.33 m                    | 34.7 t               | 1.14 m. 1.34 m                          | 34.1 t               | 1.15 m. 1.35 m                          |
| 38  | -       | 28.0 t             | 1.41 m                                  | 27.7 t             | 1.41 m                            | 28.3 t               | 1.42 m                                  | 27.7 t               | 1.41 m                                  |
| 39  | -       | 33.6 t             | 1.98 m                                  | 33.3 t             | 1.97 m                            | 33.9 t               | 1.98 m                                  | 33.2 t               | 1.97 m                                  |
| 40  | -       | 132.8 d            | 5.44 m                                  | 132.5 d            | 5.44 m                            | 133.0 d              | 5.45 m                                  | 132.3 d              | 5.45 m                                  |
| 41  | -       | 130.4 d            | 5.42 m                                  | 130.0 d            | 5.42 m                            | 130.7 d              | 5.42 m                                  | 130.2 d              | 5.42 m                                  |
| 42  | -       | 30.6 t             | 2.07 m                                  | 30.4 t             | 2.06 m                            | 30.9 t               | 2.06 m                                  | 30.4 t               | 2.06 m                                  |
| 43  | -       | 29.9 t             | 1.63 m                                  | 29.8 t             | 1.63 m                            | 30.2 t               | 1.64 m                                  | 29.7 t               | 1.63 m                                  |
| 44  | -       | 42.0 t             | 3.15 t (7.0)                            | 42.0 t             | 3.17 t (7.0)                      | 42.4 t               | 3.15 t (7.0)                            | 41.7 t               | 3.16 t (7.0)                            |
| 45  | -       | 12.9 q             | 1.92 s                                  | 12.8 q             | 1.92 s                            | 13.2 q               | 1.91 s                                  | 12.5 q               | 1.91 s                                  |
| 46  | -       | 17.1 q             | 1.11 d (7.0)                            | 17.0 q             | 1.11 d (7.0)                      | 17.3 q               | 1.11 d (7.0)                            | 16.6 q               | 1.11 d (7.0)                            |
| 47  | -       | 10.4 q             | 0.89 d (7.0)                            | 10.3 q             | 0.89 d (7.0)                      | 10.8 q               | 0.88 d (7.0)                            | 10.1 q               | 0.87 d (7.0)                            |
| 48  | -       | 15.1 q             | 0.91 d (7.0)                            | 15.0 q             | 0.91 d (7.0)                      | 15.0 q               | 0.91 d (7.0)                            | 14.5 q               | 0.91 d (7.0)                            |
| 49  | -       | 13.1 q             | 1.65 s                                  | 12.8 q             | 1.64 s                            | 13.5 q               | 1.64 s                                  | 13.0 q               | 1.64 s                                  |
| 50  | -       | 17.8 q             | 1.00 d (6.5)                            | 17.5 q             | 1.01 d (6.5)                      | 18.0 q               | 1.01 d (6.5)                            | 17.5 q               | 1.01 d (6.5)                            |
| 51  | -       | 14.6 q             | 0.92 d (7.0)                            | 14.2 q             | 0.93 d (7.0)                      | 15.0 q               | 0.95 d (7.0)                            | 14.5 q               | 0.95 d (7.0)                            |
| 52  | -       | 158.0 s            | -                                       | 157.5 s            | -                                 | 158.0 s              | -                                       |                      | -                                       |
| 53a | -       | 28.2 q             | 2.84 s                                  | 28.0 q             | 2.84 s                            | 28.6 q               | 2.84 s                                  | 28.2 q               | 2.85 s                                  |
| 53b | -       |                    |                                         | 28.0 q             | 2.84 s                            |                      |                                         | 28.2 q               | 2.85 s                                  |
| 1'  | -       | 171.5 s            | -                                       | 171.4 s            | -                                 | 171.7 s              | -                                       | 171.2 s              | -                                       |
| 2   | -       | 4/.8 t             | 5.23 S                                  | 4/.5 t             | 5.24 S                            | 48.4 t               | -                                       | 4/.3 t               | -                                       |
| 5   | -       | 1/3./S             | -                                       | 1/3.3 S            | -                                 | 1/3.8 S              | -                                       | 1/3.1 S              | -                                       |

Table S1. <sup>1</sup>H (800 MHz) and <sup>13</sup>C (200 MHz) NMR data of compounds 1–4 in MeOH-d<sub>4</sub>.<sup>*a,b*</sup>

<sup>a</sup> Coupling constants (in parentheses) are in Hz. <sup>b13</sup>C NMR data were assigned based on HSQC and HMBC experiments.

| Nr   | <b>4</b> ª         |                                   | Chem. Ph                              | arm. Bull. 1982            | Mag. Res.       | Chem. 2011 <sup>d</sup>    | Mar. Drus          | 7 2013°                    | J. Antibiotics                      | 1995°                             |
|------|--------------------|-----------------------------------|---------------------------------------|----------------------------|-----------------|----------------------------|--------------------|----------------------------|-------------------------------------|-----------------------------------|
|      | (F <sub>5a</sub> ) |                                   | (F <sub>5a</sub> ) <sup>b,17,18</sup> |                            | $(F_{5a})^{32}$ |                            | $(F_{5h})^{22,31}$ | ,                          | (F <sub>5b</sub> ) <sup>19,20</sup> |                                   |
|      | $\delta_{C}$       | $\delta_{\rm H}(J \text{ in Hz})$ | $\delta_{C}$                          | $\delta_{\rm H}$ (J in Hz) | $\delta_{C}$    | $\delta_{\rm H}$ (J in Hz) | $\delta_{C}$       | $\delta_{\rm H}$ (J in Hz) | $\delta_{C}$                        | $\delta_{\rm H}(J \text{ in Hz})$ |
| 1    | 170.0              | -                                 | 170.10                                | -                          | 170.07          | -                          | 170.2              | -                          | 170.02                              | -                                 |
| 2    | 126.6              | -                                 | 126.75                                | -                          | 126.71          | -                          | 126.8              | -                          | 126.76                              | -                                 |
| 3    | 140.0              | 7.08 d (11.0)                     | 140.18                                | 7.08 d                     | 140.27          | 7.10 d                     | 140.3              | 7.09 d                     | 140.07                              | 7.08 d                            |
| -    |                    | ,,                                |                                       | (11.2)                     |                 | (11.28)                    |                    | (11.2)                     |                                     | (11.49)                           |
| 4    | 128.2              | 6.43 dd                           | 127.58                                | 6 42 dd                    | 127.64          | 6.45 dd                    | 127.6              | 6.43 dd                    | 127.50                              | 6.44 dd                           |
| · ·  | 120.2              | (150, 110)                        | 12/100                                | (147112)                   | 127.01          | (14 58 11 51)              | 127.0              | (115 149)                  | 12/100                              | (14 58 11 49)                     |
| 5    | 145.8              | 6 05 dd                           | 146 10                                | 6.05 dd                    | 146.15          | 6.06 dd                    | 146.2              | 6 07 dd                    | 145.95                              | 6 07 dd                           |
| 5    | 115.0              | (150.90)                          | 110.10                                | (14788)                    | 110.15          | (14.91.8.92)               | 110.2              | (151.90)                   | 110.90                              | (14.80, 8.40)                     |
| 6    | 11.2               | 2.43 m                            |                                       | 2.43 m                     | 11 18           | 2.45 m                     | 11.8               | 2.43 m                     | 40.64                               | 2.44 m                            |
| 0    | 44.2               | 2.45 III                          | -                                     | (886848)                   | 44.40           | 2.45 m                     | 44.0               | 2.45 111                   | 40.04                               | 2.44 11                           |
| 7    | 75.0               | 3.76 m                            | 75 77                                 | 3.76 m (4.8)               | 75.68           | 3 78 m                     | 75.0               | 3.80 m                     | 75 78                               | $3.76 \pm (3.8)$                  |
| 0    | 20.0               | 3.70 m                            | 13.11                                 | 1.45 1.76 m                | 75.08           | 1.50 1.79 m                | 20.2               | 1.50 1.78 m                | 20.27                               | 5.701(5.8)                        |
| 0    | 39.0               | 1.45, 1.70 III                    | -                                     | 1.45, 1.70 III             | 39.27           | 1.30, 1.78 III             | 39.3               | 1.30, 1.78 III             | 39.27                               | 2.00                              |
| 9    | 15.2               | 3.//m                             | /5.03                                 | 3.//m                      | /4.80           | 3.80 m                     | /5.4               | 3.80 m                     | /5.19                               | 3.88 m                            |
| 10   | 44.5               | 1.50 m                            | 44.5 d                                | 1.50 m                     | 44.44           | 1.56 m                     | 44./               | 1.54 m                     | 44.10                               | 1./8 m                            |
| 11   | 72.2               | 3.86 m                            | -                                     | 3.86 m                     | 72.27           | 3.92 m                     | 72.2               | 3.91 m                     | 72.33                               | 3.88 m                            |
| 12   | 33.4               | 1.60, 1.97 m                      | -                                     | 1.60, 1.97 m               | 33.62           | 1.62, 1.35 m               | 33.5               | 1.62, 1.38 m               | 39.27                               | 1.55 m                            |
| 13   | 30.3               | 1.28, 1.39 m                      | 30.62                                 | 1.28, 1.39 m               | 30.67           | 1.33, 1.44 m               | 30.7               | 1.30, 1.45 m               | 29.77                               | 1.55 m                            |
| 14   | 40.6               | 1.58 m                            | -                                     | 1.58 m                     | 40.83           | 1.60 m                     | 40.6               | 1.60 m                     | 40.64                               | 1.78 m                            |
| 15   | 72.1               | 3.85 m                            | -                                     | 3.85 m                     | 72.27           | 3.86 m                     | 72.7               | 3.86 m                     | 72.49                               | 3.88 m                            |
| 16   | 42.0               | 1.77 m                            | -                                     | 1.77 m                     | 41.66           | 1.82 m                     | 41.9               | 1.80 m                     | 41.99                               | 1.55 m                            |
| 17   | 99.9               | -                                 | 99.79                                 | -                          | 99.72           | -                          | 99.9               | -                          | 99.79                               | -                                 |
| 18   | 77.0               | 3.34 d (9 0)                      | 77.33                                 | 3.33 d (10 2)              | 77.16           | 3.35 d (9 10)              | 77.5               | 3.34 d (9 2)               | 77.39                               | 3.35 d (8.00)                     |
| 19   | 69.5               | 3.86 m                            | -                                     | 3.86 m                     | 69.74           | 3.88 m                     | 69.9               | 3.87 m                     | 69.69                               | 3 88 m                            |
| 20   | 41.1               | 1 27 1 96 m                       | -                                     | 1 27 1 86 m                | 41.22           | 130 101 m                  | 41.4               | 1 80 1 20 m                | 41.16                               | 1.44 m                            |
| 20   | 41.1               | 1.27, 1.00 III                    | -                                     | 1.27, 1.00 III             | 41.22           | 24.10 m                    | 41.4               | 1.07, 1.30 III             | +1.10                               | 1.44 III<br>4.08 m                |
| 21   | 05.6               | 3.8/m                             | -                                     | 3.8/m                      | 65.39           | 54.10 m                    | 05./               | 4.1/m                      | 05.08                               | 4.08 m                            |
| - 22 | 44.1               | 1.40                              |                                       | 1.40                       | 41.00           | 1 (0, 1, 70                | 44.5               | 1.52                       | 41.00                               | (10.83, 9.94)                     |
| 22   | 44.1               | 1.49 m                            | -                                     | 1.49 m                     | 41.80           | 1.68, 1.78 m               | 44.5               | 1.52 m                     | 41.89                               | 1.44 m                            |
| 23   | 71.0               | 5.23 m                            | 70.75                                 | 5.21 m                     | 70.70           | 5.23 m                     | 66.3               | 4.03 m                     | 65.71                               | 3.88 m                            |
| 24   | 43.8               | 1.58 m                            | -                                     | 1.58 m                     | 43.63           | 1.72 m                     | 44.6               | 1.69 m                     | 44.55                               | 1.55 m                            |
| 25   | 65.5               | 3.86 m                            | -                                     | 3.86 m                     | 65.47           | 3.90 m                     | 70.8               | 5.28 m                     | 70.72                               | 5.23 m                            |
| 26   | 43.7               | 1.50, 1.69 m                      | -                                     | 1.50, 1.69 m               | 46.57           | 1.49 m                     | 44.0               | 1.61, 1.83 m               | 46.26                               | 1.55 m                            |
| 27   | 65.8               | 3.82 m                            | 65.29                                 | 4.02 m                     | 65.99           | 4.04 m                     | 65.7               | 3.88 m                     | 66.32                               | 4.02 m                            |
| 28   | 43.5               | 1 75 m                            | -                                     | 1.75 m                     | 44.22           | 1 50 1 57 m                | 44.2               | 1 78 m                     | 44.02                               | 1.55 m                            |
| 20   | 73.0               | 1.75 m                            | 74.24                                 | 4.17.dd                    | 74.15           | 4 18 dd                    | 74.2               | 4.18 m                     | 74.28                               | 4.17 dd                           |
| 29   | 15.9               | (9.0.3.0)                         | /4.24                                 | (8836)                     | /4.15           | (8.81, 2.62)               | /4.2               | 4.10 111                   | /4.20                               | (817300265)                       |
| 20   | 140.0              | (9.0, 5.0)                        | 140.10                                | (0.0, 5.0)                 | 140.10          | (0.01, 2.02)               | 140.2              |                            | 140.07                              | (8.17, 5.09, 2.05)                |
| 30   | 140.0              | 5.00 1 (11.0)                     | 140.18                                | -                          | 140.19          | -                          | 140.2              | -                          | 140.07                              | -                                 |
| 31   | 125.0              | 5.98 d (11.0)                     | 125.10                                | 5.98 d (11.2)              | 125.09          | 6.00 d                     | 125.3              | 5.98 d (10.4)              | 125.09                              | 6.00 d (11.05)                    |
|      |                    |                                   |                                       |                            |                 | (11.50)                    |                    |                            |                                     |                                   |
| 32   | 128.3              | 6.22 dd                           | 128.56                                | 6.21 dd                    | 128.59          | 6.24 dd                    | 128.6              | 6.22 dd                    | 128.47                              | 6.22 dd                           |
|      |                    | (15.0, 11.0)                      |                                       | (14.9, 11.2)               |                 | (14.9, 10.9)               |                    | (10.9, 14.5)               |                                     | (14.0, 11.1)                      |
| 33   | 136.0              | 5.42 m                            | 136.15                                | 5.42 m                     | 136.17          | 5.42 dd                    | 136.3              | 5.43 m                     | 136.11                              | 5.44 m                            |
|      |                    |                                   |                                       | (14.9, 8.8)                |                 | (13.51, 7.53)              |                    |                            |                                     |                                   |
| 34   | 40.8               | 2.55 m                            | -                                     | 2.55 m                     | 41.05           | 2.57 m                     | 41.0               | 2.57 m                     | 40.84                               | 2.56 dd                           |
|      |                    |                                   |                                       | (8.8, 8.0, 6.8)            |                 |                            |                    |                            |                                     | (7.51, 7.07)                      |
| 35   | 80.6               | 4.78 dd                           | 80.81                                 | 4.78 dd                    | 80.71           | 4.80 dd                    | 80.9               | 4.78 dd                    | 80.85                               | 4.78 dd                           |
|      |                    | (7.5, 4.5)                        |                                       | (8.0, 4.0)                 |                 | (7.91, 3.68)               |                    | (7.6, 4.0)                 |                                     | (8.10, 4.19)                      |
| 36   | 35.0               | 1.81 m                            | -                                     | 1.82 m                     | 35.05           | 1.84 m                     | 35.3               | 1.82 m                     | 33.52                               | 1.82 m                            |
|      |                    |                                   |                                       | (6940)                     |                 |                            |                    |                            |                                     |                                   |
| 37   | 34.1               | 1 15 1 35 m                       | -                                     | 1 15 1 35 m                | 34 53           | 1 17 1 35 m                | 34.4               | 1 15 1 35 m                | 28.35                               | 1.55 m                            |
| 38   | 27.1               | 1.10, 1.00 m                      | _                                     | 1.1.5, 1.55 III            | 27.01           | 1.17, 1.55 m               | 27.0               | 1.10, 1.00 m               | 27.85                               | 1.55 m                            |
| 30   | 22.1               | 1.71 m                            | -                                     | 1.98 m                     | 33.62           | 2.00 m                     | 33.6               | 1.72 m                     | 30.52                               | 2.03 m                            |
| 40   | 122.2              | 5.45                              | 122.40                                | 5.42                       | 122.40          | 2.00 III<br>5.49 m         | 122.6              | 5.44                       | 122.40                              | 2.05 m                            |
| 40   | 132.5              | 3.45 m                            | 152.40                                | 3.45 m<br>(14.0)           | 132.49          | 3.48 m                     | 132.0              | 3.44 m                     | 152.49                              | 3.44 m                            |
| 41   | 120.2              | 5.42                              | 120.27                                | (14.9)                     | 120.21          | 5.45                       | 120.2              | 5.44                       | 120.15                              | 5.44                              |
| 41   | 130.2              | 5.42 m                            | 130.27                                | 5.41 m                     | 130.31          | 5.45 m                     | 130.3              | 5.44 m                     | 130.15                              | 5.44 m                            |
| L    |                    |                                   |                                       | (14.9)                     |                 |                            | a                  |                            |                                     |                                   |
| 42   | 30.4               | 2.06 m                            | -                                     | 2.06 m                     | 30.67           | 2.08 m                     | 30.7               | 2.07 m                     | 29.77                               | 2.03 m                            |
| 43   | 29.7               | 1.63 m                            | -                                     | 1.63 m                     | 29.81           | 1.68 m                     | 29.9               | 1.67 m                     | 30.52                               | 1.55 m                            |
| 44   | 41.7               | 3.16 t (7.0)                      | -                                     | 3.15 t (6.8)               | 42.09           | 3.18 t (7.30)              | 42.2               | 3.17 t (7.3)               | 42.14                               | 3.15 t (6.85)                     |
| 45   | 12.5               | 1.91 s                            | 12.87                                 | 1.91 d                     | 12.91           | 1.92 s                     | 12.9               | 1.92 s                     | 12.84                               | 1.92 s                            |
|      |                    |                                   |                                       | (1.6)                      |                 |                            |                    |                            |                                     |                                   |
| 46   | 16.6               | 1.11 d (7.0)                      | 17.05                                 | 1.10 d (6.8)               | 17.17           | 1.12 d (6.75)              | 17.1               | 1.11 d (6.8)               | 16.89                               | 1.10 d (6.85)                     |
| 47   | 10.1               | 0.87 d (7.0)                      | 10.52                                 | 0.87 d(7.0)                | 10.43           | 0.89 d (6.91)              | 10.5               | 0.89 d (6.9)               | 10.54                               | 0 86 d (6 84)                     |
| 48   | 14.5               | 0.91 d (7.0)                      | 14.03                                 | 0.01 d (7.0)               | 14.78           | 0.02 d (6.72)              | 15.2               | 0.91 d (6.7)               | 14.94                               | 0.88 d (6.63)                     |
| 40   | 12.0               | 1.64 c                            | 12.22                                 | 1.64 c                     | 12.70           | 1.65 c                     | 12.1               | 1.65 °                     | 12.22                               | 1.65 0                            |
| 49   | 13.0               | 1.04 \$                           | 13.33                                 | 1.04 \$                    | 13.28           | 1.03 \$                    | 13.1               | 1.03 \$                    | 13.33                               | 1.03 8                            |
| 50   | 17.5               | 1.01 d (6.5)                      | 1/.04                                 | 1.00 d (6.8)               | 17.55           | 1.02 d (6.61)              | 1/.8               | 1.01 a (6.7)               | 1/.08                               | 0.98 d (6.62)                     |
| 51   | 14.5               | 0.95 d (7.0)                      | 14.35                                 | 0.94 d (6.9)               | 14.26           | 0.96 d (6.72)              | 14.4               | 0.94 d (6.7)               | 14.38                               | 0.94 d (6.63)                     |
| 52   | 157.6              | -                                 | 157.37                                | -                          | 157.26          | -                          | 157.4              | -                          | 157.30                              | -                                 |
| 53a  | 28.2               | 2.85 s                            | 28.40                                 | 2.84 s                     | 28.41           | 2.87 s                     | 28.4               | 2.85 s                     | 28.34                               | 2.85 s                            |
| 53b  | 28.2               | 2.85 s                            | 28.40                                 | 2.84 s                     | 28.41           | 2.87 s                     | 28.4               | 2.85 s                     | 28.34                               | 2.85 s                            |
| 1'   | 171.2              | -                                 | 171.60                                | -                          | 171.57          | -                          | 171.9              | -                          | 171.59                              | -                                 |
| 2'   | 47.3               | -                                 | 46.10                                 | 3.22 s                     | 46.08           | 3.22 s                     | 46.0               | 3.22 m                     | 46.26                               | 3.24 s                            |
| 3'   | 173.1              | -                                 | 173.87                                | -                          | 173.96          | -                          | 173.9              | -                          | 173.98                              | -                                 |

<sup>a 1</sup>H NMR was recorded at 800 MHz and <sup>13</sup>C NMR at 200 MHz; <sup>b 1</sup>H NMR spectrum was recorded at 400 MHz and <sup>13</sup>C NMR at 100 MHz; <sup>c 1</sup>H NMR was recorded at 400 MHz and <sup>13</sup>C NMR at 125 MHz; <sup>d 1</sup>H NMR was recorded at 400 MHz and <sup>13</sup>C NMR at 100 MHz.

| gene tag<br>CFP59- | protein<br>name | access. Nr.   | size<br>(aa) | annotation                                                    | closest<br>homolog(s) <sup>a</sup> | identity (%)/-<br>coverage (%) <sup>b</sup> | access. Nr.          |
|--------------------|-----------------|---------------|--------------|---------------------------------------------------------------|------------------------------------|---------------------------------------------|----------------------|
| 01156              | azu22           | AUA09068      | 185          | Carbon monoxide dehydrogenase                                 | nomotog(0)                         | coverage (70)                               |                      |
| 01157              | azu21           | AUA09069      | 330          | small chain<br>4-hydroxybenzoyl-CoA reductase<br>subunit beta |                                    |                                             |                      |
| 01158              | azu20           | AUA09070      | 716          | Xanthine dehydrogenase<br>molybdenum-binding subunit          |                                    |                                             |                      |
| 01159              | azu19           | AUA09071      | 177          | DNA protection during starvation protein                      |                                    |                                             |                      |
| 01160              | azu18           | AUA09072      | 235          | Secreted effector protein pipB2                               |                                    |                                             |                      |
| 01161              | azu17           | AUA09073      | 114          | hypothetical protein                                          |                                    |                                             |                      |
| 01162              | azu16           | AUA09074      | 288          | Transposon Tn10 TetD protein                                  | azl15                              | 92/100<br>90/100                            | ARM20296             |
| 01163              | azu15           | AUA09075      | 478          | Putrescine importer PuuP                                      | azl14                              | 85/100<br>91/100                            | ARM20295             |
| 01164              | azu14           | AUA09076      | 267          | 4-guanidinobutyramide                                         | azl13                              | 92/100<br>92/100                            | ARM20294             |
| 01165              | azu13           | AUA09077      | 257          | HTH-type transcriptional regulator                            | azl12<br>npm19                     | 90/100<br>89/100                            | ARM20293<br>AUO16417 |
| 01166              | 971112          | 411409078     | 307          | Fatty acyl-CoA reductase                                      | npinity                            | 07/100                                      | 10010417             |
| 01167              | azull           | AUA09079      | 197          | Tetracycline repressor protein class A                        |                                    |                                             |                      |
| 01168              | azu11           | AUA09080      | 426          | nutative inner membrane protein                               | az111                              | 94/100                                      | ARM20292             |
| 01100              | azuro           | A0A07000      | 420          | putative initer memorate protein                              | npm13                              | 89/100                                      | AU016411             |
| 01169              | 97119           | AUA09081      | 475          | hypothetical protein                                          | npm12                              | 88/100                                      | AUO16410             |
| 01170              | azu)            | AUA09082      | 262          | Cellulose binding family II                                   | azl10                              | 91/100                                      | ARM20291             |
| 01170              | azu0<br>azu7    | AUA09083      | 145          | Endoribonuclease L-PSP                                        | azlo                               | 90/93                                       | ARM20291             |
| 011/1              | uzu/            | 110/10/005    | 145          |                                                               | nnm11                              | 90/101                                      | AUO16409             |
| 01172              | azu6            | AUA09084      | 126          | putative HTH-type transcriptional                             | azl8                               | 92/100                                      | ARM20289             |
| 011/2              | uluo            | 1101107001    | 120          | regulator YtcD                                                | npm10                              | 94/98                                       | AUO16408             |
| 01173              | azu5            | AUA09085      | 339          | 4-guanidinobutyryl-CoA:ACP                                    | azl5                               | 94/94                                       | ARM20286             |
|                    |                 |               |              | acyltransferase                                               | npm7                               | 90/94                                       | AUO16405             |
| 01174              | azu4            | AUA09086      | 478          | 4-guanidinobutanoate:CoA ligase                               | azl4                               | 94/100                                      | ARM20285             |
|                    |                 |               |              | 8                                                             | npm6                               | 94/100                                      | AUO16404             |
| 01175              | azuA            | AUA09087      | 2307         | Type I PKS                                                    | azlA                               | 93/100                                      | ARM20284             |
|                    |                 |               |              | 51                                                            | npmA                               | 92/100                                      | AUO16423             |
| 01176              | azuH            | AUA09088      | 2107         | Type I PKS                                                    | azlH                               | 96/100                                      | ARM20283             |
|                    |                 |               |              | 51<br>                                                        | npmI                               | 68/123                                      | AUO16403             |
| 01177              | azuG            | AUA09089      | 3453         | Type I PKS                                                    | azlG                               | 92/100                                      | ARM20282             |
|                    |                 |               |              |                                                               | npmH                               | 91/100                                      | AUO16422             |
| 01178              | azuF            | AUA09090      | 3204         | Type I PKS                                                    | azlF                               | 93/100                                      | ARM20281             |
|                    |                 |               |              |                                                               | npmG                               | 92/100                                      | AUO16402             |
| 01179              | azuE            | AUA09091      | 8265         | Type I PKS                                                    | azlE                               | 92/100                                      | ARM20280             |
|                    |                 |               |              |                                                               | npmF                               | 91/100                                      | AUO16401             |
| 01180              | azuD            | AUA09092      | 4762         | Type I PKS                                                    | azlD                               | 90/100                                      | ARM20279             |
| 01101              | 0               |               | 2256         |                                                               | npmE                               | 83/100                                      | AUO16400             |
| 01181              | azuC            | AUA09093      | 3376         | Type I PKS                                                    | azlC                               | 89/100                                      | ARM20278             |
| 01100              | D               |               | 5100         |                                                               | npmD                               | 76/100                                      | AU016399             |
| 01182              | azuB            | AUA09094      | 5180         | Type TPKS                                                     | aziB                               | 91/100                                      | ARM20277             |
|                    |                 |               |              |                                                               | npmC                               | 82/66                                       | AU016398             |
| 01102              | 2               |               | (0)          |                                                               | npmB                               | 85/52                                       | AU01639/             |
| 01183              | azu3            | AUA09095      | 68           | ferredoxin                                                    | azi3                               | 91/100                                      | ARM20276             |
| 01104              | 2               | A T T A 0000C | 200          | D450                                                          | npm5                               | 90/100                                      | AU016396             |
| 01184              | azu2            | AUA09096      | 399          | P450                                                          | aziz                               | 96/98                                       | AKM20275             |
| 01105              | 1               | A T T A 00007 | 1670         |                                                               | npm4                               | 93/100                                      | AU016421             |
| 01185              | azul            | AUA09097      | 1579         | hypothetical protein                                          | azii                               | 69/101                                      | AKM20274             |
| 01107              |                 | A T T A 00000 | 221          |                                                               | npm1                               | 8 // 100                                    | AU016393             |
| 01180              |                 | AUA09098      | 221          | hypothetical protein                                          |                                    |                                             |                      |
| 01187              |                 | AUA09099      | 95<br>702    | ATD dependent zing matelleprotogo                             | ¥aTT                               |                                             |                      |
| 01180              |                 | AUA09100      | /03          | A I r-dependent zinc metalloprotease F                        | เรท                                |                                             |                      |
| 01169              |                 | AUA09101      | 028          | hypothetical protein                                          |                                    |                                             |                      |
| 01190              |                 | AUA09102      | 1/0          | hypothetical protein                                          |                                    |                                             |                      |
| 01191              |                 | AUA09103      | 5/8          | hypothetical protein                                          |                                    |                                             |                      |
| 01192              |                 | AUA09104      | 693          | nypotnetical protein                                          |                                    |                                             |                      |
| 01193              |                 | AUA09105      | 418          | nypothetical protein                                          |                                    |                                             |                      |
| 01194              |                 | AUA09106      | 675          | nypothetical protein                                          |                                    |                                             |                      |
| 01195              |                 | AUA09107      | <u>695</u>   | hypothetical protein                                          |                                    |                                             |                      |

<sup>a</sup> Mainly homologs from biosynthetic gene clusters encoding for characterized compounds were considered. Origin of gene clusters: azl = Streptomyces sp. 211726 (azalomycin F3a); npm = Streptomyces sp. IMB7-145 (niphimycins C-E).<sup>b</sup> Percent alignment and identify were determined using BLASTp, following default parameters. Percent alignment is the proportion of the Nam query sequence that aligns to each homolog.

| Module        | Loop                       | Catalytic Region                                   |
|---------------|----------------------------|----------------------------------------------------|
| Erv2 Al       | HAAGT.POOVAT               | SSGAGV <mark>W</mark> GSAROGAYAAANA                |
| Mage Al       | HAACVPOSTPL                | SSCACVWCSANLCAYAAANA                               |
|               |                            | SSUACUWCSCCOAUXAAANA                               |
|               |                            | SSINAGVWGSGGQAVIAAANA                              |
| PIRJ_AI       | HIAGAFGGDEL                | SSINAGVWGSGWQGVIAAANA                              |
| SOF6_AL       | HAGGILPHAPL                | SSGAV VWGGGQQGGIAAANA                              |
| TYI6_AI       | HTAGTPHSAEF                | SSGAAVWGSGGQTAYGAANA                               |
| azuD_module/  | HAAGVEQAAEL                | SSIAGV <mark>W</mark> GSGGQAAYGAANA                |
| azuD_module9  | HAAGVEQAAEL                | SSIAGV <mark>W</mark> GSGGQAAYGAANA                |
| azuE_module11 | HAAGANAAGPL                | SSIAGV <mark>W</mark> GSGGQAAYGAANA                |
| azuF_module15 | HAAGVTLAASL                | SSISGV <mark>W</mark> GGGSQGVYGSGNA                |
| azlD_KR1      | HAAGVEQAAEL                | SSIAGV <mark>W</mark> GSGGQAAYGAANA                |
| azlD_KR3      | HAAGVEQAAEL                | SSIAGV <mark>W</mark> GSGGQAAYGAANA                |
| azlE_KR2      | HAAGANAAGPL                | SSIAGV <mark>W</mark> GSGGQAAYGAANA                |
| azlF_KR1      | HAAGVTIAASL                | SSISGV <mark>W</mark> GGGSQGVYGSGNA                |
| Amp1_A2       | HTAAVIELAAL                | SSTAGM <mark>W</mark> GSGV <mark>H</mark> AAYVAGNA |
| Can13_A2      | HTAAVIELQSI                | SSTAGM <mark>W</mark> GSGR <mark>H</mark> AAYVAANA |
| Ela4_A2       | HIAGAGVLVPL                | SSISAV <mark>W</mark> GSGE <mark>H</mark> GAYAAANA |
| Nys1_A2       | HAAAAIELSAL                | SSTAGM <mark>W</mark> GSGV <mark>H</mark> AAYVAGNA |
| Pim7 A2       | HTAVTIELAPL                | SSTAGM <mark>W</mark> GSGA <mark>H</mark> AAYVAGNA |
| Avel B1       | HTAGI <mark>LDD</mark> ATL | SSVTGTWGNAGQGAYAAANA                               |
| Tyll B1       | HTAGI <mark>LDD</mark> AVI | SSAAATFGAPGQANYAAANA                               |
| Asc8 B1       | HTAAT <mark>LDD</mark> GIL | SSAAAVLGSPGQGNYAAANA                               |
| Ave7 B1       | HAAGV <mark>LDD</mark> ATI | SSAAGILGSAGOANYAAANA                               |
| Ave9 B1       | HAAGV <mark>LDD</mark> ATI | SSAAGILGSAGOGNYAAANA                               |
| Rap10 B1      | HTAGV <mark>LDD</mark> GVV | SSAAGVLGSAGOGNYAVANA                               |
| azuA module1  | HAAGVLDDGVI                | SSVAGVFGSPGOGNYAAANS                               |
| azuB_module2  | HAAGVLDDGLL                | SSATGVLGGAGOSNYAAANV                               |
| azuB_module3  | HTAGVIDDGVV                | SSAAGTLGGPGOGSYAAGNA                               |
| azuB_module4  | HTAGVLDDGVV                | SSLSGTLGGTGOANYAAANA                               |
| azuC module6  | HTAGVLDDGVL                | SSAAGTLGGPGOGSYAAGNA                               |
| azuD_module8  | haagv <mark>ldd</mark> gvl | SSFAGVVGGAGOGAYAAANA                               |
| azuE_module10 | HAAGI <mark>LDD</mark> GVL | SSFAGAIGGAGQAAYAAANA                               |
| azuE_module12 | haagv <mark>ldd</mark> gli | SSYAGTVGGAGQGSYAAANA                               |
| azuE_module13 | HAAGV <mark>LDD</mark> GVV | SSVSGTFGGAGQANYAAGNA                               |
| azuF_module16 | HAAGV <mark>LDD</mark> GVL | SSLAGAIGGAGQGSYAAANA                               |
| azuG_module17 | HTAGV <mark>LDD</mark> GVV | SSGAATLGGPGQGSYAAGNA                               |
| azuG_module18 | HAAGV <mark>LDD</mark> GVV | SSASSNFGGGGQANYAAANA                               |
| azuH_module19 | HATGV <mark>LDD</mark> GLF | SSAAGVFGSAGQSNYAAANV                               |
| azuC_module5  | HAAGV <mark>LED</mark> GLL | SSAAGTLGGPGQGSYAAANV                               |
| azlA_KR       | HAAGV <mark>LDD</mark> GVI | SSVAGVFGSPGQGNYAAANS                               |
| azlB_KR1      | HAAGV <mark>LDD</mark> GLL | SSAAGVLGSAGQSNYAAANV                               |
| azlB_KR2      | HTAGV <mark>LDD</mark> GVL | SSAAGTLGGPGQGSYAAGNA                               |
| azlB_KR3      | HTAGV <mark>LDD</mark> GVV | SSLSGTLGGTGQANYAAANA                               |
| azlC_KR1      | HAAGV <mark>LDD</mark> GLL | SSAAGTLGGPGQSNYAAANV                               |
| azlC_KR2      | HTAGV <mark>LDD</mark> GVL | SSAAGTIGGPGQGSYAAGNA                               |
| azlD_KR2      | HAAGV <mark>LDD</mark> GVL | SSFAGVVGGAGQGAYAAANA                               |
| azlE_KR1      | HAAGI <mark>LDD</mark> GVL | SSFAGAVGSAGQAAYAAANA                               |
| azlE_KR4      | HAAGV <mark>LDD</mark> GLI | SSYAGTVGGAGQGSYAAANA                               |
| azlE_KR5      | HAAGV <mark>LDD</mark> GVV | SSVSGTFGGAGQANYAAGNA                               |
| azlF_KR2      | HAAGV <mark>LDD</mark> GVL | SSLAGAIGGAGQGSYAAANA                               |
| azlG_KR1      | HTAGV <b>LDD</b> GVV       | SSGAGTLGGPGQGSYAAGNA                               |
| azlG_KR2      | HAAGV <mark>LDD</mark> GVV | SSASSNFGGGGQANYAAANA                               |
| azlH_KR       | HATGV <mark>LDD</mark> GLF | SSAAGAFGAAGQSNYAAANV                               |
| Ery1_B2       | HAAAT <mark>LDD</mark> GTV | SSFASAFGAPGLGGYAPGNA                               |
| Lan1_B2       | HTAAT <mark>LDD</mark> GTL | SSFASAFGAPGLGCYA <mark>P</mark> GNA                |
| Meg1_B2       | HVAAT <mark>LDD</mark> GTV | SSSTAAFGAPGLGGYV <mark>P</mark> GNA                |
| Pikl_B2       | HTAGA <mark>LDD</mark> GIV | SSVSSTLGIPGQGNYA <b>P</b> HNA                      |
| OIII4_C1      | HTAGVAGHGPL                | SSGAAVWGSGSNGANAAAGG                               |
| Ery3_C2       | HAGTLTNFGSI                | SSVAGIWGGAGMAAYAAGSA                               |
| Lan3_C2       | HAATRTEFGPV                | SSVAGVWGGAGMAGYAAGSA                               |
| Meg3_C2       | HAE'I'LTNF'AGV             | SSVAGVWGGVGMAAYAAGSA                               |
| NIC4_C2       | HAPPLVPLAPL                | SSVSGVWGGAAQGAYAAATA                               |
| Pik3_CZ       | HLPPTVDSEPL                | SSVAALWGGAGQGAYAAGTA                               |
| TYI4_C2       | VAPPVAPPTPL                | SSVAGVWGGAGQGGYAAGTA                               |

Table S5. Determination of ER domain specificity (CLUSTAL multiple sequence alignment by MUSCLE (3.8))

| Module       | catalytic 1      | region                                          |                                   |                  |
|--------------|------------------|-------------------------------------------------|-----------------------------------|------------------|
| OleER4 2S    | (38')-VNFRDVLLAI | GM <mark>Y</mark> PD-EGLMGAEAAGVV-              | 67aa-RGGESVLV <mark>HSA</mark> A  | AGGVGMAAVQLARHWD |
| MegER4 2S    | (38')-VNFRDVLLAI | GM <mark>Y</mark> PE-PAEMGTEASGVV-              | 67aa-QAGQSVLV <mark>HAA</mark> A  | AGGVGMAAVALARRAG |
| LkmER4 2S    | (38')-VNFRDVLLAI | GM <mark>Y</mark> PE-PAEMGTEASGVV-              | 67aa-QAGQSVLV <mark>HAA</mark> A  | AGGVGMAAVALARRAG |
| EryER4_2S    | (38')-VNFRDVLLAI | GM <mark>Y</mark> PQ-KADMGTEAAGVV-              | 67aa-RAGQSVLI <mark>HAA</mark> A  | AGGVGMAAVALARRAG |
| FKbER6_2S    | (38')-LNFRDVLIAI | GT <mark>Y</mark> PG-QGVLGGEAAGIV-              | 67aa-RPGEKVLI <mark>HAA</mark> 1  | IGGVGSAARQIARHLG |
| FKbER7 2S    | (38')-LNFRDVLIAI | GT <mark>Y</mark> DG-ATALGGEAAGVV-              | 67aa-RAGEKVLV <mark>HAA</mark> J  | GGVAMAATQVARHLQ  |
| azlA_ER_2S   | (38')-LNFRDALIAI | GMYPDDHATMGGEGAGVV-                             | 67aa-QAGESILV <mark>HTA</mark>    | IGGVGMAAVQLARHLG |
| azlE_ER_2S   | (38')-LNFRDVLNAI | GM <mark>Y</mark> PGEAGPLGGEGAGVV-              | 67aa-KKGQSVLV <mark>HSA</mark>    | AGGVGMATLQLARHFG |
| azuA_module1 | (38')-LNFRDALIA  | IGM <mark>Y</mark> PEDDATMGGEGAGVV <sup>.</sup> | -67aa-RAGESILV <mark>HTA</mark>   | TGGVGMAAVQLARHLG |
| azuE_module1 | 4(38')-LNFRDVLNA | LGM <mark>Y</mark> PGEAGPLGGEGAGVV              | -67aa-KAGQSVLV <mark>HSA</mark>   | AGGVGMATLQLARHLG |
| GdmER1_2R    | (38')-QNFRDVLVAL | GG <mark>V</mark> AG-QEGLGGEGAGVV-              | 67aa-QPGETVLV <mark>HAA</mark> A  | AGGVGMAAVQLARHFG |
| HbmER1_2R    | (38')-QNFRDVLVAL | GG <mark>V</mark> AG-QEGLGGEGAGVV-              | 67aa-QPGETVLV <mark>HAA</mark> A  | AGGVGMAAVQLARHFG |
| NigER8_2R    | (38')-VNFRDVLVGL | GM <mark>V</mark> PG-QTGLGGEGAGVV-              | 67aa-RPGESVLI <mark>HAA</mark> 1  | IGGVGTAAVRIARHLG |
| FkbER9_2R    | (38')-LNFRDDTVAL | GV <mark>V</mark> AD-DRPLGSEAAGVV-              | 67aa-RPGEKVLI <mark>HAA</mark> A  | ATGVGAAAVQIARHLD |
| RapER13_2R   | (38')-LNFRDVVVAI | .GM <mark>V</mark> ND-NRPTGGEAAGVV-             | 67aa-SEGESVLI <mark>HAA</mark>    | AGGVGMAATQIARHLG |
| RapER1_2R    | (38')-LNFRDVVVAL | GM <mark>V</mark> DD-KRLAGGEAAGVV-              | 67aa-SAGESVLI <mark>HAA</mark> A  | AGGVGMAATQIARHLG |
|              | **** •**         | * * • • * • *                                   | * • • • * • * • * • * * • * * • * | * * **.          |

The sequences from this study (*azu*) are highlighted in blue, and the sequences of the most closely related homologs are highlighted in red (*azl*) The LDD consensus regions are highlighted in yellow and PN and W consensus regions are highlighted in green and blue respectively.

The PKSs and sequence accession numbers are: DEBS, erythromycin, L07626, X62569; OLE, oleandomycin, AF220951; PIK, pikromycin, AF079138; TYL, tylosin, U78289; NID, niddamycin, AF016585; RAPS, rapamycin, X86780; FK506, AF082100, y10438; FK520, AF235504; AVE, avermectin, AB032367; RIF, rifamycin, AF040570; SOR, soraphen, U24241; EPO, epothilone, AF217189; MXA, myxalamid, AF319998; MTA, mxyathiazole, AF188287; PIM, pimaricin, J278573; NYS, nystatin, AF263912; AMPH, amphotericin, AF357202, VinP3, vicenistatin, BAD08359; as well as:

azl = Streptomyces sp. 211726 (azalomycin F3a);

npm = Streptomyces sp. IMB7-145 (niphimycins C-E)

| compd. | <i>M. pachydermatis</i> CBS 1879 | <i>C. albicans</i> SC5314 | C. neoformans<br>H99 |
|--------|----------------------------------|---------------------------|----------------------|
| -      | (µg/mL)                          | (µg/mL)                   | (µg/mL)              |
| 1      | > 250                            | 7.81                      | 3.91                 |
| 2      | > 250                            | > 250                     | 31.25                |
| 3      | > 250                            | 3.91                      | 1.95                 |
| 4      | > 250                            | 7.81                      | 3.91                 |
| KTZ    | 0.125                            | n.d.                      | n.d.                 |
| FLZ    | n.d.                             | 0.5                       | 4.0                  |

Table S6. Antifungal activity of compounds 1-4.

n.d – not determined.

 Table S7. Antiproliferative and cytotoxicity activity of compounds 1-4.

| compd.      | Antiproliferative effe | ect (GI <sub>50</sub> )        | <i>Cytotoxicity (CC<sub>50</sub>)</i> |
|-------------|------------------------|--------------------------------|---------------------------------------|
|             | HUVEC                  | K-562                          | HeLa                                  |
|             | (µg/mL)                | (µg/mL)                        | (µg/mL)                               |
| 1           | 39.0 (± 0.6)           | 32.8 (± 1.5)                   | 40.5 (± 0.05)                         |
| 2           | 10.4 (± 0.3)           | 11.9 (± 0.2)                   | 12.7 (± 0.2)                          |
| 3           | 9.3 (± 0.2)            | 10.1 (± 0.7)                   | 13.4 (± 0.3)                          |
| 4           | 13.1 (± 0.5)           | 15.6 (± 0.9)                   | 11.2 (± 0.3)                          |
| imatinib    | 10.9 (± 1.2)           | $0.1 (\pm 6.7 \times 10^{-3})$ | 38.8 (± 1.4)                          |
| doxorubicin | 0.1                    | 1.0 (± 0.6)                    | 2.0 (± 0.8)                           |
|             |                        |                                |                                       |



**Figure S1.** HRMS<sup>2</sup>-based GNPS analysis depicting molecular ion cluster putatively assigned as an azalomycin cluster with putative structural features assigned to m/z 1096.69, 1082.67 and 1068.66 (diol moiety C-18 and C-19); m/z 1080.69 and 1066.68 (C-19 alcohol); m/z 1062.68 and 1048.67 (enoyl derivatives); m/z 1078.68 (C-19/C-18 epoxy). Data obtained from HRMS<sup>2</sup> measurements of EtOAc extract (7 d, ISP2 liquid broth) in positive mode ESI-HRMS.



**Figure S2.** Graphical comparison of azalomycins biosynthesis gene cluster (*azu*) from *Streptomyces* sp. M56 and azalomycin  $F_{3a}$  biosynthesis gene cluster (*azl*) from *Streptomyces* sp. 211726, and niphimycin C biosynthesis gene cluster (*npm*) from *Streptomyces* sp. IMB7-145.

**Figure S3.** Sequence alignment of arginine monooxygenase. AUA13754 and AUA09953: tryptophan 2-monooxygenase from M56; ORF\_6127: an arginine monooxygenase from *Streptomyces* sp. IMB7-145; AAX98202: arginine monooxygenase in ECO-02301 biosynthetic gene cluster from *S. aizunensis*; AEM87306: amine oxidase from azalomycin F from *S. violaceusniger* Tu 4113; AQW50864: amine oxidase from *S. hygroscopicus*; KUL53773: amino oxidase from *S. violaceusniger*; SEB92316: tryptophane 2-monooxygenase from *S. melanosporofaciens*.

| AAX98202   | MTSFSPAPTTMLVPDFPFSYDGWLRHPAGLGALPPERAGTPVAVVGGGMAGMTAAYELMR        |
|------------|---------------------------------------------------------------------|
| AUA13754   | $\tt MTCATASATTMLVPDFPFSYDRWLSHPAGLGSLPPAMHGTEVAVIGGGMSGLTAAYELLR$  |
| AQW50864   | $\tt MTCATASATTMLVPDFPFSYDRWLSHAAGLGALPAAMHGTEVAVIGGGMSGLTAAYELLR$  |
| AEM87306   | MTCATASATTMLVPDFPYSYDRWLSHPAGLGSLPAAMHGTEVAVIGGGMSGLTAAHELLR        |
| AUA09953   | MTCATASATTMLVPDFPYSYDRWLSHPAGLGALPAAVHGTEVAVIGGGMSGLTAAYELLR        |
| ORF 6127   | MTCATASATTMLVPDFPYSYDRWLSHPAGLGALPAAVHGTEVAVIGGGMSGLTAAYELLR        |
| KUL53773   | MTCATASATTMLVPDFPYSYDRWLSHPAGLGALPAAAHGTEVAVIGGGMSGLTAAYELLR        |
| SEB92316   | MTCATASATTMLVPDFPYSYDRWLSHPAGLGALPAAAHGTEVAVIGGGMSGLTAAYELLR        |
|            | ** • • • ******** *** ** * * * **** ** *                            |
|            |                                                                     |
| AAX98202   | LGLRPVVYEAEOLGGRMRSVPFPGOPGLVAEMGAMRFPLSARSLFHYIDLLGLRTSPFPN        |
| AUA13754   | LGISPVLYEAEOLGGRMRSLPFPGNPEYKAEMGAMRFPIAARSLFHYIDLLGLPTRPFPN        |
| AOW50864   | LGLSPVLYEAEOLGGRMRSTPFPGNPEYKAEMGAMRFPVSARSLFHYIDLLGLSTRPFPN        |
| AEM87306   | LGLSPVI.YEAEOLGGRMRSTPFPGNPEYKAEMGAMRFPVSARSLFHYIDLLGLSTHPFPN       |
| AUA09953   | I.GL.SPVI.YEAEOI.GGRMRSTPFPGNPEYKAEMGAMRFPVSARSI.FHYIDI.LGI.STRPFPN |
| ORF 6127   | L.GL.SPVLYEAEOL.GGRMRSTPFPGNPEYKAEMGAMRFPVSARSLFHYIDLLGLSTRPFPN     |
| KIII.53773 | L.GL.SPVLYEAEOL.GGRMRSTPFPGNPEYKAEMGAMRFPVSARSLFHYIDLLGLSTRPFPN     |
| SEB92316   | LCLSPVLYEAFOLCCRMRSTPFPCNPFYKAFMCAMRFPVSARSLFHYIDLCLSTRPFPN         |
| 50092310   | **• **•********************************                             |
|            |                                                                     |
| 77708202   |                                                                     |
| AAA 90202  |                                                                     |
| AOALS754   |                                                                     |
| AQW30004   |                                                                     |
| ALMO / SUO |                                                                     |
| AUAU9953   |                                                                     |
| URF_0127   |                                                                     |
| KUL53//3   |                                                                     |
| SEB92316   | PLAPATASTLIDLNGGQDRARTAGELPDVYQEVADAWDKALQERADLATLRDAIQRRDVS        |
|            | ***. *.******* **:: :**.***********                                 |
|            |                                                                     |
| AAX 98202  |                                                                     |
| AUAL3/54   |                                                                     |
| AQW50864   |                                                                     |
| AEM8/306   | TLKTIWNALVKEFDDQSFYGFLATSSAFQSFRHREIFGQVGFGTGGWDTDFPNSVLEILR        |
| AUAU9953   | TLKTVWNSLVREFDDQSFYGFLATSSAFQSFRHREIFGQVGFGTGGWDTDFPNSVLEILR        |
| ORF_6127   | TLKTVWNSLVREFDDQSFYGFLATSSAFQSFRHREIFGQVGFGTGGWDTDFPNSVLEILR        |
| KUL53773   | TLKTIWNSLVREFDDQSFYGFLATSSAFQSFRHREIFGQVGFGTGGWDTDFPNSVLEILR        |
| SEB92316   | TLKTIWNSLVREFDDQSFYGFLATSSAFQSFRHREIFGQVGFGTGGWDTDFPNSVLEILR        |
|            | *** *** ** ****************************                             |
|            |                                                                     |
| AAX98202   | VVYTEADDNQVAIDGGSQQVPRGLWEHRPRGCAHWPAGTSLASLHGGTARPRVRAVARDG        |
| AUA13754   | VVVTEADDHQVGIVGGSSQVPNGLWEHRPETLAHWPRGTSLSSLHGGRPRPAVTRLRRTA        |
| AQW50864   | VVVTEADDNQVGIVGGSSQVPNGLWEHQPETLAHWPRGTSLASLHGGRPRPAVTRLRRTA        |
| AEM87306   | VVVTEADDNQVGIVGGSSQVPNGLWEHQPETLAHWPRGTSLASLHGGRPRPAVTRLRRTA        |
| AUA09953   | VVVTEADDNQVGIVGGSSQVPNGLWGHQPETLAHWPQGTSLASLHGGPPRPAVTRLRRTA        |
| ORF_6127   | VVVTEADDNQVGIVGGSSQVPNGLWGHQPETLAHWPQGTSLASLHGGPPRPAVTRLRRTA        |
| KUL53773   | VVVTEADDNQVGIVGGSSQVPNGLWEHQPETLAHWPQGTSLASLHGGRPRPAVTRLRRTA        |
| SEB92316   | VVVTEADDNQVGIVGGSSQVPNGLWEHQPETLAHWPQGTSLASLHGGRPRPAVTRLRRTA        |
|            | ** ******** * *** *** *** * * **** *****                            |
| ZDX98202   |                                                                     |
| ATTA1 375/ |                                                                     |
| AOW50864   |                                                                     |
| AEM87306   |                                                                     |
|            |                                                                     |
| ODE 6127   | илатистеререререререререререререререререререр                       |
|            |                                                                     |

| KUL53773 | DGVRVTDESGEEREFPAVVYSPHVWTLLNRVDCDPSLLSTPLWTAVERTHYMGASKLFVL                 |
|----------|------------------------------------------------------------------------------|
| SEB92316 | DGVRVTDESGEEREFPAVVYSPHVWTLLNRVDCDPSLLSTPLWTAVERTHYMGASKLFVL                 |
|          | ** *** * * ****************************                                      |
|          |                                                                              |
| AAX98202 | ADRPFWNDTDPRTGRPVMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKMATLS                 |
| AUA13754 | ADRPFWRDADPATGQDMMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKFATLS                 |
| AQW50864 | VDRPFWRDADPATGHDAMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKVATLS                 |
| AEM87306 | VDRPFWRDADPATGHDVMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKVATLS                 |
| AUA09953 | VDRPFWRDADPATGHDMMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKVATLS                 |
| ORF_6127 | VDRPFWRDADPATGHDMMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKVATLS                 |
| KUL53773 | VDRPFWRDADPATGHDMMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKVATLS                 |
| SEB92316 | VDRPFWRDADPATGHDVMSMTLTDRMPRGVYLFDDGPDRPGVMCLSYTWNDDSLKVATLS                 |
|          | ·**** ·* ·** ·** · *******************                                       |
| AAX98202 | ADERLDVLLEKLGVIYPGVDIRSHVIGDPITITWESEPHFMGAFKSNLPGOYRYORRLFT                 |
| AUA13754 | AEERLETLLTKLGAIYPDVDIRSHIIGGPLTVTWETEPRFMGAFKNNLPGHYRYORRLFT                 |
| AOW50864 | AEERI, ETI, I.SKI, AAIYPDVDIRSHIIAGPI, TVTWETEPRFMGAFKNNI, PGHYRYORRI, FT    |
| AEM87306 | AEERI, ETI, I, TKI, AAIY PDVDIRSHIIAGPI, TVTWETE PRFMGAFKNNI, PGHYRYORRI, FT |
| AUA09953 | AEERLETLLTKLAAIYPDVDIRSHIIAGPLTVTWETEPRFMGAFKNNLPGHYRYORRLFT                 |
| ORF 6127 | AEERLETLLTKLAAIYPDVDIRSHIIAGPLTVTWETEPRFMGAFKNNLPGHYRYORRLFT                 |
| KUL53773 | AEERLETLLTKLAAIYPDVDIRSHIIAGPLTVTWETEPRFMGAFKNNLPGHYRYORRLFT                 |
| SEB92316 | ~<br>AEERLETLLTKLAAIYPDVDIRSRIIAGPLTVTWETEPRFMGAFKNNLPGHYRYORRLFT            |
|          | * : * * * : . * * * * * * . * * * *                                          |
|          |                                                                              |
| AAX98202 | QFMQRGLPRAQRGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLDHLGGATPPGNPGPGDL                 |
| AUA13754 | QFMQDGMDPEQRGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLRHLGGTTHPDNPGPGDL                 |
| AQW50864 | QFMQDGTDPAQQGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLRHLGGTTHPDNPGPGDL                 |
| AEM87306 | QFMQDGMDPAQQGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLHHLGGTTHPDNPGPGDL                 |
| AUA09953 | QFMQDGMDPAQQGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLHHLGGTTHPDNPGPGDL                 |
| ORF 6127 | QFMQDGMDPAQQGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLHHLGGTTHPDNPGPGDL                 |
| KUL53773 | QFMQDGVDPAQQGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLRHLGGTTHPDNPGPGDL                 |
| SEB92316 | QFMQDGMDPAQQGFFLCGDDVSWTAGFAEGAVTTALNAVWGVLHHLGGTTHPDNPGPGDL                 |
|          | **** * * *****************************                                       |
| AAX98202 | FDALAPLDLPYDS                                                                |
| AUA13754 | FDIHAPLELPYD-                                                                |
| AOW50864 | FDTFAPLELPYD-                                                                |
| AEM87306 | FDTFAPLELPYD-                                                                |
| AUA09953 | FDTFAPLELPYD-                                                                |
| ORF 6127 | FDTFAPLELPYD-                                                                |
| KUL53773 | FDTFAPLELPYD-                                                                |
| SEB92316 | FNTCAPLELPYD-                                                                |
|          | * * * * * * * * *                                                            |



Figure S4. <sup>1</sup>H NMR spectrum of azalomycin F<sub>4b</sub> (1) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S5. <sup>13</sup>C NMR spectrum of azalomycin F<sub>4b</sub> (1) (CD<sub>3</sub>OD, 300K, 200 MHz).



Figure S6. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of azalomycin F<sub>4b</sub> (1) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S7. <sup>1</sup>H-<sup>1</sup>H TOCSY spectrum of azalomycin  $F_{4b}$  (1) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S8. HSQC spectrum of azalomycin  $F_{4b}$  (1) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S9. HMBC spectrum of azalomycin  $F_{4b}$  (1) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S10. ROESY spectrum of azalomycin  $F_{4b}$  (1) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S11. <sup>1</sup>H NMR spectrum of azalomycin F<sub>5b</sub> (2) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S12. HSQC spectrum of azalomycin  $F_{5b}$  (2) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S13. HMBC spectrum of azalomycin F<sub>5b</sub> (2) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S14. <sup>1</sup>H NMR spectrum of azalomycin  $F_{4a}$  (3) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S15. HSQC spectrum of azalomycin F<sub>4a</sub> (3) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S16. HMBC spectrum of azalomycin F<sub>4a</sub> (3) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S17. <sup>1</sup>H NMR spectrum of azalomycin F<sub>5a</sub> (4) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S18. HSQC spectrum of azalomycin F<sub>5a</sub> (4) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S19. HMBC spectrum of azalomycin F<sub>5a</sub> (4) (CD<sub>3</sub>OD, 300K, 800 MHz).



Figure S20. ESI-HRMS (+) spectrum of azalomycin  $F_{4b}$  (1).



Figure S21. ESI-HRMS<sup>2</sup> (+) spectrum of azalomycin  $F_{4b}$  (1).



Figure S22. ESI-HRMS (+) spectrum of azalomycin F<sub>5b</sub> (2).



Figure S23. ESI-HRMS<sup>2</sup> (+) spectrum of azalomycin  $F_{5b}$  (2).



Figure S24. ESI-HRMS (+) spectrum of azalomycin  $F_{4a}$  (3).



Figure S25. ESI-HRMS<sup>2</sup> (+) spectrum of azalomycin  $F_{4a}$  (3).



Figure S26. ESI-HRMS (+) spectrum of azalomycin  $F_{5a}$  (4).



Figure S27. ESI-HRMS<sup>2</sup> (+) spectrum of azalomycin F<sub>5a</sub> (4).



Figure S28. The homonuclear *J*-resolved spectroscopy (JRES) of compound 1.



Figure S29. The HSQC-HECADE data of compound 1.



Figure S30. The ECD data of compound 1.



Figure S31. The ECD data of compound 2.



Figure S32. The ECD data of compound 3.



Figure S33. The ECD data of compound 4.



Figure S34. The induced circular dichroism (ICD) data of compound 1.