Assembling triazolated calix[4]semitubes by means of copper(I)-catalyzed azide–alkyne cycloaddition

Alexander Gorbunov, Nikolay Ozerov, Maria Malakhova, Artur Eshtukov, Dmitry Cheshkov, Stanislav Bezzubov, Vladimir Kovalev and Ivan Vatsouro

Supplementary Information

Contents

Synthesis and characterization of novel compounds	2
Tuning the conditions for the preparation of calix[4]semitubes	12
NMR spectra of novel compounds	15
Details of X-ray diffraction measurements	29
Changes in NMR spectra of calix [4] semitubes upon addition of Zn^{2+} and Ag^{+}	32
Atomic coordinates of the calculated structures.	
References	46

Synthesis and characterization of novel compounds

General experimental methods: NMR spectra were acquired on Bruker Avance 400 and Avance 600 instruments at 20 °C if not stated otherwise, and chemical shifts are reported as ppm referenced to solvent signals. ESI mass spectra were obtained from Sciex TripleTOF 5600+ spectrometers. Chemicals received from commercial sources were used without further purification. Calixarenes 1, ^{S1} 2, ^{S2} 5, ^{S3} A, ^{S4} B, ^{S5} D, ^{S6} and complex CuI·P(OEt)₃, ^{S7} were prepared according to the published procedures.

1,3-Alternate calix[4] arene diester 3. A suspension of calixarene 1 (1.02 g, 2.0 mmol) and anhydrous Cs_2CO_3 (2.61 g, 8.0 mmol) in dry DMF (50 ml) was stirred at room temperature for 1 h. Ethyl 2-bromoacetate (1.33 ml, 12.0 mmol) was added and the reaction mixture was stirred at room temperature for 24 h. The solvent was removed under reduced pressure and the residue was dissolved in

dichloromethane. The solution was washed with 2 M HCl, water, dried and concentrated to dryness. The resultant oil was purified by column chromatography (gradient from dichloromethane to dichloromethane/ethanol (50:1)). Yield 0.670 g (49%), white solid. For analytical data see Ref. S8.

 $^{\text{OH}}$ 1,3-Alternate calix[4] arene diol 4. To a cooled (0–5 °C) suspension of LiAlH₄ (0.210 g, 5.40 mmol) in dry diethyl ether (50 ml) a solution of calixarene 3 (0.370 g, 0.54 mmol) in dry THF was added dropwise. The reaction mixture was stirred at room temperature for 24 h, and then quenched at cooling (0–5 °C) by

dropwise addition of 0.5 M HCl (20 ml) under vigorous stirring. The organic layer was separated, the aqueous layer was washed with diethyl ether. The combined organic fractions were washed with water, dried by MgSO₄ and evaporated. Yield 0.210 g (65%), white solid. M.p. >250 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.06$ (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 7.03 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.88 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.85 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 3.88 (d, 4H, ${}^{2}J_{HH} = 16.7$ Hz; ArCH₂Ar), 3.84 (d, 4H, ${}^{2}J = 16.7$ Hz; ArCH₂Ar), 3.64–3.59 (m, 4H; CH₂CH₂OH), 3.38–3.31 (m, 4H; CH₂CH₂CH₃), 3.31–3.25 (m, 4H; CH₂OH), 2.37 (t, 2H, ${}^{3}J_{HH} = 6.7$ Hz; OH), 1.05–0.94 (m, 4H; CH₂CH₃), 0.62 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₂CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 156.98$, 156.07, 133.66, 133.58 (C_{Ar}), 129.26, 129.22, 122.79, 122.71 (CH_{Ar}), 71.85, 71.00 (OCH₂), 61.19 (CH₂OH), 38.20 (ArCH₂Ar), 22.15 (CH₂CH₃), 9.93 (CH₃) ppm. ESI-MS *m/z*: 597.3209 [M+H]⁺ for C₃₈H₄₅O₆ (597.3211).

Cone calix[4]*arene bis*(*azide*) **6**. A mixture of bromoethylated calix[4]*arene* **5** (1.56 g, 2.45 mmol) and NaN₃ (0.637 g, 9.80 mmol) in dry DMF (65 ml) was stirred at 60 °C for 8 h. The solvent was removed under reduced pressure, and the residue was parted between dichloromethane and aqueous 2 M HCl. The organic

layer was separated, washed with water, dried with MgSO₄ and concentrated to dryness. The residue was purified by re-crystallization from dichloromethane/methanol. Yield 1.22 g (89%), white solid. M.p. 227–229 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.50 (s, 2H; OH), 7.07 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.87 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.76–6.71 (m, 2H; ArH), 6.67 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 4.35 (d, 4H, ²*J*_{HH} = 13.1 Hz; ArCH₂Ar), 4.10–4.06 (m, 4H; OCH₂), 3.90–3.85 (m, 4H; CH₂N₃), 3.39 (d, 4H; ²*J*_{HH} = 13.1 Hz; ArCH₂Ar) ppm; ¹³C NMR (100 MHz, CDCl₃+CD₃OD): δ = 152.75, 151.20, 132.76 (C_{Ar}), 128.79, 128.60 (CH_{Ar}), 127.63 (C_{Ar}), 125.29, 118.88 (CH_{Ar}), 74.05 (OCH₂), 50.82 (CH₂N₃), 30.85 (ArCH₂Ar) ppm. ESI-MS *m/z*: 580.2667 [M+NH₄]⁺ for C₃₂H₃₄N₇O₄ (580.2667).

1,3-Alternate calix[4]arene bis(alkyne) C. <u>Method 1</u>. A mixture of calix[4]arene 1 (1.02 g, 2.0 mmol) and anhydrous Cs_2CO_3 (2.61 g, 8.0 mmol) in dry DMF (50 ml) was stirred at room temperature for 2 h. Propargyl bromide (80% in toluene, 0.89 ml, 8.0 mmol) was added and stirring was continued for 48 h at room temperature. The as removed under reduced pressure without heating, and the residue was parted

solvent was removed under reduced pressure without heating, and the residue was parted between dichloromethane and 2 M HCl. The organic layer was separated, washed with water, dried with MgSO₄ and concentrated to dryness. The residue was purified by column chromatography (gradient from hexane/dichloromethane (1:1) to dichloromethane). Yield 0.19 g (16%). Method 2. A mixture of calix[4]arene 2 (1.40 g, 2.8 mmol) and anhydrous Cs₂CO₃ (4.50 g, 14.0 mmol) in dry DMF (70 ml) was stirred at room temperature for 2 h. 1-Iodopropane (0.66 ml, 14.7 mmol) was added and stirring was continued for 24 h at 50 °C. The solvent was removed under reduced pressure (with heating at < 50 °C), and the residue was parted between dichloromethane and 2 M HCl. The organic layer was separated, washed with water, dried with MgSO₄, and concentrated to dryness. The residue was purified by re-crystallization from dichloromethane/methanol. Yield 0.61 g (37%), white solid. M.p. 206-208 °C. ¹H NMR (400 MHz, CDCl₃): $\delta = 7.11$ (d, 4H, ${}^{3}J_{HH} = 7.6$ Hz; ArH), 7.00 (d, 4H, ${}^{3}J_{HH} = 7.6$ Hz; ArH), 6.76 (t, 2H, ${}^{3}J_{HH} = 7.6$ Hz; ArH), 6.73 (t, 2H, ${}^{3}J_{HH} = 7.6$ Hz; ArH), 4.04 (d, 4H, ${}^{4}J_{HH} = 2.4$ Hz; OCH_2CCH), 3.76 (d, 4H, ${}^2J_{HH} = 14.4$ Hz; ArCH₂Ar), 3.63 (d, 4H, ${}^2J_{HH} = 14.4$ Hz; ArCH₂Ar), 3.53–3.46 (m, 4H; OCH₂), 2.42 (t, 2H, ${}^{4}J_{HH} = 2.4$ Hz; CC<u>H</u>), 1.67–1.55 (m, 4H; C<u>H</u>₂CH₃), 0.88 (t, 6H, ${}^{3}J_{\text{HH}} = 7.6 \text{ Hz}$; CH₃) ppm; ${}^{13}\text{C}$ NMR (100 MHz, CDCl₃): $\delta = 156.45$, 155.26, 134.26, 133.62 (C_{Ar}), 130.23, 130.08, 122.40, 122.18 (CH_{Ar}), 80.49 (OCH₂C), 74.40, 73.53 (CH, OCH₂),

58.96 (O<u>C</u>H₂CCH), 36.75 (ArCH₂Ar), 23.45 (<u>C</u>H₂CH₃), 10.35 (CH₃) ppm. ESI-MS m/z: 585.2997 [M+H]⁺ for C₄₀H₄₁O₄ (585.2999).

Cone calix[4]arene bis(azide) **E**. To a solution of calix[4]arene **D** (1.96 g, 2.5 mmol) in dry DMF (100 ml) NaH (60%, 0.60 g, 15.0 mmol) was added. The mixture was stirred for 1 h at room temperature and 1-iodopropane (1.22 ml, 12.5 mmol) was added. The mixture was stirred at room temperature for 48 h.

The reaction was quenched by a dropwise addition of water and the solution was concentrated under reduced pressure. Water (100 ml) was added to the residue, the precipitate was filtered and washed with water. The residue was purified by re-crystallization from dichloromethane/methanol. Yield 1.54 g (71%), white solid. For analytical data see Ref. S9.

1,3-Alternate calix[4]arene bis(azide) F. <u>Method 1</u>. Diisopropyl azodicarboxylate
 (0.270 ml, 1.38 mmol) was added dropwise at stirring to a cooled (0–5 °C) solution of Ph₃P (0.270 g, 1.03 mmol) in dry THF (4 ml). After a solid formed, the mixture was stirred at cooling for 1 h. A solution of calix[4]arene 4 (0.205 g, 0.34 mmol)

and diphenyl phosphoryl azide (0.296 ml, 1.38 mmol) in THF (10 ml) was added dropwise. The reaction mixture was stirred at cooling for 1 h and then allowed to stay at room temperature for 48 h. The solution was concentrated under reduced pressure and the resultant oil was treated with cold methanol. The solid formed was collected, washed with methanol and dried. Yield 0.093 g (42%). Method 2. A suspension of calix[4]arene 6 (0.560 g, 1.0 mmol) and anhydrous Cs₂CO₃ (1.30 g, 4.0 mmol) in dry DMF (30 ml) was stirred at room temperature for 2 h. 1-Iodopropane (0.39 ml, 4.0 mmol) was added to the mixture and stirring was continued for 48 h at room temperature. The solvent was removed under reduced pressure, and the residue was parted between dichloromethane and 2 M HCl. The organic layer was separated, washed with water, dried with MgSO₄ and concentrated to dryness. The residue was purified by column chromatography (gradient from hexane/dichloromethane (3:2) to dichloromethane). Yield 0.350 g (54%), white solid. M.p. 118–120 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.05 (d, 4H, ${}^{3}J_{\rm HH} = 7.6$ Hz; ArH), 7.02 (d, 4H, ${}^{3}J_{\rm HH} = 7.6$ Hz; ArH), 6.81 (t, 2H, ${}^{3}J_{\rm HH} = 7.6$ Hz; ArH), 6.77 (t, 2H, ${}^{3}J_{\text{HH}} = 7.6$ Hz; ArH), 3.77 (d, 4H, ${}^{2}J_{\text{HH}} = 15.3$ Hz; ArCH₂Ar), 3.71 (d, 4H, ${}^{2}J_{\text{HH}} = 15.3$ Hz; ArCH₂Ar), 3.51–3.48 (m, 4H; OCH₂), 3.47–3.44 (m, 4H; OCH₂), 3.04–3.01 (m, 4H; CH₂N₃), 1.42–1.35 (m, 4H; CH₂C<u>H</u>₂CH₃), 0.76 (t, 6H, ${}^{3}J_{HH} = 7.6$ Hz; CH₃) ppm; ${}^{13}C$ NMR (100 MHz, $CDCl_3$): $\delta = 156.94, 155.42, 133.91, 133.60 (C_{Ar}), 129.76, 129.31, 122.49, 122.26 (CH_{Ar}), 72.65, 129.31, 122.49, 122.26 (CH_{Ar}), 72.65, 129.31, 122.49, 122.26 (CH_{Ar}), 72.65, 129.31, 122.49, 122.26 (CH_{Ar}), 129.49, 120.49,$ 68.31 (OCH₂), 50.34 (CH₂N₃), 37.20 (ArCH₂Ar), 22.96 (CH₂CH₃), 10.24 (CH₃) ppm. ESI-MS m/z: 664.3602 [M+NH₄]⁺ for C₃₈H₄₆N₇O₄ (664.3606).

General procedure for the preparation of calix[4]semitubes. To a stirred mixture of calixarene (bis)alkyne and (bis)azide in toluene or THF, Cu(I)-catalyst was added (CuI dissolved in a small portion of toluene by addition of Et₃N, or CuSO₄·5H₂O/sodium ascorbate mixture dissolved in water). The mixture was stirred at room temperature or at heating, and then concentrated under reduced pressure. The residue was parted between dichloromethane and 2 M HCl at vigorous stirring for at least 2 h. The organic layer was separated, washed with aqueous Na₂SO₃ (5%, for CuI-catalyzed reactions only), water and dried with MgSO₄. The solvent was removed and the residue was subjected to column chromatography. The two-step column separation was applied in several cases: from the first column, a polymeric material was first eluted followed by a semitube-containing fraction, which was then evaporated to dryness and subjected to the second column (with the same or different eluent) for the final purification.

Calix[4]semitube **AD** was prepared according to *General procedure* from calixarene **A** (0.145 g, 0.20 mmol), calixarene **D** (0.157 g, 0.20 mmol), CuI (0.012 g, 0.06 mmol) and Et₃N (0.170 ml, 1.20 mmol) in toluene (15 ml). The reaction mixture was stirred at room temperature for 48 h. Column 1: gradient from dichloromethane to dichloromethane/ethanol (50:1), column 2: gradient from hexane to hexane/ethyl acetate (3:1). Yield 0.095 g (31%), white solid. For analytical data see Ref. S10.

Calix[4]semitube **AE** was prepared according to *General procedure* from calixarene **A** (0.072 g, 0.10 mmol), calixarene **E** (0.087 g, 0.10 mmol), CuI (0.006 g, 0.03 mmol) and Et₃N (1 ml) in toluene (10 ml). The reaction mixture was stirred at 70 °C for 9 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.042 g (26%), white solid. M.p. >250 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.92 (s, 2H; ArH_{Trz}), 7.18 (s, 4H;

ArH), 7.11 (s, 2H; OH), 7.08 (s, 4H; ArH), 6.82 (s, 4H; ArH), 6.52 (s, 4H; ArH), 5.36–5.28 (m, 4H; NCH₂), 5.20 (s, 4H; OCH₂Trz), 4.51–4.43 (m, 4H; NCH₂C<u>H₂</u>), 4.39 (d, 4H, ${}^{2}J_{HH} = 12.8$ Hz; ArCH₂Ar), 4.36 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 3.80–3.74 (m, 4H; OC<u>H₂CH₂CH₃</u>), 3.38 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 3.25 (d, 4H, ${}^{2}J_{HH} = 12.8$ Hz; ArCH₂Ar), 1.97–1.85 (m, 4H; C<u>H₂CH₃</u>), 1.37 (s, 18H; C(CH₃)₃), 1.30 (s, 18H; C(CH₃)₃), 0.96 (s, 18H; C(CH₃)₃), 0.92 (t, 6H, ${}^{3}J_{HH} = 7.4$ Hz; CH₃), 0.84 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 153.30$, 151.81, 150.55, 149.87, 147.27, 146.20 (C_{Ar}), 144.69 (C_{Ar Trz})*, 144.46, 141.58, 135.34, 132.49, 131.69, 127.71 (C_{Ar}), 125.84, 125.61, 124.99, 124.66 (CH_{Ar}), 122.25

 $(CH_{Ar Trz})^*$, 78.03, 71.85, 70.05 (OCH₂), 49.18 (NCH₂), 34.16, 33.92, 33.80, 33.60 (<u>C</u>(CH₃)₃), 31.67, 31.08, 30.95 (C(<u>C</u>H₃)₃), 30.90 (ArCH₂Ar), 23.58 (<u>C</u>H₂CH₃), 10.38 (CH₃) ppm. ESI-MS *m*/*z*: 1597.0377 [M+H]⁺ for C₁₀₄H₁₃₅N₆O₈ (1597.0369).

Calix[4]semitube **BD** was prepared according to *General procedure* from calixarene **B** (0.162 g, 0.20 mmol), calixarene **D** (0.157 g, 0.20 mmol), CuI (0.012 g, 0.06 mmol) and Et₃N (1 ml) in toluene (15 ml). The reaction mixture was stirred at 70 °C for 9 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1), the product separated from the column was additionally washed with methanol. Yield 0.139 g (44%), white solid. M.p. >250 °C. ¹H NMR (600 MHz, CDCl₃): $\delta = 8.43$ (s, 2H; ArH_{Trz}), 7.07 (s, 4H;

ArH), 7.01 (s, 4H; ArH), 6.74 (s, 4H; ArH), 6.46 (s, 2H; OH), 6.43 (s, 4H; ArH), 5.27 (s, 4H; OCH₂Trz), 5.09–5.06 (m, 4H; NCH₂), 4.50–4.46 (m, 4H; NCH₂C<u>H₂</u>), 4.19 (d, 4H, ² J_{HH} = 12.6 Hz; ArCH₂Ar), 4.00 (d, 4H, ² J_{HH} = 13.0 Hz; ArCH₂Ar), 3.59–3.55 (m, 4H; OC<u>H₂</u>CH₂CH₃), 3.26 (d, 4H, ² J_{HH} = 13.0 Hz; ArCH₂Ar), 3.02 (d, 4H, ² J_{HH} = 12.6 Hz; ArCH₂Ar), 1.55–1.49 (m, 4H; C<u>H₂</u>CH₃), 1.32 (s, 18H; C(CH₃)₃), 1.27 (s, 18H; C(CH₃)₃), 0.92 (s, 18H; C(CH₃)₃), 0.81 (t, 6H, ³ J_{HH} = 7.4 Hz; CH₃), 0.80 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 153.40, 152.43, 150.18, 149.58, 147.28, 145.70 (C_{Ar}), 145.05 (C_{Ar Trz})^{*}, 143.83, 141.67, 135.68, 131.94, 131.91, 127.46 (CA_r), 125.68, 125.58, 125.10 (CH_{Ar}), 124.67 (CH_{Ar Trz})^{*}, 124.32 (CH_{Ar}), 77.12, 74.16, 66.42 (OCH₂), 50.05 (NCH₂), 34.03, 33.88, 33.79, 33.51 (<u>C</u>(CH₃)₃), 31.70, 31.63 (C(<u>C</u>H₃)₃), 31.47, 31.38 (ArCH₂Ar), 31.11, 30.90 (C(<u>C</u>H₃)₃), 22.81 (<u>C</u>H₂CH₃), 10.51 (CH₃) ppm. ESI-MS *m*/*z*: 1619.0187 [M+Na]⁺ for C₁₀₄H₁₃₄NaN₆O₈ (1619.0189).

Calix[4]semitube **BE** was prepared according to *General procedure* from calixarene **B** (0.081 g, 0.10 mmol), calixarene **E** (0.087 g, 0.10 mmol), CuI (0.006 g, 0.03 mmol) and Et₃N (1 ml) in toluene (10 ml). The reaction mixture was stirred at 70 °C for 9 h. Column: gradient from dichloromethane/ethanol (40:1) to dichloromethane/ethanol (10:1). Yield 0.044 g (26%), white solid. M.p. >250 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.63 (s, 2H; ArH_{Trz}), 7.18 (s, 4H; ArH), 7.01 (s, 4H; ArH), 6.53 (s, 4H; ArH), 6.47 (s, 4H; ArH), 5.28 (s, 4H;

OCH₂Trz), 5.05–4.99 (m, 4H; NCH₂), 4.53–4.47 (m, 4H; NCH₂C<u>H</u>₂), 4.42 (d, 4H, ${}^{2}J_{HH}$ = 12.8 Hz; ArCH₂Ar), 4.36 (d, 4H, ${}^{2}J_{HH}$ = 12.8 Hz; ArCH₂Ar), 3.80–3.73 (m, 4H; OC<u>H</u>₂CH₂CH₃), 3.71–3.65 (m, 4H; OC<u>H</u>₂CH₂CH₃), 3.22 (d, 4H, ${}^{2}J_{HH}$ = 12.8 Hz; ArCH₂Ar), 3.15 (d, 4H, ${}^{2}J_{HH}$ = 12.8 Hz; ArCH₂Ar), 1.90–1.79 (m, 4H; C<u>H</u>₂CH₃), 1.76–1.65 (m, 4H; C<u>H</u>₂CH₃), 1.36 (s, 18H; C(CH₃)₃), 1.25

(s, 18H; C(CH₃)₃), 1.01 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃), 0.95 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃), 0.89 (s, 18H; C(CH₃)₃), 0.82 (s, 18H; C(CH₃)₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 154.00$, 152.41, 152.37, 151.72, 146.17, 146.04 (C_{Ar}), 144.97 (C_{Ar Trz})^{*}, 144.31, 144.11, 135.59, 134.94, 132.41, 131.69 (C_{Ar}), 125.89, 125.67, 124.51, 124.46 (CH_{Ar}), 123.37 (CH_{Ar Trz})^{*}, 77.67, 76.55, 71.44, 66.43 (OCH₂), 49.21 (NCH₂), 34.16, 33.95, 33.63, 33.59 (<u>C</u>(CH₃)₃), 31.78 (ArCH₂Ar), 31.67, 31.59, 31.22, 31.09 (C(<u>C</u>H₃)₃), 30.95 (ArCH₂Ar), 23.14, 22.88 (<u>C</u>H₂CH₃), 10.57, 10.52 (CH₃) ppm. ESI-MS *m/z*: 1703.1123 [M+Na]⁺ for C₁₁₀H₁₄₆NaN₆O₈ (1703.1128).

Tetrakis(calix[4]arene) B_2E_2 was isolated as the less polar product during chromatographic purification of calix[4]semitube **BE**. Yield 0.034 g (20%), white solid. M.p. >250 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.46 (s, 2H; ArH_{Trz}), 7.11 (s, 4H; ArH), 6.72 (s, 4H; ArH), 6.71 (s, 4H; ArH), 6.49 (s, 4H; ArH), 5.29 (s, 4H; OCH₂Trz), 5.25– 5.18 (m, 4H; NCH₂), 4.45–4.37 (m, 4H; NCH₂C<u>H₂</u>), 4.30 (d, 4H, ²*J*_{HH} = 12.8 Hz; ArCH₂Ar), 4.28 (d, 4H, ²*J*_{HH} = 12.7 Hz; ArCH₂Ar), 3.82–3.76 (m, 4H; OC<u>H₂CH₂CH₃), 3.72–3.67 (m,</u>

4H; OC<u>H</u>₂CH₂CH₃), 3.17 (d, 4H, ²*J*_{HH} = 12.8 Hz; ArCH₂Ar), 2.99 (d, 4H, ²*J*_{HH} = 12.7 Hz; ArCH₂Ar), 2.05–1.94 (m, 4H; C<u>H</u>₂CH₃), 1.91–1.80 (m, 4H; C<u>H</u>₂CH₃), 1.34 (s, 18H; C(CH₃)₃), 1.05 (s, 18H; C(CH₃)₃), 1.01 (s, 18H; C(CH₃)₃), 1.00 (t, 6H, ³*J*_{HH} = 7.5 Hz; CH₃), 0.94 (t, 6H, ³*J*_{HH} = 7.5 Hz; CH₃), 0.84 (s, 18H; C(CH₃)₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 154.02, 153.43, 151.97, 151.67, 145.95 (C_{Ar}), 144.68 (C_{Ar Trz})*, 144.41, 144.25, 144.03, 135.09, 134.57, 133.60, 131.76 (C_{Ar}), 125.67, 124.72, 124.71, 124.62 (CH_{Ar}), 123.62 (CH_{Ar Trz})*, 77.84, 77.20, 71.56, 65.80 (OCH₂), 49.28 (NCH₂), 34.12, 33.73, 33.60 (<u>C</u>(CH₃)₃), 31.67 (C(<u>C</u>H₃)₃), 31.57 (ArCH₂Ar), 31.41, 31.35, 31.09 (C(<u>C</u>H₃)₃), 30.90 (ArCH₂Ar), 23.54, 23.23 (<u>C</u>H₂CH₃), 10.73, 10.57 (CH₃) ppm. ESI-MS *m*/*z*: 1703.1115 [M+2Na]²⁺ for C₂₂₀H₂₉₂Na₂N₁₂O₁₆ (1703.1128).

Calix[4]semitube **AF** was prepared according to *General procedure* from calixarene **A** (0.072 g, 0.10 mmol), calixarene **F** (0.065 g, 0.10 mmol), CuI (0.019 g, 0.10 mmol) and Et₃N (3 ml) in toluene (10 ml). The reaction mixture was stirred at room temperature for 48 h. Column: gradient from dichloromethane to dichloromethane/ethanol (100:1). Yield 0.026 g (19%), white solid. M.p. >250 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.83 (s, 2H; ArH_{Trz}), 7.08 (s, 4H; ArH), 7.04 (d, 4H, ³J_{HH} = 7.5 Hz; ArH), 7.02–6.97 (m, 6H; ArH), 6.91–

6.86 (m, 2H; ArH), 6.81 (s, 2H; OH), 6.76 (s, 4H; ArH), 5.18 (s, 4H; OCH₂Trz), 4.31 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 4.01–3.96 (m, 4H; NCH₂), 3.94 (d, 4H, ${}^{2}J_{HH} = 16.7$ Hz; ArCH₂Ar), 3.85 (d, 4H, ${}^{2}J_{HH} = 16.7$ Hz; ArCH₂Ar), 3.62–3.56 (m, 4H; NCH₂C<u>H₂</u>), 3.42–3.37 (m, 4H; OC<u>H</u>₂CH₂CH₃), 3.37 (d, 4H, ${}^{2}J_{HH} = 13.1$ Hz; ArCH₂Ar), 1.29 (s, 18H; C(CH₃)₃), 1.20–1.09 (m, 4H; C<u>H</u>₂CH₃), 0.91 (s, 18H; C(CH₃)₃), 0.58 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): δ = 157.73, 155.14, 150.31, 149.48, 147.41 (C_{Ar}), 144.62 (C_{Ar Trz}), 141.87, 134.18, 133.40, 132.22 (C_{Ar}), 129.33, 128.79 (CH_{Ar}), 127.80 (C_{Ar}), 125.60, 125.12, 123.20 (CH_{Ar}), 122.90 (CH_{Ar Trz})*, 122.57 (CH_{Ar}), 71.68, 70.41, 66.74 (OCH₂), 48.71 (NCH₂), 38.03 (ArCH₂Ar), 33.90, 33.84 (<u>C</u>(CH₃)₃), 31.67 (C(<u>C</u>H₃)₃), 31.42 (ArCH₂Ar), 30.92 (C(<u>C</u>H₃)₃), 22.66 (<u>C</u>H₂CH₃), 10.18 (CH₃) ppm. ESI-MS *m/z*: 1371.7831 [M+H]⁺ for C₈₈H₁₀₃N₆O₈ (1371.7832).

Calix[4]semitube **BF** was prepared according to *General procedure* from calixarene **B** (0.081 g, 0.10 mmol), calixarene **F** (0.065 g, 0.10 mmol), CuI (0.019 g, 0.10 mmol) and Et₃N (3 ml) in toluene (10 ml). The reaction mixture was stirred at 70 °C for 9 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.060 g (41%), white solid. M.p. >250 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.53 (s, 2H; ArH_{Trz}), 7.09 (s, 4H; ArH), 7.03 (d, 4H, ³J_{HH} = 7.5 Hz; ArH), 6.80 (t, 2H, ³J_{HH} = 7.5 Hz; ArH), 6.71–6.64

(m, 6H; ArH), 6.42 (s, 4H; ArH), 5.39 (s, 4H; OCH₂Trz), 4.23 (d, 4H, ${}^{2}J_{HH} = 12.7$ Hz; ArCH₂Ar), 4.16–4.10 (m, 4H; NCH₂), 4.05–4.00 (m, 4H; NCH₂C<u>H₂</u>), 3.77 (d, 4H, ${}^{2}J_{HH} = 15.5$ Hz; ArCH₂Ar), 3.70–3.64 (m, 4H; OC<u>H</u>₂CH₂CH₃), 3.63 (d, 4H, ${}^{2}J_{HH} = 15.5$ Hz; ArCH₂Ar), 3.52–3.46 (m, 4H; OC<u>H</u>₂CH₂CH₃), 3.09 (d, 4H, ${}^{2}J_{HH} = 12.7$ Hz; ArCH₂Ar), 1.81–1.69 (m, 4H; C<u>H</u>₂CH₃), 1.47–1.36 (m, 4H; C<u>H</u>₂CH₃), 1.32 (s, 18H; C(CH₃)₃), 1.03 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃), 0.81 (s, 18H; C(CH₃)₃), 0.75 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 157.42$, 155.29, 153.51, 152.49, 145.16 (C_{Ar}), 145.12 (C_{Ar Trz})*, 143.98, 135.60, 133.92, 133.06, 131.73 (C_{Ar}), 130.21, 129.15, 125.78 (CH_{Ar}), 125.25 (CH_{Ar Trz})*, 124.34, 122.64, 121.42 (CH_{Ar}), 77.02, 72.58, 68.80, 65.64 (OCH₂), 49.75 (NCH₂), 37.22 (ArCH₂Ar), 34.02, 33.51 (<u>C</u>(CH₃)₃), 31.71 (ArCH₂Ar), 31.67, 31.09 (C(<u>C</u>H₃)₃), 23.21, 23.06 (<u>C</u>H₂CH₃), 10.64, 10.21 (CH₃) ppm. ESI-MS *m/z*: 1478.8627 [M+Na]⁺ for C₉₄H₁₁₄NaN₆O₈ (1478.8624).

Calix[4]semitube CD was prepared according to *General procedure* from calixarene **C** (0.115 g, 0.20 mmol), calixarene **D** (0.157 g, 0.20 mmol), CuI (0.012 g, 0.06 mmol) and Et₃N (0.170 ml, 1.20 mmol) in toluene (15 ml). The reaction mixture was stirred at room temperature for 48 h. Column: gradient from dichloromethane to dichloromethane/ethanol (100:1), the product separated from the column was additionally washed with hexane. Yield 0.124 g (46%), white solid. M.p. 244–246 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (s,

4H; ArH), 7.04 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 7.04 (s, 2H; OH), 6.86 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.77 (s, 4H; ArH), 6.70 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.46 (s, 2H; ArH_{Trz}), 6.26 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 5.00–4.92 (m, 4H; NCH₂), 4.85 (c, 4H; OCH₂Trz), 4.41–4.34 (m, 4H; NCH₂C<u>H₂</u>), 4.00 (d, 4H, ${}^{2}J_{HH} = 13.2$ Hz; ArCH₂Ar), 3.76 (d, 4H, ${}^{2}J_{HH} = 15.9$ Hz; ArCH₂Ar), 3.60 (d, 4H, ${}^{2}J_{HH} = 15.9$ Hz; ArCH₂Ar), 3.38 (d, 4H, ${}^{2}J_{HH} = 13.2$ Hz; ArCH₂Ar), 3.29–3.24 (m, 4H; OC<u>H₂</u>CH₂CH₃), 1.30 (s, 18H; C(CH₃)₃), 1.30–1.22 (m, 4H; C<u>H₂</u>CH₃), 0.90 (s, 18H; C(CH₃)₃), 0.66 (t, 6H, ${}^{3}J_{HH} = 7.5$ Hz; CH₃) ppm; 13 C NMR (100 MHz, CDCl₃): $\delta = 156.95$, 155.53, 150.01, 148.64, 147.76 (C_{Ar}), 144.77 (C_{Ar Trz}), 142.07, 134.47, 134.06, 131.92 (C_{Ar}), 129.78, 128.94 (CH_{Ar}), 127.24 (C_{Ar}), 125.80 (CH_{Ar}), 125.54 (CH_{Ar Trz})*, 125.14, 122.98, 121.56 (CH_{Ar}), 73.59, 71.58, 63.68 (OCH₂), 49.16 (NCH₂), 38.08 (ArCH₂Ar), 33.89, 33.86 (<u>C</u>(CH₃)₃), 31.65 (C(<u>C</u>H₃)₃), 31.48 (ArCH₂Ar), 30.83 (C(<u>C</u>H₃)₃), 22.79 (<u>C</u>H₂CH₃), 10.03 (CH₃) ppm. ESI-MS *m/z*: 1393.7649 [M+Na]⁺ for C_{88H102}NaN₆O₈ (1393.7651).

Calix[4]semitube CE was prepared according to *General procedure* from calixarene **C** (0.199 g, 0.34 mmol), calixarene **E** (0.296 g, 0.34 mmol), CuI (0.019 g, 0.10 mmol) and Et₃N (5 ml) in toluene (25 ml). The reaction mixture was stirred at 60 °C for 9 h. Column: gradient from dichloromethane to dichloromethane/ethanol (20:1). Yield 0.065 g (13%), white solid. M.p. >250 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.20 (bs, 6H; ArH + ArH_{Trz}), 7.08 (d, 4H, ³J_{HH} = 7.6 Hz; ArH), 6.82 (t, 2H, ³J_{HH} = 7.6 Hz; ArH), 6.78 (d, 4H,

 ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz}; \text{ ArH}$, 6.55 (s, 4H; ArH), 6.35 (t, 2H, ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz}; \text{ ArH}$), 5.24–5.19 (m, 4H; OC<u>H</u>₂CH₂), 4.85 (s, 4H; OCH₂Trz), 4.55–4.49 (m, 4H; OC<u>H</u>₂CH₂), 4.43 (d, 4H, ${}^{2}J_{\text{HH}} = 12.6 \text{ Hz};$ ArCH₂Ar), 3.81–3.77 (m, 4H; NCH₂), 3.75 (d, 4H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.72 (d, 4H, ${}^{2}J_{\text{HH}} = 15.8 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 3.56–3.51 (m, 4H; OC<u>H</u>₂CH₂), 3.28 (d, 4H, ${}^{2}J_{\text{HH}} = 12.6 \text{ Hz}; \text{ ArCH}_2\text{Ar}$), 2.15–2.06 (m, 4H; C<u>H</u>₂CH₃), 1.71–1.62 (m, 4H; C<u>H</u>₂CH₃), 1.38 (s, 18H; C(CH₃)₃), 1.10 (t, 6H,

 ${}^{3}J_{\text{HH}} = 7.2 \text{ Hz}; \text{ CH}_{3}), 0.88 \text{ (t, 6H, } {}^{3}J_{\text{HH}} = 7.4 \text{ Hz}; \text{ CH}_{3}), 0.85 \text{ (s, 18H; C(CH_{3})_{3}) ppm. ESI-MS } m/z:$ 1456.8804 [M+H]⁺ for C₉₄H₁₁₅N₆O₈ (1456.8804).

Tetrakis(calix[4]arene) C_2E_2 was isolated as the more polar product during chromatographic purification of calix[4]semitube **CE**. Yield 0.054 g (11%), white solid. M.p. 243–245 °C. ¹H NMR (600 MHz, CDCl₃): δ = 7.10 (s, 4H; ArH), 7.08 (s, 2H; ArH_{Trz}), 6.99 (d, 4H, ³*J*_{HH} = 7.4 Hz; ArH), 6.74 (t, 2H, ³*J*_{HH} = 7.4 Hz; ArH), 6.62 (d, 4H, ³*J*_{HH} = 7.5 Hz; ArH), 6.51 (s, 4H; ArH), 6.02 (t, 2H, ³*J*_{HH} = 7.5 Hz; ArH), 5.28–5.22 (m, 4H; OCH₂CH₂), 4.71 (s, 4H; OCH₂Trz), 4.68–4.62 (m, 4H; OCH₂CH₂), 4.47 (d, 4H,

 ${}^{2}J_{\text{HH}} = 12.7 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}$), 3.81–3.75 (m, 4H; NCH₂), 3.60 (d, 4H, ${}^{2}J_{\text{HH}} = 14.8 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}$), 3.50 (d, 4H, ${}^{2}J_{\text{HH}} = 14.8 \text{ Hz}; \text{ ArCH}_{2}\text{Ar}$), 3.38–3.33 (m, 4H; OC<u>H</u>₂CH₂), 3.20 (d, 4H, ${}^{2}J_{\text{HH}} = 12.7 \text{ Hz};$ ArCH₂Ar), 1.96–1.87 (m, 4H; C<u>H</u>₂CH₃), 1.51–1.43 (m, 4H; C<u>H</u>₂CH₃), 1.30 (s, 18H; C(CH₃)₃), 0.86 (t, 6H, ${}^{3}J_{\text{HH}} = 7.4 \text{ Hz}; \text{ CH}_3$), 0.85 (s, 18H; C(CH₃)₃), 0.78 (t, 6H, ${}^{3}J_{\text{HH}} = 7.3 \text{ Hz}; \text{ CH}_3$) ppm; ¹³C NMR (100 MHz, CDCl₃): $\delta = 156.34$, 155.54, 153.88, 152.18, 145.72, 144.33 (C_{Ar}), 144.21 (C_{Ar Trz}), 135.03, 134.18, 133.36, 131.91 (C_{Ar}), 129.73, 129.69, 125.70, 124.66 (CH_{Ar}), 123.10 (CH_{Ar Trz}), 122.36, 121.58 (CH_{Ar}), 77.88, 72.96, 72.47, 64.88 (OCH₂), 49.91 (NCH₂), 36.74 (ArCH₂Ar), 34.09, 33.60 (<u>C</u>(CH₃)₃), 31.66 (C(<u>CH₃)₃</u>), 31.78 (ArCH₂Ar), 31.12 (C(<u>CH₃)₃</u>), 23.45, 23.32 (<u>CH</u>₂CH₃), 10.44, 10.29 (CH₃) ppm. ESI-MS *m/z*: 1456.8808 [M+2H]²⁺ for C₁₈₈H₂₃₀N₁₂O₁₆ (1456.8804).

Calix[4]semitube CF was prepared according to *General procedure* from calixarene **C** (0.199 g, 0.34 mmol), calixarene **F** (0.220 g, 0.34 mmol), CuSO₄·5H₂O (0.054 g, 0.34 mmol) and sodium ascorbate (0.134 g, 0.68 mmol) in THF (40 ml) and H₂O (8 ml). The reaction mixture was stirred at 60 °C for 24 h. Column: gradient from dichloromethane to dichloromethane/ethanol (50:1). Yield 0.166 g (40%), white solid. M.p. >250 °C. ¹H NMR (400 MHz, CDCl₃): δ = 7.08 (d, 4H, ³J_{HH} = 7.5 Hz; ArH), 7.05 (d, 4H, ³J_{HH} = 7.5 Hz; ArH),

6.98 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.90 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.87 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.80 (d, 4H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.71 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.37 (t, 2H, ${}^{3}J_{HH} = 7.5$ Hz; ArH), 6.26 (s, 2H; ArH_{Trz}), 4.81 (s, 4H; OCH₂Trz), 4.30–4.23 (m, 4H; NCH₂), 4.09–4.03 (m, 4H;

NCH₂C<u>H</u>₂), 3.92 (d, 4H, ² J_{HH} = 16.4 Hz; ArCH₂Ar), 3.48 (d, 4H, ² J_{HH} = 16.4 Hz; ArCH₂Ar), 3.78 (d, 4H, ² J_{HH} = 15.7 Hz; ArCH₂Ar), 3.42–3.33 (m, 8H; OC<u>H</u>₂CH₂CH₃), 1.44–1.31 (m, 4H; C<u>H</u>₂CH₃), 1.21–1.09 (m, 4H; C<u>H</u>₂CH₃), 0.71 (t, 6H, ³ J_{HH} = 7.5 Hz; CH₃), 0.68 (t, 6H, ³ J_{HH} = 7.5 Hz; CH₃) ppm; ¹³C NMR (100 MHz, CDCl₃): δ = 157.22, 156.93, 155.62, 154.92 (C_{Ar}), 144.39 (C_{Ar Trz}), 134.38, 134.37, 134.05, 133.38 (C_{Ar}), 129.90, 129.87, 129.29, 128.46 (CH_{Ar}), 124.12 (CH_{Ar Trz})*, 123.24, 123.01, 122.42, 121.13 (CH_{Ar}), 71.94, 71.47, 68.35, 63.57 (OCH₂), 48.69 (NCH₂), 38.34, 37.97 (ArCH₂Ar), 22.98, 22.21 (<u>C</u>H₂CH₃), 10.10, 9.92 (CH₃) ppm. ESI-MS *m*/*z*: 1231.6269 [M+H]⁺ for C₇₈H₈₃N₆O₈ (1231.6267).

Table S1Different catalytic systems used in the CuAAC reactions between calizarenes A and D									
						R	eaction	n outec	ome
Entry	Catalyst (equiv per bis(azlkyne)/bis(azide))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	$\mathbf{A} \text{ or } \mathbf{D}$	AD	Polymer	Other products
1	CuI·P(OEt) ₃ (0.3)	_	toluene	110	1	+	+	+	_
2	CuI·P(OEt) ₃ (3.0)	_	toluene	110	1	_	+	+	_
3	CuI (0.3)	_	toluene	110	2	+	_	_	_
4	CuI (0.3)	<i>i</i> Pr ₂ EtN (20)	toluene	110	1	+	+	+	_
5	CuI (0.3)	TBTA (2.0)	toluene	110	2	_	+	+	_
6	CuI (1.0)	TBTA (2.0)	toluene	110	2	_	+	+	_
7	CuI (2.0)	TBTA (2.0)	toluene	110	2	_	+	+	_
8	$CuSO_4$ ·5H ₂ O (0.3)/sodium ascorbate	_	THF/H ₂ O	65	7	_	+	+	_
9	CuI (0.3)	<i>i</i> Pr ₂ EtN (20)	toluene	rt	48	+	+	+	-
10	CuI (0.3)	Et ₃ N (20)	toluene	rt	48	—	+	+	_
11	CuI (0.3)	Et ₃ N (20)	CH_2Cl_2	rt	48	—	+	+	_
12	CuI (0.3)	Et ₃ N (20)	benzene	rt	48	—	+	+	_
13	CuI (0.3)	Et ₃ N (20)	CH ₃ CN	rt	48	—	—	+	+
14	CuI (0.3)	Et ₃ N (20)	DMF	rt	48	—	_	+	+
15	CuI (0.3)	-	DMF	rt	48	—	_	+	_
16	CuI (0.3)	TBTA (2.0)	toluene	rt	48	—	_	+	_
17	CuI (1.0)	TBTA (2.0)	toluene	rt	48	_	_	+	_
18	CuI (2.0)	TBTA (2.0)	toluene	rt	48	—	_	+	_
19	CuI (0.05)	Et ₃ N (20)	toluene	rt	72	+	+	+	_
20	CuCl (0.05)	Et ₃ N (20)	toluene	rt	72	—	+	+	+
21	$Cu(OAc)_2$ (0.3)	Et ₃ N (20)	toluene	rt	48	—	+	+	_
22	$Cu(OAc)_2 (0.3)$	Et ₃ N (20)	CH_2Cl_2	rt	48	—	+	+	_
23	$Cu(OAc)_2 (0.3)$	_	CH_2Cl_2	rt	48	+	_	_	_
24	[Cu(CH ₃ CN) ₄]PF ₆ (0.3)	_	toluene	rt	48	+	_	_	_
25	[Cu(CH ₃ CN) ₄]PF ₆ (0.3)	_	CH ₃ CN	rt	48	+	_	_	_
26	[Cu(CH ₃ CN) ₄]PF ₆ (0.3)	Et ₃ N (20)	toluene	rt	48	+	_	_	_
27	[Cu(CH ₃ CN) ₄]PF ₆ (0.3)	Et ₃ N (20)	CH ₃ CN	rt	48	_	_	+	+
28	[Cu(CH ₃ CN) ₄]PF ₆ (0.3)	Et ₃ N (20)	toluene	100	2	+	_	_	_
29	[Cu(CH ₃ CN) ₄]PF ₆ (1.0)	Et ₃ N (20)	toluene	100	2	+	_	_	_
30	[(<i>i</i> Pr)CuCl] (0.3)	_	CH_2Cl_2	rt	48	+	_	_	_
31	[(<i>i</i> Pr)CuCl] (0.3)	Et ₃ N (20)	CH_2Cl_2	rt	48	+	_	_	_

Tuning the conditions for the preparation of calix[4]semitubes

Table S2	Tuning the CuI/Et ₃ N/toluene catalytic system for the preparation of the calix[4]semitube AD							
					R	leaction	1 outed	ome
Entry	Catalyst loading, equiv per bis(azlkyne)/bis(azide)	Et₃N/Cu molar ratio	Temp., °C	Time, h	\mathbf{A} or \mathbf{D}	AD	Polymer	Other products
1	0.01	20	100	2	-	+	+	_
2	0.05	20	100	2	_	+	+	_
3	0.30	20	100	2	_	+	+	_
4	1.00	20	100	2	_	+	+	_
5	0.0005	20	rt	48	+	_	_	_
6	0.001	20	rt	48	+	_	_	_
7	0.005	20	rt	48	+	_	_	_
8	0.01	20	rt	48	+	_	_	_
9	0.30	20	rt	48	_	+	+	_
10	0.30	330	rt	48	_	+	+	_
11	1.00	20	rt	48	_	+	+	_
12	1.00	330	rt	48	_	+	+	_
13	2.00	20	rt	48	_	+	+	_
14	2.00	330	rt	48	-	+	+	+

	0		· · · · J · · · J · · · · J · · · ·						
						R	eaction	n outco	ome
Entry	Catalyst (equiv per bis(azlkyne)/bis(azide))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	C or E	CD	Polymer	Other products
1	CuI (0.3)	Et ₃ N (20)	toluene	rt	48	+	+	+	_
2	CuI (0.3)	Et ₃ N (400)	toluene	60	9	_	+	+	+
3	CuI (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	rt	48	_	+	++	+
4	CuI (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	9	_	+	++	_
5	CuI (1.0)	Et ₃ N (20)	toluene	60	9	+	+	+	+
6	CuI (1.0)	Et ₃ N (20)	1,2-dichloroethane	60	9	+	+	+	_
7	CuI (1.0)	Et ₃ N (20)	DMF	60	9	+	_	+	+

 Table S3
 Tuning the CuI/Et₃N/toluene catalytic system in the CuAAC between calixarenes C and E

Tab	Table S4Different catalytic systems tested in the CuAAC reactions between calixarenes C and F								
		T . 1		•		R	leaction	n outco	me
Entry	Catalyst (equiv per bis(azlkyne)/bis(azide))	External ligand (equiv per Cu)	Solvent	Temp., °C	Time, h	C or F	CF	Polymer	Other products
1	CuI (0.3)	Et ₃ N (20)	toluene/1,2-dichloroethane	rt	48	+	+	+	+
2	CuI (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	rt	48	_	+	+	+
3	CuI (0.3)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	24	_	+	+	+
4	CuI (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	24	_	+	+	+
5	CuI (1.0)*	Et ₃ N (20)	toluene/1,2-dichloroethane	60	24	_	+	+	+
6	CuI (0.3)	TBTA (2)	toluene/1,2-dichloroethane	60	24	_	+	++	+
7	CuI (1.0)	TBTA (2)	toluene/1,2-dichloroethane	60	24	_	_	++	+
8	CuCl (1.0)	_	toluene/1,2-dichloroethane	60	24	_	+	++	+
9	CuCl (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	rt	48	+	_	+	_
10	CuCl (1.0)	Et ₃ N (20)	toluene/1,2-dichloroethane	60	24	_	_	+	+
11	CuI·P(OEt) ₃ (0.3)	_	toluene/1,2-dichloroethane	60	24	_	+	+	+
12	CuI·P(OEt) ₃ (1.0)	_	toluene/1,2-dichloroethane	60	24	_	+	+	+
13	CuSO ₄ /Na asc. (0.3)	_	THF/H ₂ O (5:1)	60	24	_	+	+	+
14	CuSO ₄ /Na asc. (1.0)	_	THF/H ₂ O (5:1)	rt	48	+	++	+	_
15	CuSO ₄ /Na asc. (1.0)	_	THF/H ₂ O (5:1)	60	6	+	++	+	_
16	CuSO ₄ /Na asc. (1.0)	_	THF/H ₂ O (5:1)	60	24	_	++	+	_
17	CuSO ₄ /Na asc. (1.0)	_	THF/H ₂ O (5:1)**	60	24	+	_	_	+
18	CuSO ₄ /Na asc. (1.0)	TBTA (2)	THF/H ₂ O (5:1)	60	24	_	_	+	+
19	CuSO ₄ /Na asc. (2.0)	_	THF/H ₂ O (5:1)	60	24	_	+	+	+

*- the bis(alkyne) **C** was pre-reacted with the copper catalyst for 12 h at rt; ** - the reaction was conducted in a diluted solution (5 volumes of the solvent were used).

			Reaction of	outcome	
Enti	Starting calixarenes	Starting material	Bis(calixarene)	Polymer	Other products
1	$\mathbf{A} + \mathbf{E}$	_	+	+	—
2	$\mathbf{A} + \mathbf{F}$	-	+	+	-
3	$\mathbf{B} + \mathbf{D}$	+	_	-	+
4	$\mathbf{B} + \mathbf{E}$	+	_	-	_
5	$\mathbf{B} + \mathbf{F}$	+	+	+	_
6	$\mathbf{C} + \mathbf{D}$	_	+	++	_
7	$\mathbf{C} + \mathbf{E}$	_	+	++	+

Testing the catalytic system $CuSO_4$ ·5H₂O (1.0 equiv)/Na asc., THF/H₂O (5:1), 60 °C, 24 h for the preparation of bis(calixarenes) **AE**, **AF**, **BD**, **BE**, **BF**, **CD** and **CE** Table S5

Figure S1. ¹H NMR spectrum of calixarene 4 (400 MHz, CDCl₃).

Figure S2. ¹³C NMR spectrum (APT) of calixarene **4** (100 MHz, CDCl₃).

Figure S3. ¹H NMR spectrum of calixarene **6** (400 MHz, CDCl₃).

Figure S4. ¹³C NMR spectrum of calixarene **6** (100 MHz, CDCl₃+CD₃OD).

Figure S5. ¹H NMR spectrum of calixarene C (400 MHz, CDCl₃).

Figure S6. ¹³C NMR spectrum of calixarene C (100 MHz, CDCl₃).

Figure S7. ¹H NMR spectrum of calixarene **F** (600 MHz, CDCl₃).

Figure S8. 13 C NMR spectrum of calixarene **F** (100 MHz, CDCl₃).

Figure S9. ¹H NMR spectrum of calix[4]semitube **AE** (400 MHz, CDCl₃).

Figure S10. ¹³C NMR spectrum (APT) of calix[4]semitube AE (100 MHz, CDCl₃).

Figure S11. ¹H NMR spectrum of calix[4]semitube BD (600 MHz, CDCl₃).

Figure S12. ¹³C NMR spectrum (APT) of calix[4]semitube BD (100 MHz, CDCl₃).

Figure S13. ¹H NMR spectrum of calix[4]semitube BE (400 MHz, CDCl₃).

Figure S14. ¹³C NMR spectrum (APT) of calix[4]semitube BE (100 MHz, CDCl₃).

Figure S15. ¹H NMR spectrum of tetrakis(calix[4]arene) B₂E₂ (600 MHz, CDCl₃).

Figure S16. ¹³C NMR spectrum of tetrakis(calix[4]arene) B_2E_2 (100 MHz, CDCl₃).

Figure S17. ¹H NMR spectrum of calix[4]semitube **AF** (400 MHz, CDCl₃).

Figure S18. ¹³C NMR spectrum (APT) of calix[4]semitube AF (100 MHz, CDCl₃).

Figure S19. ¹H NMR spectrum of calix[4]semitube BF (400 MHz, CDCl₃).

Figure S20. ¹³C NMR spectrum (APT) of calix[4]semitube BF (100 MHz, CDCl₃).

Figure S21. ¹H NMR spectrum of calix[4]semitube CD (400 MHz, CDCl₃).

Figure S22. ¹³C NMR spectrum (APT) of calix[4]semitube CD (100 MHz, CDCl₃).

Figure S23. ¹H NMR spectrum of calix[4]semitube CE (600 MHz, CDCl₃).

Figure S24. ¹H NMR spectrum of tetrakis(calix[4]arene) C₂E₂ (600 MHz, CDCl₃).

Figure S25. ¹³C NMR spectrum (APT) of tetrakis(calix[4]arene) C_2E_2 (100 MHz, CDCl₃).

Figure S26. ¹H NMR spectrum of calix[4]semitube CF (400 MHz, CDCl₃).

Figure S27. ¹³C NMR spectrum (APT) of calix[4]semitube CF (100 MHz, CDCl₃).

Details of X-ray diffraction measurements

Crystallographic data were collected at 100 and 150 K on Bruker D8 Venture and Bruker SMART APEX II diffractometers using graphite monochromatized Mo–K α radiation ($\lambda = 0.71073$ Å) using a ω -scan mode. Absorption correction based on measurements of equivalent reflections was applied.^{S11} The structures were solved by direct methods and refined by full matrix least-squares on F² with anisotropic thermal parameters for all non-hydrogen atoms. Hydrogen atoms were placed in calculated positions and refined using a riding model. In structures of **6**, **AE**, **BD**, **BE**, **B**₂**E**₂, **CE** solvent dichloromethane and methanol molecules were not located and their contribution was suppressed by the SQUEEZE procedure.^{S12} Crystallographic details are presented in Tables S6–S8.

Compound	6	С	AE
CCDC number	2064439	2064446	2064443
Empirical formula	$C_{32}H_{30}N_6O_4$	$C_{40}H_{40}O_4$	$C_{104}H_{134}N_6O_8\cdot CH_2Cl_2$
M_{w}	562.62	584.72	1681.09
Temperature (K)	150(2)	150(2)	100(2)
Size (mm)	0.25 x 0.22 x 0.16	0.30 x 0.22 x 0.15	0.22 x 0.16 x 0.13
Cryst. system	trigonal	monoclinic	monoclinic
Space group	R-3	C2/c	C2/c
<i>a</i> (Å)	35.3864(8)	25.2023(14)	23.9917(12)
<i>b</i> (Å)	35.3864(8)	7.6250(4)	33.8220(15)
<i>c</i> (Å)	11.7374(2)	19.8425(17)	24.4169(11)
α (deg)	90	90	90
β (deg)	90	126.177(2)	90.909(2)
γ (deg)	120	90	90
V (Å ³)	12728.4(6)	3077.9(4)	19810.5(16)
Ζ	18	4	8
$ ho_{\rm cald} ({ m g} \cdot { m cm}^{-3})$	1.321	1.262	1.127
Abs coeff (mm^{-1})	0.090	0.080	0.122
<i>F</i> (000)	5328	1248	7248
θ range (deg)	$2.30 < \theta < 25.05$	$2.54 < \theta < 25.05$	$1.70 < \theta < 25.09$
no. of collected/unique rflns	39404 / 5010	9144 / 2707	96317 / 17589
Completeness to θ (%)	99.9	99.0	99.8
no. of data/restraints/params	5010/3/401	2707/0/200	17589/62/1103
Goodness of fit on F^2	1.046	1.078	1.029
Einal D indiana $(I > 2 - (I))$	R1 = 0.0451,	R1 = 0.0571,	R1 = 0.0881,
Final K indices $(1 \ge 20(1))$	wR2 = 0.1103	wR2 = 0.1086	wR2 = 0.2430
R indices (all data)	R1 = 0.0567,	R1 = 0.0770,	R1 = 0.1292,
A mulees (an uata)	wR2 = 0.1169	wR2 = 0.1154	wR2 = 0.2792
Largest diff peak/hole (e/Å ³)	0.23 /0.26	0.24 / -0.24	0.89 / -0.88

Table S6Details of the X-ray crystal data collection and structure refinement for compounds 6, C, AE

	5 5		1 , , ,
Compound	AF	BD	BE
CCDC number	2064441	2064442	2064444
Empirical formula	C ₈₈ H ₁₀₂ N ₆ O ₈ ·3CH ₂ Cl ₂ ·CH ₃ OH	$\begin{array}{c} C_{104}H_{134}N_6O_8 \cdot 1.25CH_2Cl_2 \\ CH_3OH \end{array}$	$C_{110}H_{146}N_6O_8$ ·CH ₂ Cl ₂
M_w	1658.57	1733.35	1765.25
Temperature (K)	100(2)	100(2)	100(2)
Size (mm)	0.32 x 0.26 x 0.20	0.15 x 0.13 x 0.02	0.25 x 0.21 x 0.16
Cryst. system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	$P2_1/c$
<i>a</i> (Å)	12.1055(11)	13.9064(5)	12.5392(4)
<i>b</i> (Å)	16.3679(16)	19.3357(7)	36.1127(17)
<i>c</i> (Å)	23.864(2)	21.9559(8)	25.3044(13)
α (deg)	102.046(3)	64.9250(10)	90
β (deg)	103.504(3)	81.1730(10)	94.7740(10)
γ (deg)	96.551(3)	82.5030(10)	90
V (Å ³)	4430.0(7)	5269.8(3)	11418.7(9)
Ζ	2	2	4
$\rho_{\rm cald}({\rm g}\cdot{\rm cm}^{-3})$	1.243	1.092	1.027
Abs coeff (mm^{-1})	0.253	0.130	0.109
<i>F</i> (000)	1760	1866	3816
θ range (deg)	$2.00 < \theta < 26.36$	$1.75 < \theta < 25.05$	$1.61 < \theta < 26.38$
no. of collected/unique rflns	91488 / 18060	45764 / 18538	120847 / 23255
Completeness to θ (%)	99.8	99.3	99.5
no. of data/restraints/params	18060/4/1074	18538/84/1136	23255/68/1240
Goodness of fit on F^2	1.035	1.033	1.019
Final <i>R</i> indices $(I > 2\sigma(I))$	R1 = 0.0585, w $R2 = 0.1477$	R1 = 0.0983, w $R2 = 0.2579$	R1 = 0.0776, w $R2 = 0.2110$
<i>R</i> indices (all data)	R1 = 0.0659, wR2 = 0.1529	R1 = 0.1201, wR2 = 0.2758	R1 = 0.1031, wR2 = 0.2305
Largest diff peak/hole (e/Å ³)	1.36 / -0.98	1.18 / -0.85	0.82 / -1.29

 Table S7
 Details of the X-ray crystal data collection and structure refinement for compounds AF, BD, BE

	5 5		1 / /
Compound	B_2E_2	CE	CF
CCDC number	2064445	2064440	2064838
Empirical formula	$\begin{array}{c} C_{220}H_{292}N_{12}O_{16}{\cdot}6CH_2Cl_2\\ {\cdot}2CH_3OH \end{array}$	$C_{94}H_{114}N_6O_8{\cdot}CH_2Cl_2$	$C_{78}H_{82}N_6O_8$
$M_{ m w}$	3934.28	1540.83	1231.49
Temperature (K)	100(2)	100(2)	150(2)
Size (mm)	0.40 x 0.27 x 0.22	0.25 x 0.21 x 0.16	0.22 x 0.18 x 0.01
Cryst. system	triclinic	triclinic	monoclinic
Space group	P-1	P-1	$P2_1/c$
<i>a</i> (Å)	18.6271(18)	11.4467(13)	11.1105(7)
<i>b</i> (Å)	19.3721(18)	20.509(2)	33.701(2)
<i>c</i> (Å)	20.3105(19)	20.597(2)	17.9090(12)
α (deg)	66.725(3)	98.909(4)	90
β (deg)	86.028(3)	98.788(4)	101.548(2)
γ (deg)	67.569(3)	101.578(4)	90
V (Å ³)	6194.4(10)	4594.5(9)	6570.1(8)
Z	1	2	4
$ ho_{\rm cald} ({ m g} \cdot { m cm}^{-3})$	1.055	1.114	1.245
Abs coeff (mm ^{-1})	0.190	0.126	0.081
F(000)	2112	1652	2624
θ range (deg)	$1.95 < \theta < 25.70$	$1.85 < \theta < 26.44$	$1.87 < \theta < 25.05$
no. of collected/unique rflns	88173 / 23558	74441 / 18774	64876 / 11639
Completeness to θ (%)	99.9	99.0	99.9
no. of data/restraints/params	23558/33/1271	18774/2/1037	11639/1/842
Goodness of fit on F^2	1.029	1.021	0.987
Final P indians $(I > 2\sigma(I))$	R1 = 0.0937,	R1 = 0.0647,	R1 = 0.0696,
Final K indices $(I > 20(I))$	wR2 = 0.2659	wR2 = 0.1496	wR2 = 0.1227
R indices (all data)	R1 = 0.1138,	R1 = 0.0835,	R1 = 0.1822,
it indices (un dum)	wR2 = 0.2860	wR2 = 0.1598	wR2 = 0.1595
Largest diff peak/hole $(e/Å^3)$	1.55 / -1.43	1.44 / -0.99	0.46 / -0.22

Table S8Details of the X-ray crystal data collection and structure refinement for compounds B2E2, CE, CF

Changes in NMR spectra of calix[4]semitubes upon addition of Zn^{2+} and Ag^{+}

Figure S28. Parts of ¹H NMR spectra of calix[4]semitube **AD** (middle) and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O (top) and AgClO₄·H₂O (bottom); CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S29. Parts of ¹H NMR spectra of calix[4]semitube **AE** (middle) and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O (top) and AgClO₄·H₂O (bottom); CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S30. Parts of ¹H NMR spectra of calix[4]semitube **AF** (middle) and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O (top) and AgClO₄·H₂O (bottom); CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S31. Parts of ¹H NMR spectra of calix[4]semitube **BD** (middle) and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O (top) and AgClO₄·H₂O (bottom); CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S32. Parts of ¹H NMR spectra of calix[4]semitube **BE** (middle) and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O (top) and AgClO₄·H₂O (bottom); CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S33. Parts of ¹H NMR spectra of calix[4]semitube **BF** (middle) and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O (top) and AgClO₄·H₂O (bottom); CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S34. Parts of ¹H NMR spectra of tetrakis(calixarene) $\mathbf{B}_2\mathbf{E}_2$ (middle) and its equilibrated mixtures with 10 equiv of $Zn(ClO_4)_2 \cdot 6H_2O$ (top) and $AgClO_4 \cdot H_2O$ (bottom); $CD_3CN/CDCl_3$ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S35. Parts of ¹H NMR spectra of calix[4]semitube **CD** (middle) and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O (top) and AgClO₄·H₂O (bottom); CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S36. Parts of ¹H NMR spectra of tetrakis(calixarene) C_2E_2 (middle) and its equilibrated mixtures with 10 equiv of $Zn(ClO_4)_2 \cdot 6H_2O$ (top) and $AgClO_4 \cdot H_2O$ (bottom); $CD_3CN/CDCl_3$ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Figure S37. Parts of ¹H NMR spectra of calix[4]semitube **CF** and its equilibrated mixtures with 10 equiv of Zn(ClO₄)₂·6H₂O different amount of AgClO₄·H₂O; CD₃CN/CDCl₃ (1:1), 400 MHz, 20 °C; signals of the triazole protons are marked red.

Atomic coordinates of the calculated structures

Complex **BE**·Zn²⁺, $E = -6981.462674 E_h$

72	2 126122	1 040500	0 025067	TT	1 050007	2 172560	1 202055
211	-2.130123	1.042592	-0.833007	n	1.030907	-3.473302	-1.303033
0	2.069382	-3.921207	0.713289	Н	2.203013	-2.077773	-0.221929
0	3.289497	-1.080953	1.554234	C	5.018357	-2.501189	4.483443
0	-4 094090	1 865390	-0 986835	н	5 008657	-2 394527	5 569266
0	4.004000	1.0000000	0.000000		5.000057	2.394327	0.000200
0	0.421903	-1.9/252/	3.820/33	C	0.1/9439	-2.796965	-0.090063
0	-0.822394	-4.881215	2.339932	Н	-0.410667	-3.701801	-0.285807
0	0.709789	3.036408	-3.483711	н	0.019402	-2.497570	0.953063
~	1 100402	2 602447	0 507556		6 752024	6 101404	2.002427
0	-1.180493	3.683447	-0.50/556	C	-6./53924	6.121484	-3.803437
0	-2.094435	1.359067	-3.738255	C	-4.691860	2.925515	-1.711256
N	-0 331906	-1 714604	-0 938217	C	-4 985891	0 906126	-0 315543
14	0.551500	1.714004	0.000217	C	4.000001	0.500120	0.515545
N	-0.913747	0.947574	3.020253	Н	-4.334109	0.059812	-0.049101
С	2.957406	-4.922871	0.362817	H	-5.708514	0.564195	-1.071691
C	2 473327	-6 240810	0 344849	C	-3 036462	6 853188	0 038016
ä	2.1/552/	0.210010	0.011010		3.050102	0.000100	0.050010
C	3.349801	-7.257844	-0.065802	Н	-3.980464	7.171571	0.480890
Η	2.959872	-8.275566	-0.108344	C	0.963287	-6.503477	5.122668
C	-2 758375	1 665903	-4 940892	н	0 982571	-6 437005	6 210836
~	2.750575	1.005505	4.940092	11	0.902971	0.457005	0.210050
C	-0.670320	5.974237	-1.160519	C	5.920577	-3.406899	3.900244
С	0.935181	-6.569614	2.329551	C	-3.985570	4.525647	0.178790
N	-0 794731	-0 621459	-0 383166	н	-3 654106	3 605765	0 677113
~	4 155006	1.500054	4.074140	11	1.001417	5.005705	0.07/119
C	-4.155096	1.526854	-4.9/4149	Н	-4.68141/	5.018449	0.8/4394
N	-1.173859	0.169911	-1.364216	C	2.219172	-1.744314	5.422140
C	5 840660	-3 568242	2 514516	C	1 689278	-7 515377	4 477686
	5.010000	1.200212	2.511510	6	1.005270	0.106504	1.177000
н	6.465928	-4.308822	2.014985	C	-0.898237	0.106534	4.234283
С	-2.768381	2.236275	-7.280670	H	-1.813391	0.355781	4.792669
н	-2 209978	2 549769	-8 166251	н	-0 036963	0 416732	4 841483
2	0 550155	6 424069	4 105072		2 040705	0.000702	4 450073
C	-0.550155	6.434068	-4.1852/3	C	3.040705	-0.899782	4.458073
Н	-0.590067	7.402264	-3.687738	H	3.531775	-0.081523	5.011948
C	-0 479138	3 918755	-5 395571	н	2 382995	-0 460646	3 700061
c	E 200570	E 20720C	1 022202	~	2.002/00	7 014507	0 240020
C	-5.3905/8	5.20/200	-1.833323	C	-2.093461	/.81450/	-0.349032
Η	-5.444485	6.202015	-1.385847	C	-4.882265	2.209077	-8.729622
N	-1 658424	1 675823	1 189114	C	0 494290	-3 452010	5 761672
2	4 200024	4 610411	0 056207	° a	0 5 6 0 2 4 2	2 4212020	1 472694
C	4.298834	-4.018411	0.050327	C	-0.569343	2.431306	1.4/3084
С	4.678402	-7.005319	-0.431939	C	-0.404186	-1.655773	-2.297162
С	1.058237	-6.563045	0.808235	н	-0.068603	-2.463866	-2.942824
	0 770156	7 551600	0 400701	9	7 277062	E (02070	F 1000C4
н	0.//8156	-/.551028	0.409/91	C	-/.2//802	5.692070	-5.188064
Н	0.348531	-5.833630	0.397931	H	-7.811036	6.533286	-5.656416
С	0.489141	5.544029	-2.043615	н	-7.989697	4.853837	-5.123511
11	0 021051	4 607120	1 601707	11	6 450049	E 403200	E 967200
п	0.931951	4.00/120	-1.091/0/	п	-0.459940	5.403290	-5.807200
Н	1.279210	6.310700	-1.995475	C	-1.659490	7.499166	-6.260839
С	0.091568	4.103485	-4.121983	C	-0.958253	-0.416518	-2.569513
a	4 052800	2 922205	1 717175	C	0 517475	4 440240	E 10E440
C	4.952699	-2.032205	1./1/1/5	C	-0.31/4/3	-4.440240	5.105440
С	-1.045929	5.022573	-6.044133	H	-1.221590	-3.949295	4.506642
н	-1.491842	4.859281	-7.026288	н	-1.102763	-4.870350	6.013921
C	_0 067921	1 050901	2 674719		5 627769	-9 124252	_0 800027
C	-0.007821	1.959691	2.0/4/10	C	5.037709	-0.124255	-0.890927
H	0.779196	2.251244	3.289469	C	-5.691649	1.471288	0.904073
С	-2.049240	2.089426	-6.084564	Н	-6.273985	2.361331	0.612541
Ċ	0 115027	-5 655111	2 021524	ч	-1 941424	1 70/221	1 644245
C	0.115037	-3.055111	3.021334	п	-4.941424	1./94231	1.044245
С	-0.940414	7.338011	-0.994415	C	1.036667	-3.697907	7.028965
Н	-0.212048	8.048058	-1.390422	Н	0.597179	-4.506409	7.617555
0	4 1 5 2 0 7	2 022002	7 202006	0	2 71 2970	2 020040	6 700420
C	-4.155597	2.023003	-7.383000	C	2.712870	-2.020040	0.709430
С	4.100830	-1.749031	3.739462	H	3.596329	-1.482370	7.042913
С	5.127922	-5.673201	-0.349424	C	-2.092424	8.639947	-5.319159
н	6 164864	-5 439837	-0 604816	ч	-2 809834	8 295190	-4 556843
	0.104004	3.435037	0.001010	11	2.000034	0.200100	1.550045
C	-5.990776	4.986197	-3.089842	Н	-2.576587	9.439505	-5.900986
С	4.127766	-1.872167	2.332933	H	-1.233606	9.097025	-4.803214
C	1 037092	-2 385367	5 007227	C	-0 107237	3 431328	0 446665
~	1.007092	2.303307	5.007227	C	0.107237	5.451520	0.440005
Ċ	-1.080033	0.303905	-5.4//051	н	0.200003	4.382024	0.903215
С	-0.595095	2.548574	-6.052584	H	0.747816	3.021412	-0.117954
н	-0.235065	2.610662	-7.090935	C	4.968001	-9.511781	-0.884674
ч	0 066470	1 838065	-5 544385	υ	4 644151	-9 810821	0 125160
11	0.0001/0	1.030003	1 10101	п	011131	2.010001	0.120100
C	-4.726741	4.202244	-1.124966	Н	5.688036	-10.268027	-1.235028
С	1.692352	-7.483193	3.073862	Н	4.095790	-9.556558	-1.555198
ч	2 303117	-8 201821	2 522637	0	-2 800027	7 067012	-7 000707
	2.JUJ11/	0.201021	2.32203/		2.02023/	7.00/013	1.090/0/
N	-1.873719	0.789617	2.125148	Н	-2.630457	6.368785	-7.899492
С	-4.822453	1.690231	-6.198599	H	-3.355634	7.945528	-7.564900
н	-5,903501	1,544391	-6 208221	ч	-3 649394	6 577249	-6 459404
~	4 050000	1 202654	2 700111	~	0 571460	0.000155	7 000044
C	-4.959362	1.323654	-3.702111	C	-0.571468	8.036175	-7.220244
Н	-4.437906	0.628029	-3.033756	Н	0.308155	8.394150	-6.661273
н	-5,930179	0.870245	-3,957494	н	-0.963613	8,877751	-7.814549
Ċ	1 500504	E 0F0C20	0 601514		0 001017	7 056040	7 010700
C	-1.500594	5.059629	-0.001514	Н	-0.231917	1.200043	-1.919/02
C	0.023280	5.359887	-3.490277	C	-4.219075	1.332077	-9.815626
С	-5,187493	2,660998	-2.993772	н	-3.158521	1.586574	-9.968555
c	1 057604	2 207576	0 040704		4 733403	1 470460	10 770725
C	4.857694	-3.207576	0.240724	Н	-4.733483	1.472469	-10.779735
Н	5.862379	-3.178630	-0.209140	H	-4.276762	0.262932	-9.554142
н	4,255056	-2.468233	-0.303772	C	2,141163	3,048055	-3.569139
Ċ	0 100010	E EC2442	4 404405		2.111100	2 000070	2 002540
C	0.100310	-3.303443	4.424495	Н	2.546486	3.9082/9	-3.003549
С	-2.821481	5.469505	-0.090921	Н	2.450364	3.188277	-4.621414
С	-0.865464	-1.414460	3.969719	C.	-5.816778	7.334591	-4.007130
- ц	_1 20/160	-1 077500	4 917466		_/ 057600	7 066400	_1 6/1/00
п	-1.334103	-1.0//523	1.01/400	н	-4.90/008	/.000480	-4.041402
H	-1.438145	-1.639900	3.055811	Н	-5.425586	7.734122	-3.058911
С	-5.839066	3.712538	-3.655514	Н	-6.359615	8.151548	-4.508764
н	-6 222195	3 519754	-4 656438	C	-7 961530	6 542897	-2 931966
	1 (20100	2.020054	1.000100		7.901930	0.34209/	2.221200
C	T.0/0TA0	-3.038854	-0.304678	Н	-8.530562	1.339734	-3.437023

Н	-7.646223	6.933288	-1.951236
н	-8.645551	5,697279	-2.756863
C	2 420901	-9 621024	5 220600
C a	2.439001	-0.031034	5.259099
C	-1.164962	0.288948	-3.8/1016
Н	-0.182175	0.680579	-4.178398
H	-1.505593	-0.428962	-4.635181
C	2 125672	-2 979736	7 552795
c	6 902054	-4 217162	1 790001
C a	0.093934	-4.21/102	4.780001
C	-4.798237	3.697174	-9.147036
H	-5.242989	4.350913	-8.379311
н	-5 348149	3 861262	-10 087808
U	-2 750659	4 025022	-9 210456
п С	-3.759050	4.023033	-9.310430
C	6.856020	-8.1/220/	0.064044
Н	7.426812	-7.231112	0.048288
H	7.542945	-8.983799	-0.224559
н	6 532446	-8 349660	1 103506
0	6 116426	7 924405	2 222722
C	0.115430	-7.834495	-2.332/33
Н	5.267875	-7.851236	-3.037275
H	6.839718	-8.599035	-2.656450
Н	6.612684	-6.855127	-2.419359
C	-6 370065	1 818532	-8 641112
11	6 502250	0 767099	0 240220
н	-0.503259	0.767088	-8.340328
Н	-6.843961	1.941890	-9.626906
H	-6.930046	2.451862	-7.935330
С	1.733717	-9.985378	4,986687
ч	1 726540	-10 248802	3 917242
11	1.720340	10.240002	5.21/242
н	0.689849	-9.963990	5.338300
Н	2.255580	-10.792910	5.525914
С	-6.619900	0.423377	1.524902
н	-7 388987	0 085045	0 811275
TT	7 142049	0 941240	2 207016
п	-7.143046	0.841349	2.39/010
Н	-6.058061	-0.463238	1.863015
С	3.903412	-8.741909	4.751911
Н	4.433951	-9.514941	5.329381
н	4 445046	-7 792598	4 886214
**	2.070025	0.007500	2 600705
н	3.9/2235	-9.02/502	3.089/85
С	2.693355	1.749130	-3.000064
H	2.190365	1.551166	-2.033340
н	2.415972	0.914456	-3.667629
C	2 459607	-8 375015	6 757539
	1 447450	0.374021	7 100100
н	1.44/458	-8.3/4821	7.192198
Н	2.941471	-7.416182	7.007163
H	3.029048	-9.168429	7.264605
C	3 859659	0 097269	0 987121
U	2 261000	0 210199	0 001140
	3.201900	0.310188	0.001140
Н	4.897213	-0.097406	0.657558
С	-2.317830	9.324635	-0.150338
С	6.069662	-5.106198	5.741030
ч	6 734431	-5 701295	6 389925
11	5.420051	5.701255	5.101014
н	5.430851	-5.800162	5.1/1/14
Н	5.412688	-4.507090	6.389621
С	4.208785	1.800202	-2.798860
Н	4.736403	2.043256	-3.735628
н	4 598544	0 836722	-2 436562
11	4.405624	0.030722	2.450502
Н	4.485634	2.566706	-2.056899
С	2.667367	-3.314508	8.958216
С	3.808660	1.312002	1.916805
н	2 796930	1 349542	2 354072
U	4 502511	1 164470	2 760409
п С		1.104479	2.700409
C	-3.448083	9.603927	0.857595
H	-3.255182	9.125895	1.831708
Н	-4.429337	9.262872	0.490442
н	-3 532227	10 687598	1 030407
C	4 100007	2 620061	1 010670
	T. LUUUZ/	2.030904	1.2130/0
н	3.402149	2.809383	0.373400
Η	5.120079	2.676355	0.798893
Н	3.998861	3.487024	1.910528
С	7.784365	-3.251788	5.595110
н	7 188020	-2 585016	6 240245
11	1.100330	-2.303940	4 001010
н	8.395129	-2.01/449	4.931012
Н	8.468686	-3.820960	6.246110
С	-1.022434	9.986194	0.380940
н	-1.198445	11.054026	0.584532
н	-0 103600	9 927056	-0 341405
**	0.193022	0.52/030	1 2000000
н	-0.688958	9.516926	1.320320
С	7.812455	-5.131956	3.946424
Н	8.483738	-5.692928	4.616801
н	8.444549	-4.554442	3 253122
н	7 242/00	-5 870726	2 257100
п С	/.243400	-3.0/0/20	3.33/199
C	-2.701481	9.951337	-1.513494
Н	-3.611693	9.483685	-1.922931
Н	-1.898265	9.832741	-2.257757
н	-2.899069	11 029873	-1 401052
 C	2 011057	-4 762467	2.101032
	J.400000/	-1./0540/	0.70301/
н	2.428839	-5.495596	8.701409
Н	3.608149	-5.028477	9.947575
Н	4.027634	-4.881631	8.224166
С	-3.304666	-3.819751	0.719785
- u	_4 222016	_3 011007	0 654207
п	-4.222910	-3.21189/	0.05430/
Н	-3.296522	-4.504023	-0.145682
н	-2.451406	-3.131946	0.618710

С	1.531332	-3.205357	10.000953
н	1.131284	-2.179689	10.053825
н	1.909670	-3.475448	11.000326
н	0.692076	-3.880631	9.776091
С	3.806278	-2.371518	9.389307
н	4.675449	-2.429258	8.715534
Н	4.159207	-2.652486	10.393935
Н	3.473264	-1.322244	9.436636
С	-2.080508	-5.562868	2.199600
Н	-2.253487	-6.182496	3.096245
Н	-2.029668	-6.255423	1.335587
С	-3.249131	-4.597005	2.037008
н	-4.165734	-5.205564	2.135134
н	-3 258321	-3 896375	2 890351

Complex **BE** · Ag⁺, $E = -5349.545981 E_h$

λα	-2 924312	-0 023089	_0 944349	ч	-1 041324	-5 633129	-2 776913
	0 041752	4 700297	0.220200	11	1 414105	5.033125 E 240E6E	1 000547
0	0.941/52	-4./9028/	-0.236209	п	-1.414195	-3.240303	-1.062547
0	1.756328	-2.236390	1.736324	C	-6.100284	6.421968	-3.918783
0	-4.765487	1.409121	-1.520065	C	-4.831497	2.656352	-2.145957
0	-0.107473	-1.765932	4.090149	C	-6.063323	0.796848	-1.312356
0	-0.856519	-4.975148	2.857239	H	-5.922943	-0.287991	-1.454902
0	1 152643	2 580080	-2 454626	н	-6 743940	1 149589	-2 104489
0	-1 492467	2.005/00	_0 501224	C .	-2 151006	6 002510	0 604970
0	-1.402407	0 571000	-0.391334		-3.151000	0.092319	1 022054
0	-2.111946	0.5/1098	-3.962136	Н	-4.150451	6.3/5155	1.033054
Ν	-1.258278	-3.615961	-2.350212	C	0.550926	-6.640343	5.811880
N	-1.689541	0.496345	3.126828	Н	0.611273	-6.456547	6.884622
С	2.080374	-5.367451	0.336595	C	5.786437	-1.100661	1.924483
C	1 947787	-6 561836	1 080053	C	-4 161127	3 851557	0 037166
c	2 117026	-7 201643	1 512064	U U	-2 979795	2 929549	0 216269
	2 007040	0 140276	2.057071	11	4 056540	4 100001	0.310200
н	3.00/049	-8.140376	2.05/9/1	н	-4.950542	4.109001	0.730839
C	-2.389685	1.479393	-4.996755	C	2.143577	-1.577146	4.864422
С	-0.617902	5.327170	-0.224652	C	1.028452	-7.846974	5.285626
С	0.433215	-7.013573	3.041880	C	-1.732748	-0.004044	4.499261
Ν	-2.037404	-2.899255	-1.544865	Н	-2.745703	0.167132	4.897583
С	-3.732180	1,715089	-5.371169	н	-1.029231	0.606629	5.081889
N	-2 380500	-1 815005	-2 191799	C	2 473956	-0 533509	3 807505
Ċ	5 22/75/	_1 059204	0 005920	U U	2.175550	0.353509	1 200927
	5.334734	-1.930294	0.905850	п 	2.000321	0.302014	9.299037
н	6.036093	-2.331985	0.156/22	Н	1.550943	-0.241841	3.289/25
C	-1.641927	2.714014	-6.925740	C	-2.097944	7.018249	0.782158
H	-0.813056	3.126938	-7.501232	C	-3.270503	3.447168	-8.794467
С	0.237234	6.081498	-3.129957	C	0.714808	-3.339949	5.779222
H	0.181073	7.021026	-2.579169	C	-1.205097	1.520416	1.273865
С	0.257690	3,604616	-4.451226	С	-1.097686	-2.982163	-3.546460
Ĉ	-5 063487	5 044934	-2 020603	н	-0 505382	-3 396049	-4 358621
11	1 006200	5.044934 E 062416	1 424222	11	6 116012	6 200021	E 41604E
п	-4.900399	5.903410	-1.434322	C	-0.440943	0.300034	-5.410245
N	-2.198286	0.609506	1.073733	Н	-6.845272	7.268111	-5.780551
С	3.342537	-4.752729	0.214433	H	-7.217939	5.545902	-5.610109
С	4.404701	-6.686425	1.294505	H	-5.561573	6.063930	-6.023306
С	0.589895	-7.116565	1.523446	C	-0.254126	7.341193	-5.327608
н	0.505008	-8.173202	1,220594	С	-1.823174	-1.806321	-3,434940
н	-0 204519	-6 556422	1 019273	Ċ	-0 455759	-4 321445	5 649591
C	0.710740	5 026022	_0 900017	U U	-1 267494	-2 996912	5.050602
	0.719740	J.020032	-0.099917	п	-1.207404	-3.090012	5.050002
н	1.182204	4.113167	-0.512171	Н	-0.8627777	-4.530918	6.652246
Н	1.413355	5.844930	-0.653770	C	5.654862	-7.465726	1.750554
С	0.673281	3.702675	-3.105770	C	-6.651989	1.090975	0.062945
С	3.992630	-2.375083	0.806457	H	-6.609089	2.177233	0.243741
С	-0.052182	4.796815	-5.121662	Н	-6.023561	0.616346	0.835668
Н	-0.354955	4.735741	-6.166487	С	1.728532	-3.620685	6.717576
C	-0 868700	1 444846	2 612048	н	1 555793	-4 443948	7 412213
11	0 126750	1 077700	2 211005		2 121264	1.027450	F 702062
н	-0.136/50	1.9///99	3.211995	C	3.131204	-1.93/459	5.783062
C	-1.336558	2.094110	-5.698764	H	4.087582	-1.412613	5.730440
С	-0.146291	-5.868439	3.632212	C	-0.355954	8.598929	-4.444681
С	-0.854659	6.614882	0.275168	H	-1.184851	8.526676	-3.720880
H	-0.020780	7.318360	0.266097	H	-0.546898	9.478449	-5.080678
С	-2.943808	2.816670	-7.426066	Н	0.573810	8.793095	-3.885905
Ċ	3 489985	-1 027556	2 789903	C	-0 571162	2 330562	0 184088
a	4 475620	E 434000	0 600004	1	0.100047	2.050502	0.101000
C	4.4/5030	-5.434009	0.680994	H	0.19084/	2.9000/2	0.654820
н	5.439085	-4.939764	0.560960	Н	-0.059711	1.675342	-0.527923
С	-5.527675	5.106545	-3.345575	C	5.478087	-7.929888	3.212070
С	3.076327	-1.892345	1.758890	H	5.284573	-7.072126	3.875260
С	0.895427	-2.234917	4.920991	H	6.387170	-8.442750	3.566477
С	-0.029041	6.057736	-4.502295	H	4.644306	-8.634417	3.328408
C	0 066685	2 233532	-5 123976	C	-1 559648	7 239656	-6 144897
ц	0 906227	2 106226	-5 922275	U U	-1 566721	6 271042	-6 919597
11	0.000227	1 452547	A 27014E	11	1 600655	0.371043	6 765000
п	0.236040	1.455547	-4.3/0145	п	-1.098035	0.140045	-0.705090
C	-4.705285	3.842619	-1.394837	Н	-2.429989	7.150463	-5.4/5699
C	0.982732	-/.989152	3.88/145	C	0.951848	/.513/86	-6.280769
H	1.383692	-8.898421	3.430546	H	1.892379	7.577393	-5.708529
N	-2.490845	-0.002012	2.191810	H	0.852745	8.437475	-6.874716
С	-3.975444	2.348522	-6.594992	H	1.040720	6.669638	-6.983177
н	-5.015752	2.483869	-6.901052	С	-2.002968	3.890314	-9.548231
C	-4 894327	1 458248	-4 415783	н	-1 433590	4 647476	-8 986968
U U	-4 705292	0 591194	-2 796126	11 11	-2 291696	1.01/1/0	-10 512201
	-4.705202	1 050000	-3.780130	п 	-2.201000	9.042007	-10.513291
н	-5.805512	1.258288	-5.002152	H	-1.331112	3.043907	-9.760593
C	-1.681451	4.401712	-0.189264	C	2.573595	2.514463	-2.264480
С	0.571642	4.925785	-2.413396	H	2.726490	1.828530	-1.415099
С	-5.093204	2.693369	-3.527009	H	2.960692	3.502910	-1.958718
С	3.546648	-3.333678	-0.299317	C	-5.089364	7.575951	-3.752619
н	4.320696	-3.341503	-1.083605	н	-4.157982	7.368662	-4.301549
н	2,625208	-2.973298	-0.771210	н	-4.826384	7,754876	-2,699178
C	-0 020200	-5 641770	5 015977	и 11	-5 514521	8 511494	-4 151920
c	_2 075001	A 700605	0 20/15/	п ~	_7 200061	6 7711FA	-2 151054
C	-2.9/5UUL	4./90025	0.204156	C	-/.398901	0.//1154	-3.151/50
C	-1.384323	-1.489245	4.619975	Н	-7.849614	7.689232	-3.563674
н	-1.452571	-1.744979	5.690535	H	-7.210065	6.942398	-2.079808
н	-2.133387	-2.084124	4.071929	H	-8.141443	5.961360	-3.239803
С	-5.468562	3.921058	-4.091338	C	1.567416	-8.982556	6.182908
н	-5.724537	3.937913	-5.148516	C	-2.093259	-0.760213	-4.480495
C	0.689883	-5,132608	-1 589258	ц ц	-1 329807	-0 852739	-5 274550
ч	0 022404	-6 107562	_1 760640	11	-3 060000	_0 070/21	-4 057200
11	1 204000	-0.19/003	-1./00040	H -	-3.000098	-0.9/9431	-4.95/280
н	1.324808	-4.544559	-2.281761	C	2.936446	-2.914619	6.770405
С	4.833160	-0.654544	2.856068	C	7.255178	-0.652662	2.080583
н	5.137463	0.026716	3.653275	C	-4.168027	4.690946	-8.592656
С	-0.796382	-4.956080	-1.944271	H	-5.119918	4.439565	-8.100394

Н	-4.413574	5.152642	-9.563008	Н	-2.184323	-6.320894	1.971775
H	-3.661092	5.448835	-7.972161	С	-2.946063	-4.294123	1.855349
С	6.939393	-6.618676	1.673511	Н	-3.001263	-3.403249	2.503397
H	7.177037	-6.317005	0.641362	H	-2.360484	-3.984882	0.974844
H	7.791891	-7.209483	2.046059				
н	6.871266	-5.708367	2.287643				
C	5 833610	-8 697364	0 833258				
11	1 024524	0.007004	0.000046				
п	4.934324	-9.333781	0.020040				
Н	6.684297	-9.314491	1.168636				
H	6.030340	-8.384621	-0.205574				
С	-4.014340	2.405763	-9.662307				
н	-3.382723	1.521661	-9.840632				
U	_1 292749	2 925999	-10 640579				
	-4.203749	2.035009	-10.040379				
н	-4.944/65	2.061915	-9.184444				
C	0.578588	-10.170624	6.126018				
H	0.447185	-10.543217	5.097863				
H	-0.413126	-9.873548	6.503902				
H	0.942223	-11.008259	6.743915				
C	-8 101865	0 611037	0 178294				
н	-8 756420	1 144095	-0 530153				
TT	0./00120	0 702027	1 100510				
п	-0.490294	0.792037	1.109512				
Н	-8.198447	-0.468105	-0.031519				
С	2.959167	-9.448578	5.699936				
H	3.343520	-10.244568	6.358498				
H	3.681678	-8.616904	5.715048				
Н	2.935962	-9.862981	4.680121				
C	3 337370	2 007009	-3 486249				
U U	2 972517	1 066622	-2 920511				
	2.072517	1.000022	-3.830311				
н	3.227060	2./315/4	-4.311630				
С	1.713114	-8.547323	7.654722				
Н	0.743288	-8.297091	8.112165				
H	2.375243	-7.673726	7.760364				
Н	2.151207	-9.366888	8.246150				
C	0 892710	-1 751280	0 701187				
U U	-0.025440	_1 /21200	1 212524				
	-0.025440	-1.421299	1.213334				
н	0.615490	-2.607088	0.0/3931				
С	-2.327319	8.449532	1.308310				
С	7.794724	-1.103648	3.457305				
H	8.859412	-0.836503	3.562303				
н	7.694611	-2.193058	3.589980				
н	7 256835	-0 607688	4 277478				
	1 017500	1 770672	2 171076				
C	4.81/580	1.770673	-3.1/19/6				
Н	5.310961	2.691202	-2.817322				
H	5.365332	1.421490	-4.061235				
H	4.947789	1.006882	-2.386105				
С	4.045630	-3.177988	7.810697				
С	1.455201	-0.630676	-0.171397				
н	1 410058	0 329960	0 366272				
TT	2 522020	0.707417	0.373262				
H	2.522038	-0./9/41/	-0.3/3362				
C	-3.348952	8.454123	2.464867				
H	-3.034226	7.784341	3.280883				
H	-4.353587	8.145442	2.137727				
H	-3.445496	9.470001	2.879299				
С	0.716721	-0.549958	-1.501742				
н	-0.364216	-0.410387	-1.355532				
н	0 851159	-1 477343	-2 080913				
U	1 050714	0 296252	-2 110/01				
п С	7 220470	0.200232	2.119491				
C	7.329478	0.890715	2.013404				
Н	6.707938	1.364508	2.786703				
H	6.987964	1.267127	1.034748				
Н	8.364598	1.235896	2.172950				
С	-1.018782	9.078030	1.834180				
н	-1.223741	10.070440	2.265970				
Н	-0.271112	9.222855	1,040204				
н	-0 562366	8 456592	2 621640				
Ċ	0 161050	_1 000000	0 000011				
	0.101070	1.2330/3	1 110540				
п	A.TATA1/5	-0.8/108/	1.11/543				
H	7.833791	-0.920951	-0.022111				
Н	8.191898	-2.336245	1.006489				
С	-2.882418	9.312961	0.150024				
H	-3.814283	8.880329	-0.245966				
н	-2.164118	9.380142	-0.683278				
н	-3.104390	10.337055	0,492888				
C	5 308262	-3 728763	7 107724				
с u	5.00202	_1 670405	6 500000				
п	5.09/113	-4.0/0495	0.509200				
н	p.109696	-3.909951	/.843458				
н	5.697092	-3.024372	6.360480				
С	-4.355173	-4.725480	1.432571				
н	-4.900968	-3.892381	0.962378				
н	-4.953299	-5.069602	2.293571				
н	-4.329454	-5 554782	0.704896				
 C	2 500107	_/ 107770	0 000000				
	3.39019/	-4.10/332	0.000358				
н	2.704206	-3.833141	9.41/508				
H	4.398794	-4.337464	9.622727				
н	3.366866	-5.169573	8.439910				
С	4.402623	-1.848121	8.521976				
н	4.810851	-1.103681	7.821359				
н	5.165519	-2.020175	9.299542				
н	3 516677	-1 407062	9 006686				
Ċ	-2 104204	-5 20706/	2 583005				
	-2.194394	-3.39/204	2.303995				
п	-2./04/23	-2.001109	3.531950				

Complex **BF**·Ag⁺, $E = -4721.484507 E_h$

7	0 000447	0 200167	0 606000		2 602027	0 226004	2 041062
Ag	0.900447	-0.39910/	-0.686299	н	-2.082937	-0.336984	3.041963
0	-5.076421	1.957173	-5.204359	C	4.886626	-2.863568	5.570968
0	1.640881	1.776008	1.759130	C	-2.318299	-3.309386	-1.074514
0	-0.742277	-1.587325	1.751905	Н	-3.233233	-3.850558	-0.848081
0	-2 508025	-2 480411	-4 779164	C	1 279672	-3 648557	2 050488
0	-2.300023	-2.400411	4.007400		1.2/90/2	-3.040337	2.030400
0	-0.228078	3.1338/1	-4.88/420	н	1.563612	-4./12/96	2.011347
0	-1.563697	1.803790	2.930318	Н	1.024130	-3.335121	1.030892
0	-0.530873	-0.160019	-8.632833	C	0.483030	0.215542	8.076007
0	2 731675	-1 605511	0 471532	C	-3 107878	3 818005	-7 092005
NT	1 (05504	2 501557	0.171552		4 120221	4 100751	7.002000
IN	-1.005584	-3.501557	-2.220513	н	-4.132231	4.189/51	-/.026492
N	1.559909	3.348314	-2.493117	C	0.429350	4.329860	-4.525529
Ν	-0.523783	-2.729693	-2.244651	Н	-0.223935	4.970848	-3.901045
N	-0 532000	-2 028492	-1 147854	н	0 703159	4 920874	-5 419132
NT	1 250550	1 606200	1 107000		1 747020	2 121042	2 070100
IN	1.359559	1.080398	-1.19/280	C	-1.747928	-2.131043	3.8/9100
Ν	1.575283	2.023246	-2.439776	C	-6.329118	2.408782	-4.678346
С	-4.087443	0.302003	-3.750496	Н	-6.153887	3.227199	-3.953790
С	-4.353975	-1.235981	-5.745450	н	-6.821016	1.588621	-4.117998
Ċ	1 221346	2 793142	-0 415984	C	0 821480	0 637823	-6 799381
~	2.221510	2.795112	0.110001	0	0.021100	0.057025	7.040602
C	2.5165/0	2.208137	2./38418	C	-0.506169	2.765709	-/.248603
С	-3.216906	2.599242	-3.815530	C	5.474204	3.755369	5.572817
С	3.826832	1.693477	2.715433	C	1.728604	4.029220	-3.778316
С	-0.808971	-2.413606	2.865006	н	2.376286	3.385972	-4.388420
c	-1 470977	0 202550	4 727595	и 1	2 250654	1 0722/9	-3 596509
c	-1.470977	0.203339	1.737303	п	2.239034	1.973340	-3.300300
C	2.106218	3.084924	3.769892	C	-3.262814	-1.706874	-8.293217
С	0.069970	-3.504778	2.972904	Н	-2.825123	-1.864091	-9.280663
С	-1.015063	1.393551	4.136077	C	-1.125487	-2.654953	-7.311287
C	-1 613583	-2 342709	-0 381715	н	-0 983459	-3 594610	-6 755575
a	0 424200	1 702020	6.000005	11	0.903135	2 002240	0.755575
C	0.434390	1./83230	6.029995	н	-0.944544	-2.883348	-8.3/2901
H	1.202629	2.395993	6.501839	C	0.582049	-1.895446	-5.600988
С	-0.995620	-0.125671	6.011953	Н	0.463208	-2.861474	-5.108302
Н	-1.360190	-1.045295	6.468022	C	0.894821	2.753480	1.049819
0	0 057002	0 656544	6 700106		1 070125	2 760712	1 451600
C	-0.037993	0.050544	0.700190	п	1.079125	3.700712	1.451000
С	2.467874	-2.819871	2.553834	Н	-0.173247	2.515516	1.189490
С	4.764132	2.211455	3.624263	C	-1.287090	2.935645	-8.401074
H	5.785423	1.835185	3.560601	Н	-0.878801	2.625670	-9.364529
C	-3 155654	-1 963374	-5 900031	C	1 486557	0 338026	-5 603108
a	2 264607	2 677724	E 012007	U 10	2 062620	1 116416	E 102400
C	-2.304097	3.077724	-3.912097	п	2.003030	1.110415	-5.103469
C	-1.938942	-3.087564	4.879912	C	-1.517613	-5.302794	6.052754
H	-2.705237	-2.889233	5.633057	C	-2.564716	3.487865	-8.332689
С	-3.190596	0.024280	-2.710813	Н	-3.152574	3.631529	-9.242403
ч	-3 143079	_0 991276	-2 318606	C	0 843942	2 065251	-7 340287
	2 001506	0.017420	2.310000		1 1 (7110	2.003231	0 20207
C	3.881506	-0.81/439	2.446813	н	1.16/118	2.083342	-8.392626
С	-1.181068	-4.266471	4.960614	Н	1.604492	2.623031	-6.773683
С	0.636426	3.372220	4.082817	C	-4.493739	-1.063897	-8.170619
н	0 053049	3 648723	3 197590	н	-5 030346	-0 729646	-9 061604
TT 1	0 602270	4 026020	4 762025		7 222440	0.725010	E 01/11/0
п	0.595576	4.230830	4.703233	C	-7.223440	2.886001	-5.014149
С	3.003060	-1.733554	1.834140	C	-8.598644	3.349727	-5.322767
С	4.438459	3.182196	4.581228	C	5.138961	3.269318	7.004537
С	4.209559	0.537273	1.802515	Н	4.122827	3.565182	7.311787
ч	3 674902	0 619075	0 849039	ц	5 843434	3 700637	7 733873
11	5.074902	0.010070	1 506116	11	5.045454	0 171704	7.755075
п	5.209029	0.599282	1.300110	п	5.200210	2.1/1/04	1.070034
С	3.041031	-3.113829	3.799172	C	5.584777	-1.716835	6.327896
H	2.670654	-3.991931	4.328496	Н	6.129265	-2.123434	7.194636
С	-3.045479	3,910896	-4.566331	н	4.856917	-0.980388	6.699734
ч	-4 016868	4 390826	-4 753022	ц	6 323817	-1 189758	5 705488
**	9.010000	4.590020	1.755022	11	0.525017	1.100750	0.004076
н	-2.46/0/0	4.605658	-3.937020	C	-1.888518	-1.620862	0.904976
C	-4.141106	1.621352	-4.248444	Н	-2.163298	-0.575666	0.680487
С	-1.038107	3.206711	-6.019750	Н	-2.744459	-2.095204	1.407555
С	-0.018685	2.169037	4.760329	С	0.293205	-0.356956	-9.783495
Ċ	4 423900	-1 166567	3 690918	ц	0 728006	-1 375183	-9 766379
	L 1452CO	1.100307	4 144045	11	1 145055	2.3/5103	0.77003/3
н	5.145369	-0.485777	4.144245	н	1.145855	0.349487	-9.//0941
С	-0.150528	-4.422509	4.019958	C	1.397210	-0.925396	-5.021440
Н	0.500818	-5.296450	4.067808	H	1.920384	-1.138531	-4.088403
С	-2.353956	2.281122	-2.760170	C	5.969967	-3.836700	5.041995
Н	-1.653630	3.039104	-2.402915	н	6.649322	-3.326734	4.339962
C	4 000501	-2 360346	4 3/0760	11 TT	5 51/001	_4 607615	4 510254
č	4.009301	-2.300240	4.349700	п	5.514031	-4.087013	4.510254
C	-2.358874	1.012052	-2.185609	н	6.5/3//6	-4.235693	5.874197
H	-1.673010	0.779654	-1.367890	C	-0.653801	-0.328594	8.967013
С	-4.891629	-0.829878	-4.377996	Н	-1.134858	-1.221896	8.538148
н	-5 944965	-0 535996	-4 497967	н	-1 434504	0 431289	9 128547
ц	_4 000600	-1 694020	-3 602057	11	_0 254145	_0 600560	0 050517
п	-4.002002	-1.004039	-3.003257	п	-0.254145	-0.022500	9.950597
C	-2.553830	-2.140259	-7.164084	C	3.983951	-3.603788	6.578415
С	3.090656	3.574842	4.642775	H	4.581210	-3.943870	7.439204
Н	2.771312	4.277765	5.417257	н	3.510402	-4.496444	6.143589
С	-1,924064	-4.338055	-3.377822	н	3,188198	-2.942210	6,955319
ч	-2 202045	_5 211500	_3 011000	~ ~	E 4/0011	E 200200	E E40007
11	-2.202040	- 3. 311392	-3.011232	C	5.449011	5.239309	5.54098/
н	-0.975479	-4.488497	-3.909618	H	5.708546	5.682691	4.540731
С	-0.110896	-1.641997	-6.790814	H	6.182453	5.704675	6.255962
С	0.076214	-0.389657	-7.418317	н	4.466288	5.710051	5.819172
Ċ	1 348270	3 883070	-1 257797		_0 547454	_0 149420	-11 02/500
	1 21/000	1 054064	1 072014		1 074565	0.15050	10 040041
п	1.314990	4.954064	-1.0/3014	н	-1.0/4567	0.015985	-10.940041
C	-2.967446	-3.731178	-4.314734	Н	-1.335204	-0.920907	-11.068342
Н	-3.121492	-4.442112	-5.148268	C	6.909348	3.300782	5.240468
н	-3.939484	-3.636266	-3.790218	н	7.039705	2.213127	5.359392
<u> </u>	-5 010600	_0 706574	-6 002720	**	7 601640	2 70 700	E 004400
C 77	-J.ULU090	-0./905/4	-0.903/32	H	7.021342	5./00/02	5.924430
Н	-5.936111	-0.226771	-6.799115	H	7.199861	3.5/4083	4.213468
С	-2.408271	-0.764998	4.011894	C	1.521710	-0.909061	7.837326
н	-3.339844	-0.882846	4.589935	Н	1.917695	-1.289285	8.794755
			-	•			

Н	2.366559	-0.535750	7.237247
Н	1.082033	-1.757345	7.287812
С	1.173080	1.370948	8.828977
Н	0.483789	2.212629	9.002803
Н	2.052285	1.756178	8.290120
Н	1.529526	1.016262	9.808923
С	-2.926452	-5.881930	5.771251
Н	-3.702202	-5.101803	5.830419
Н	-3.177094	-6.658690	6.511439
Н	-2.980212	-6.339292	4.769988
С	0.278818	-0.179157	-12.321041
Н	0.804250	-1.140833	-12.447740
Н	1.043776	0.615765	-12.333345
Н	-0.363724	-0.033150	-13.203089
С	-0.502046	-6.457741	6.081699
Н	-0.486167	-7.020113	5.134834
Н	-0.763021	-7.168729	6.880810
Н	0.517550	-6.090015	6.284390
С	-1.527527	-4.639398	7.450340
Н	-0.531719	-4.253075	7.720140
Н	-1.822819	-5.376821	8.214771
Н	-2.240965	-3.802791	7.517367
Н	-8.515925	4.179619	-4.600997
Н	-9.147352	2.532420	-4.824478
Н	-9.220575	3.703297	-6.159778
Н	-7.336951	2.067505	-6.545254
Н	-6.711155	3.704976	-6.347683
С	3.852088	-2.003701	-0.346101
С	-2.776016	2.552153	3.072083
Н	4.098553	-3.057837	-0.123977
Η	4.733303	-1.397466	-0.071907
С	3.526753	-1.817717	-1.817193
Η	-2.582732	3.463936	3.670084
Η	-3.516080	1.954483	3.638041
С	-3.326547	2.915169	1.701556
Η	3.189906	-0.776929	-1.975128
Η	2.684441	-2.474787	-2.092231
С	4.729038	-2.094555	-2.720519
Η	-3.459835	1.992993	1.109778
Η	-2.579929	3.523237	1.160694
С	-4.652429	3.675173	1.798590
Η	5.103301	-3.124830	-2.598297
Η	5.562717	-1.409398	-2.497443
Η	4.458854	-1.958852	-3.779096
Η	-4.540841	4.612136	2.369058
Η	-5.424958	3.072483	2.304376
Η	-5.037217	3.938195	0.801062

Complex **CD**·Ag⁺, $E = -4485.989710 E_h$

С	1.967380	-6.476587	1.383132	C	-0.296125	3.717390	4.314447
С	0.586990	-3.005661	-2.488942	C	3.670986	5.902266	-3.796805
С	0.931626	-4.327059	-2.804458	C	3.577983	7.059637	4.194356
С	1.945451	-4.950400	-2.048173	C	2.835895	7.118847	-4.261324
С	2.517311	-4.313161	-0.924607	C	4.034994	5.035076	-5.027071
С	2.131737	-2.996283	-0.641636	C	4.981974	6.424175	-3.176577
С	1.191867	-2.330483	-1.427744	C	2.874932	7.635486	5.438571
С	3.528649	-5.005056	-0.023504	C	3.705461	8.184171	3.141010
С	3.110584	-6.341324	0.570397	C	4.991406	6.588089	4.622676
С	3.881230	-7.484948	0.323597	0	0.662099	2.407676	-0.406022
С	3.522484	-8.723671	0.853906	C	-1.378870	-6.594138	-2.702803
С	2.352340	-8.840709	1.602233	C	-1.879527	-6.546489	2.547694
С	1.539247	-7.728726	1.866066	C	-1.044387	-7.507732	1.951090
С	0.245978	-7.912776	2.649734	C	-1.452263	-8.089410	0.730100
0	2.347945	-6.212877	-2.407676	C	-2.615149	-7.634469	0.054531
N	-0.203259	-2.996643	2.455823	C	-3.431134	-6.697611	0.697287
N	-0.440426	-1.722736	2.586260	C	-3.086649	-6.156357	1.944362
N	0.632906	-1.175093	3.149712	C	-2.983426	-8.081816	-1.353103
С	1.591886	-2.115039	3.380006	C	-1.931579	-7.863727	-2.433665
С	1.039718	-3.299133	2.923705	C	-1.508633	-8.943725	-3.220884
С	1.576405	-4.699098	2.915525	C	-0.558296	-8.773473	-4.228354
0	1.237755	-5.328462	1.684142	C	0.001477	-7.515174	-4.445231
С	0.634072	0.264967	3.405859	C	-0.384632	-6.403434	-3.682824
С	1.687311	1.049447	2.597518	C	0.244451	-5.042387	-3.960137
0	1.121036	2.284384	2.184451	0	-0.656161	-9.058419	0.191846
С	1.594331	4.544664	-3.176988	N	-2.512366	-3.084040	-0.605232
С	0.845268	3.705154	-2.350999	N	-2.378924	-1.794990	-0.478481
С	1.379477	3.323193	-1.098743	N	-2.642194	-1.246839	-1.659082
С	2.621574	3.834069	-0.668301	C	-2.944675	-2.203106	-2.578903
С	3.326115	4.687923	-1.535822	C	-2.852049	-3.397670	-1.887216
С	2.854568	5.047752	-2.804452	C	-2.965327	-4.818971	-2.345351
С	-0.501313	3.146387	-2.801809	0	-1.775757	-5.495657	-1.954512
С	3.272170	3.409106	0.651805	C	-2.357890	0.178890	-1.855128
С	2.734457	4.048484	1.930372	C	-2.938333	1.049561	-0.727897
С	1.642059	3.499173	2.629302	0	-2.117945	2.184763	-0.502365
С	1.017667	4.176702	3.687729	C	-2.129224	5.476575	4.323533
С	1.643135	5.343384	4.160420	C	-1.556074	4.347145	3.721302
С	2.815716	5.859951	3.591992	C	-2.183042	3.783260	2.590414
С	3.308472	5.218456	2.440606	C	-3.338536	4.390326	2.045301

С	-3.859725	5.524020	2.679326	
С	-3.296062	6.083568	3.837438	
С	-4.065902	3.807456	0.833632	
С	-3.465277	4.168205	-0.522339	
С	-2.447461	3.395523	-1.114302	
С	-1.733202	3.849201	-2.235442	
C	-2.191099	5.024247	-2.857465	
C	-3.300705	5.746087	-2.398010	
C	-3.886452	5.319880	-1.192831	
C	-3.996403	7.261275	4.546736	
C	-3.923843	6.909470	-3.194465	
d	2 195000	7 795046	5.550117	
c	-5.105009	6 794404	5.740780	
C	-3 002872	7 406929	-4 324464	
c	_4 240484	8 105322	-2 269767	
c	-5 241709	6 395108	-3 829747	
0	-1 669059	2 622381	2 105683	
н	-0 168354	-2 500855	-3 096477	
н	2.584731	-2.485930	0.212869	
н	3.787776	-4.300796	0.784427	
Н	4.469047	-5.170601	-0.572762	
н	4.776512	-7.394669	-0.297974	
н	4.142924	-9.602513	0.662228	
Н	2.054227	-9.815650	1.994799	
Н	0.294351	-7.353650	3.597891	
Н	0.183551	-8.974598	2.937402	
С	3.541959	-6.283581	-3.190555	
Н	2.550353	-1.882818	3.837276	
Н	1.147704	-5.266290	3.763984	
Н	2.669977	-4.677623	3.064351	
Н	0.744846	0.430897	4.488051	
Н	-0.356589	0.619566	3.090552	
Н	1.951985	0.475738	1.690722	
Н	2.609009	1.224298	3.176599	
H	1.184807	4.795628	-4.158825	
H	4.298351	5.048905	-1.198925	
H	-0.533892	2.081148	-2.542752	
H	-0.547052	3.219718	-3.899731	
H	4.341910	3.0501/5	0.582258	
H	3.219/84	2.310504	0./33/55	
H U	1 100203	5.843028	5.015813 1.026542	
п u	-0 265270	2 972650	5 20/051	
н	-0.203370	2 626642	4 243315	
н	2 532686	7 745285	-3 407195	
н	1.921871	6.811726	-4.792473	
н	3.421268	7.745092	-4.954856	
н	3.137857	4.649660	-5.537232	
Н	4.650427	4.170327	-4.731035	
н	4.610322	5.624009	-5.761213	
Н	5.655067	5.602945	-2.883119	
Н	4.796876	7.050746	-2.289721	
Н	5.522531	7.041748	-3.911569	
Н	2.786877	6.889671	6.245023	
Н	1.866444	8.011014	5.205267	
Н	3.457885	8.481420	5.835343	
Н	2.715301	8.536676	2.810051	
Н	4.257530	7.851319	2.248926	
H	4.250457	9.044502	3.562514	
н	5.571255	6.192617	3.773778	
H	4.9283/9	5./92312	5.382/56	
H	5.561260	7.420480	5.05/355	
н	-1 614042	-6 148897	3 530175	
н	-4.354955	-6.371259	0.212101	
н	-3.909348	-7.552817	-1.631515	
н	-3.257464	-9.147953	-1.359967	
н	-1.935219	-9.933485	-3.038271	
н	-0.243107	-9.625269	-4.835822	
н	0.760243	-7.384768	-5.221895	
н	0.965247	-5.181610	-4.782471	
Н	-0.524507	-4.360097	-4.360212	
С	-1.142891	-10.407057	0.180484	
н	-3.179413	-1.972147	-3.614743	
Н	-3.106430	-4.851358	-3.438875	
H	-3.847997	-5.296760	-1.882524	
H	-2.733587	U.463435	-2.847230	
H	-1.265425	0.303682	-1.842080	
H	-2.921267	U.465356	0.203597	
н	-3.9/66/0	1.347663	-0.948367	
H	-1.642458	5.872873	5.215746	
л Ч	-4.//U323 _5 000011	3.900035 4 104060	2.239301 0 854506	
n u	-J.UJOJII _4 133067	7.104902 2 715167	0.034390	
л Н	-1 658380/	2./1310/ 5 356020	-3 749131	
н	-4 710125	5 888335	-0 756081	
н	-4.836010	8.141276	2.704922	
H	-3.239359	8.786537	3,152517	
н	-4.696669	9.278282	4.057354	
Н	-2.192554	8.150795	5.439313	

Н	-3.042593	7.014505	6.521541
Η	-3.717151	8.627608	6.216217
Η	-5.257219	5.969357	5.802628
Η	-6.015609	6.409130	4.256586
Η	-5.909726	7.612495	5.565689
Η	-2.807215	6.629081	-5.079467
Η	-2.034617	7.759758	-3.935455
Η	-3.481394	8.251194	-4.845387
Η	-3.329634	8.488050	-1.781830
Η	-4.962974	7.844094	-1.483091
Η	-4.685838	8.926573	-2.853940
Η	-5.945096	6.035903	-3.061998
Η	-5.047329	5.560786	-4.522693
Η	-5.738438	7.200353	-4.396521
Η	-1.832887	2.494963	1.146356
Η	4.396510	-5.879685	-2.615119
Η	3.440196	-5.647754	-4.091035
С	3.810864	-7.729472	-3.575631
Η	-2.005000	-10.501000	-0.502757
Η	-1.502359	-10.681362	1.190859
С	-0.020703	-11.328673	-0.275257
Η	0.917672	-1.298197	-1.194500
Η	-3.777412	-5.489764	2.468015
Η	3.005290	-8.084997	-4.238982
Η	3.746288	-8.344875	-2.663153
С	5.175384	-7.898873	-4.247409
Η	0.796962	-11.288504	0.463489
Η	0.393732	-10.921856	-1.213237
С	-0.491029	-12.771785	-0.477909
Η	5.995584	-7.611292	-3.567998
Η	5.264705	-7.275817	-5.152435
Η	5.346844	-8.943198	-4.550871
Η	-1.277621	-12.839951	-1.248513
Η	-0.902581	-13.204788	0.449749
Н	0.340711	-13.415467	-0.802804
Ag	-1.573078	-4.251624	1.124644

Complex $\mathbf{CF} \cdot \mathbf{Ag}^+$ (isomer 1) $\mathbf{E} = -4093.383850 \ \mathbf{E}_h$

3	0 600700	1 625766	1 1 2 1 0 7 5		2 000240	4 286800	2 600566
Ag	-0.623702	1.635/66	1.1318/5	Н	3.009348	-4.3/6/89	3.608566
0	-3.581811	1.204848	1.541677	Н	4.514512	-5.240661	3.291657
0	-0.679591	4.585750	-0.249428	C	-1.787239	2.546257	-2.908362
0	5.821037	-4.618800	0.895797	H	-0.868784	2.800153	-3.445698
0	-3.383545	5.323247	2.853648	C	-7.093986	3.407218	2.069593
0	1.096354	-4.121161	1.698541	Н	-8.036187	3.933194	2.241033
0	4 486148	-1 130899	-2 510638	C	7 549172	-6 293279	0 940889
0	1 648512	-5 426640	-2 925029	ц ц	7 143642	-6 548992	-0.052575
0	4 650001	4 017240	1 225025	11	7.143042	6.0540002	1 650470
0	-4.658901	4.21/340	-1.3353//	Н	7.037205	-6.954869	1.6594/9
Ν	2.714370	1.838165	-1.346260	C	0.188559	-4.275579	-1.445199
N	-0.973702	-2.191291	2.901581	C	-6.841904	2.791386	0.844857
N	1.078432	2.346707	-0.096609	Н	-7.586736	2.847832	0.046463
N	1,896516	1.377467	-0.413953	С	-2.280078	7,782135	0.663550
N	-1 283337	-0 338783	1 922585	н	-2 323254	8 480969	1 503458
a	1 600575	2 500020	2 564100		0 220727	1 026205	1 040620
a	4.0000070	-2.300038	-2.304108		-0.329737	-1.930303	1 500204
C	-4./20800	1.992951	1.004835	н	-0.899851	-1.042120	-1.589324
C	1.361724	3.461458	-0.824047	C	1.276035	-5.908344	-4.219210
С	-1.467333	5.734185	-0.302905	H	1.763748	-5.309413	-5.008982
С	-2.315654	4.514022	3.126825	H	0.184684	-5.794169	-4.361571
С	-2.195419	5.980573	-1.484533	С	3.475060	-0.502253	-1.745224
C	5 288840	-3 399567	1 229481	н	3 492384	-0 828660	-0 695765
c	3 031494	-5 556374	1 786492	и 1	2 471940	-0 705140	-2 138881
a	5.031494	-3.330374	1.700492	п	2.4/1940	-0.70J140	-2.130001
C	5.686524	-2.219340	0.556559	C	-3.906/88	6.11/496	3.9212//
Ν	-0.359082	-1.130201	2.395995	H	-3.085632	6.673389	4.413015
С	3.941457	-3.306403	-3.455745	H	-4.366496	5.471052	4.693439
С	5.791916	-3.028384	-1.853444	C	5.585142	-5.084523	-3.139622
С	1.412407	-3.018893	-3.177876	Н	5.966555	-6.071477	-3.411711
Ċ	1 794122	-5 222337	1 197513	C	5 224185	-0 996101	1 064582
c	_4 919181	2 677606	2 882151	ц ц	5 572621	-0 072432	0 592057
ä	-4.919101	2.077000	2.002101	п	0.502620	-0.072432	1 110000
C	6.4885//	-2.24591/	-0./45/98	C	-0.50/639	-3.109/94	-1.112032
Н	7.486814	-2.683337	-0.588453	H	-1.208302	-3.131743	-0.273092
Н	6.652029	-1.207002	-1.069265	C	1.690329	-7.366213	-4.359602
С	-5.646446	2.097355	0.601183	Н	1.093470	-7.982687	-3.666334
С	-2.508646	3,227424	3.678482	н	2.740407	-7.466132	-4.035516
Ċ	1 086687	-4 238074	-2 536141	C	0 163946	-4 456428	2 705132
d	2 620501	2 057244	4 006002		0.103540	E 210000	2.703152
	2.030591	-2.05/344	-4.090803	п	0.300370	-5.210906	3.394033
н	2.494942	-3.418694	-5.034869	н	-0.753194	-4.903245	2.2/223/
н	2.699831	-1.797920	-4.388409	C	3.790280	0.989569	-1.868576
С	4.290795	-3.370996	2.229774	H	4.723876	1.231562	-1.336340
С	-3.798360	3.239296	-1.767210	H	3.935441	1.239859	-2.929286
С	4.435052	-4.586833	-3.745389	С	1.251455	-5.973970	0.134046
н	3 912354	-5 196474	-4 482694	Ċ	-3 286915	0 887696	-2 008356
C	-1 371509	2 452413	3 951803	ц	-3 552164	-0 162883	-1 854284
11	1 502022	1 465410	4 401750	11	0 020105	6 220076	2 121/27
н	-1.502933	1.405419	4.401/58	C	-0.830195	0.3389/0	2.131437
С	-2.929451	7.170707	-1.573713	H	0.256017	6.505431	2.020726
н	-3.482225	7.388640	-2.491706	H	-1.168908	7.119023	2.832335
С	3.821341	-2.125426	2.665723	C	3.660466	-6.736220	1.365536
Н	3.062469	-2.087970	3.451882	Н	4.607340	-7.019177	1.827561
C	6 232523	-4 318984	-2 172811	C	3 107022	-7 535566	0 367607
11	7 111202	4 710224	1 664657	11	2 611210	9 452204	0.0507007
п	7.111302	-4./19334	-1.004057	п	3.011310	-0.452594	0.052554
C	-1.026283	4.9/8216	2.//8801	C	4.318863	-0.939368	2.125589
С	-2.595876	3.583716	-2.423844	H	3.965726	0.023369	2.502590
С	-1.535237	6.600909	0.806009	C	1.928195	-7.137001	-0.259041
С	-0.082786	2.916312	3.667075	Н	1.519568	-7.732716	-1.077170
Н	0.788467	2.307454	3.920121	С	-2.134775	1.208940	-2.727151
C	-2 519918	-0 866983	2 129576	н	-1 511327	0 419089	-3 147044
c	2 425820	3 134180	-1 648405		0 003729	-5 543104	-0 626939
	2.425020	2 202000	2.040405		0.000725	5.545104	1 000105
н	2.9/9331	3.703286	-2.390991	Н	-0.290625	-6.3/2426	-1.288185
С	0.671376	4.780074	-0.628344	H	-0.837662	-5.380780	0.064387
Н	1.209857	5.355865	0.150119	C	9.058129	-6.536505	0.975690
Н	0.744794	5.370445	-1.559441	H	9.294753	-7.596873	0.797535
С	7.189898	-4.844811	1.242407	Н	9.495337	-6.255234	1.948975
н	7.349816	-4.607579	2.311497	Н	9.578409	-5.949268	0.201280
н	7 851698	-4 173834	0 666623	C	-5 542628	4 763426	-2 316850
<i>c</i>	_4 120101	1 990027	-1 500066	U U	-6 105556	2 947664	-2 910204
c	-3 001L01	1.009921 2 CEADAD	2 005000	п ,,	_/ 066011	5.94/004	2.010204 _2 100012
C	-3.884508	2.054243	3.995086	н	-4.966311	5.2//284	-3.109813
Н	-3.733249	1.618059	4.340000	C	-0.192329	-3.243192	3.559396
Н	-4.315592	3.188611	4.857051	H	-0.773102	-3.584812	4.428896
С	-2.166326	5.024409	-2.664386	H	0.723027	-2.758928	3.923735
Н	-1.147976	4.990649	-3.085885	C	-4.941208	7.070100	3.344702
н	-2.786664	5,466904	-3.461167	н	-5.695744	6.471003	2.809115
C	0 631018	-1 897493	-2 853552	ч	_4 449707	7 693871	2 580800
ч	0 801163	-0 962077	-3 305/03		1 502027	_7 865500	_5 705207
n C	0.004403	-0.9050//	-3.373483		1.34343/	- / . 000000	- 3. 193331
C	0.0/9364	4.1/1158	3.U/1/99	H .	2.10//12	-1.305508	-0.492145
н	1.083418	4.529940	2.829924	Н	0.483012	-7.753370	-6.146099
С	-2.326169	-2.080586	2.768856	H	1.792922	-8.929574	-5.882377
Н	-3.018223	-2.831396	3.141487	C	-6.485363	5.742986	-1.638007
С	-6.121202	3.373976	3.066214	н	-7.062833	5.201844	-0.870755
н	-6.298929	3,886504	4 015257	ч	-5 874878	6 482949	-1 095227
Ċ	_5 41255/	1 500000	_0 70/670		-5 604250	7 0//601	4 A07A75
	C 071001	1 010100	1 407204		6 202040	0 640547	-1.10/4/3
п 	-0.2/1UU1	1.013138	-1.40/304	H	-0.323042	0.04054/	3.94/233
н	-5.463586	0.406889	-0.750919	Н	-4.865854	8.550237	4.960797
С	-2.958206	8.079299	-0.517204	H	-6.155678	7.340547	5.148060
Н	-3.522477	9.010202	-0.609982	C	-7.422074	6.439794	-2.624718
С	-3.791991	-0.190889	1.693528	Н	-8.042158	5.717968	-3.184084
Н	-4.135804	-0.636617	0.740809	н	-6.861867	7.035814	-3.365617
н	-4 581895	-0 388206	2 439835	и ц	-8 106347	7 124627	-2 000300
 C	2 71/000	_/ 6E7100	2 910210	п	0.10034/	/.12102/	2.022300
L	5./14098	-4.03/1UZ	∠.010010				

Complex $\mathbf{CF} \cdot \mathrm{Ag}^+$ (isomer 2) E = -4093.390853 E_h

a	1 700700	7 140507	2 227020		4 107010	C 04004F	1 025024
c	1.720703	-7.149597	3.337020	п	-4.107010	-0.040945	-1.033934
C	1.552495	-5.899731	2.726956	C	-3.255132	-7.699710	0.729554
С	0.253208	-5.354038	2.689386	H	1.883484	2.819495	3.521695
С	-0.856518	-6.042215	3.218578	H	0.275609	3.287043	4.155434
С	-0.629109	-7.291616	3.816279	Н	0.690063	-1.887444	0.993169
С	0.649107	-7.843905	3.882697	Н	-1.070821	-2.012840	1.234447
Ċ	-2 268410	-5 471013	3 248880	н	-0 706212	-2 917174	3 538498
a	2.200110	4 740092	2 022170	11	1 062271	2.917171	2 201006
c	-2.023501	-4./49902	2.0331/0	п	1.003371	-2.020001	3.301900
C	-3.382793	-3.473611	2.182498	Н	3.092651	7.543471	2.786640
С	-3.946946	-2.802357	1.095778	Н	-1.169938	7.777245	3.338259
С	-3.920502	-3.396588	-0.165815	Н	1.074864	8.839316	3.443851
С	-3.354569	-4.665898	-0.365755	Н	-2.533646	5,982515	3.006436
Ċ	-2 851100	-5 353079	0 756992	ц	-1 875836	4 404669	3 400756
d	2.031100	5.555075	1 765400	11	2.073030	1.101000	2 10000
C	-3.336078	-5.202822	-1./65400	н	-2.803/01	2.749462	2.196048
0	-2.333295	-6.615087	0.610952	Н	-3.580297	3.125274	-2.023429
0	0.061807	-4.152936	2.035611	H	-3.279879	6.458799	-2.412303
Ν	-0.137377	-0.509125	2.317258	Н	-2.929667	4.941038	-3.204155
N	-1.262557	-0.029614	2.877442	С	-2.790690	7,736563	0.323965
N	-1 027505	1 170194	2 279625	U U	-2 069905	-7 722022	-2 902466
IN IN	-1.02/393	1 51060	3.270035	п 11	-2.900095	-7.732932	-2.002400
C	0.2641/4	1.512690	2.986005	Н	1.2191/8	-/.43653/	-3./39561
С	0.848509	0.418268	2.363127	H	-0.902129	-8.727729	-3.773229
С	0.807772	2.863073	3.291383	H	1.693796	-4.168563	-3.581910
С	-0.111747	-1.848567	1.742284	Н	2.450404	-5.689069	-3.185171
С	0.095573	-2.953410	2.778523	н	2.839764	-2.534844	-2.531129
0	0 612292	2 755142	2 151429	IJ	2 726740	-2 700475	1 670021
ő	0.012203	3.755142	2.131430	п т	3.720749	-2.700475	1.079031
C	2.110285	7.063927	2.//9406	Н	3.612508	-5.882801	2.208823
С	2.015678	5.717294	2.401703	Н	3.072944	-4.409318	2.972111
С	0.739560	5.124771	2.430506	C	2.606934	-7.402971	-0.397076
С	-0.430160	5.851953	2.716468	Н	-1.144240	3.395772	-4.072815
С	-0.279849	7,195891	3.085758	н	0.596373	3.047445	-4.052262
Ċ	0 978289	7 794372	3 139670	ц	-2 490889	-1 733096	_3 041882
c	1.010205	5 000107	0.664500	11	2.400000	1.040040	1 202070
C	-1.812696	5.222107	2.664522	Н	-2.040134	-1.842942	-1.323278
С	-2.284183	4.658060	1.328419	Н	0.413638	-2.308581	-2.315299
С	-2.796927	3.349322	1.282831	Н	-0.525644	-2.991077	-3.677515
С	-3.293642	2.811214	0.093560	Н	-1.997425	8.118624	-3.234800
С	-3.226246	3.558138	-1.083044	н	2,243170	7.679529	-3.817156
Ċ	-2 692205	4 854248	_1 001113	ц	0 189107	9 072236	-3 033233
a	2.072203	F 410040	0 126241	11	2 224522	5.072250	2 241405
c	-2.270554	5.418040	0.130341	п	3.334322	5.779500	-3.341403
C	-2.574052	5.612215	-2.403144	Н	2.491344	4.354656	-3.901090
0	-1.808843	6.707400	0.158745	H	3.166233	2.473983	-2.834498
С	-2.038716	-7.158065	-2.813109	H	3.824641	2.360984	1.419236
С	-2.037908	-5.858800	-2.289015	Н	3.505993	4.187708	2.742631
С	-0.834584	-5.123389	-2.330939	н	4,110627	5.667594	2.032839
Ĉ	0 363740	-5 689200	-2 813072	C	3 764315	7 241680	-0 612462
a	0.204264	6 007073	2.010072		2 007001	7.211000	0.012102
C	0.304264	-6.98/9/3	-3.342206	н	-3.997801	-7.001392	-0.091829
C	-0.882330	-7.718777	-3.354446	Н	-3.823607	-7.612319	1.675935
С	1.703393	-4.965303	-2.818452	C	-2.480782	-9.007882	0.686487
С	2.230190	-4.347345	-1.529474	C	-2.103874	9.092500	0.272075
С	2.801666	-3.065673	-1.574808	Н	-3.318764	7.600538	1.287578
Ċ	3 347853	-2 474885	-0 434951	н	-3 557536	7 660240	-0 470727
c	2 20/01/	-3 160460	0 770956	и и	2 102051	-7 256509	0 270920
c	0.049515	3.100400	0.779090	11	2 100050	7.330300	1 200707
C	2./4/515	-4.444/96	0.8/393/	Н	3.108950	-7.343201	-1.382/8/
С	2.243026	-5.044078	-0.301126	C	1.817745	-8.696237	-0.269977
С	2.779394	-5.158784	2.216027	C	3.239649	8.667487	-0.544468
0	1.709256	-6.301939	-0.241988	Н	4.285689	7.060977	-1.572298
0	-0.871056	-3.845341	-1.807099	н	4.505283	7.058157	0.189237
N	-1 157671	_0 289593	-2 353876	ц	-1 751665	-9 007151	1 513907
NT NT	0 640040	0.200000	1 045007	11	1 000054	0.007101	0.044020
IN	-0.642942	0.224723	-1.245007	н	-1.890054	-9.02/286	-0.244938
Ν	-0.295112	1.454577	-1.515551	C	-3.390587	-10.234200	0.770652
С	-0.587306	1.758121	-2.808339	H	-1.553434	9.166806	-0.680615
С	-1.148553	0.621036	-3.364475	Н	-1.341786	9.131755	1.067803
С	-0.306271	3.104239	-3.414271	C	-3.088418	10.254411	0.414944
C	-1 652432	-1 666505	-2 334514	н	1 027940	-8 697863	-1 039069
Ċ	-0 565605	-2 723701	-2 607414	л ц	1 201014	-8 688501	0 704516
0	0 100010	4 040722	2.00/111	~	1.001014	0.000001	0./01100
0	-0.122913	4.049/33	-2.3/6262	C	2.700128	-9.938366	-0.401183
С	-1.098531	7.496665	-3.207022	Н	2.689489	8.790788	0.402953
С	-1.205991	6.164738	-2.782168	Н	2.496102	8.802669	-1.346830
С	-0.032976	5.383990	-2.774493	C	4.350142	9.712673	-0.661221
С	1,227614	5.914308	-3.110242	н	-4.107260	-10.267511	-0.067598
Ċ	1 278505	7 250387	-3 533239	н	-3 975959	-10 245276	1 705742
c	0 127695	9 024061	-2 505442	11 U	-2 902705	-11 165405	0 720511
C a	0.12/005	0.034901	-3.595445	п	-2.603703	-11.105405	0.739511
C	2.511002	5.094502	-3.082386	Н	-3.631723	10.214244	1.374038
С	2.872529	4.348077	-1.806814	H	-3.841204	10.251978	-0.391437
С	3.192043	2.983800	-1.867107	H	-2.564814	11.222019	0.373843
С	3.548593	2.271594	-0.720966	Н	3.476767	-9.971609	0.381852
С	3.557339	2.918011	0.516443	н	3.213556	-9.975175	-1.377180
C	3,246254	4,282593	0.626650	и 11	2 101998	-10 858472	-0 310313
c	2 011010	4 000770	_0 554000	11	1 202061	0 696616	_1 617160
	2.744042	1.330//3	-0.554203	H	4.09300L	9.020010 0.010040	-1.01/100
C	3.268191	4.958169	T. AA0202	Н	5.091694	9.616240	U.149846
0	2.662731	6.336684	-0.477188	Н	3.936920	10.731781	-0.608815
Η	2.732706	-7.581408	3.384662	H	-4.397798	-1.816852	1.235470
Н	-1.477373	-7.837790	4.238874	H	1.843362	0.235965	1.966103
Н	0.802900	-8.817072	4.355238	н	-3.708747	1.800789	0.086426
н	-2 344687	-4 776383	4 104322	и 11	3 812089	-1 497442	-0 496224
ц.	_2 0/2000	-6 205202	2 EUVEN1	п ••	_1 E/0400	1.10/112	_/ 2550224
н 	-2.943208	-0.305290	3.504541	Н	-1.540423	0.405516	-4.355221
Н	-3.384193	-3.000217	3.168369	Н	3.809663	1.212925	-0.791062
Η	-4.359298	-2.873583	-1.021297	Ag	0.143907	2.887363	0.109323
Н	-3.669147	-4.471881	-2.460397	-			
				•			

Calculations were performed in ORCA 4.2.1 program package^{S13} at the DFT level using B3LYP functional and def2-SVP basis set^{S14} for all atoms except for Ag, for which SDD^{S15} effective core potential was used.

References

- S1. (a) A. Arduini, M. Fabbi, M. Mantovani, L. Mirone, A. Pochini, A. Secchi and R. Ungaro, Calix[4]arenes blocked in a rigid cone conformation by selective functionalization at the lower rim, J. Org. Chem., 1995, 60, 1454–1457; (b) A. Casnati, A. Pochini, R. Ungaro, F. Ugozzoli, F. Arnaud, S. Fanni, M.-J. Schwing, R. J. M. Egberink, F. de Jong and D. N. Reinhoudt, Synthesis, complexation, and membrane transport studies of 1,3-alternate calix[4]arene-crown-6 conformers: a new class of cesium selective ionophores, J. Am. Chem. Soc., 1995, 117, 2767–2777.
- S2. W. Xu, J. J. Vittal and R. J. Puddephatt, Propargyl calix[4]arenes and their complexes with silver(I) and gold(I), *Can. J. Chem.*, 1996, **74**, 766–774.
- S3. (a) X. Zeng, L. Weng, L. Chen, F. Xu, Q. Li, X. Leng, X. He and Z.-Z. Zhang, The syntheses and Ag⁺-selective electrode properties of benzothiazolylthiaalkoxy functionalized calix[4]arenes: an investigation of the structure-selectivity relationship in the ionophore-based ISEs, *Tetrahedron*, 2002, **58**, 2647–2658; (b) X. Zeng, L. Chen, L. Weng, H. Ju, X. He and Z.-Z. Zhang, Syntheses and ion-selective properties of 25,27-bis(2-hydroxyethylthioalkoxyl)-26,28-dihydroxycalix[4]arenes, *J. Chem. Res.* (S), 2000, 518–519.
- S4. Z. Asfari, A. Bilyk, C. Bond, J. M. Harrowfield, G. A. Koutsantonis, N. Lengkeek, M. Mocerino, B. W. Skelton, A. N. Sobolev, S. Strano, J. Vicens and A. H. White, Factors influencing solvent adduct formation by calixarenes in the solid state, *Org. Biomol. Chem.*, 2004, 2, 387–396.
- S5. S. Cecioni, R. Lalor, B. Blanchard, J.-P. Praly, A. Imberty, S. E. Matthews and S. Vidal, Achieving high affinity towards a bacterial lectin through multivalent topological isomers of calix[4]arene glycoconjugates, *Chem. Eur. J.*, 2009, **15**, 13232–13240.
- S6. Z.-G. Luo, Y. Zhao, F. Xu, C. Ma, X.-M. Xu and X.-M. Zhang, Synthesis and thermal properties of novel calix[4]arene derivatives containing 1,2,3-triazole moiety *via* K₂CO₃catalyzed 1,3-dipolar cycloaddition reaction, *Chinese Chem. Lett.*, 2014, 25, 1346–1348.
- S7. Y. Nishizawa, Studies on organophosphorus compounds. II. On phosphite cuprous halide complex compounds, *Bull. Chem. Soc. Jpn.* 1961, **34**, 1170–1178.
- S. K. Kim, S. H. Lee, J. Y. Lee, J. Y. Lee, R. A. Bartsch and J. S. Kim, An excimer-based, binuclear, on-off switchable calix[4]crown chemosensor, *J. Am. Chem. Soc.*, 2004, 126, 16499–16506.
- S9. A. Gorbunov, J. Kuznetsova, K. Puchnin, V. Kovalev and I. Vatsouro, Triazolated calix[4]arenes from 2-azidoethylated precursors: is there a difference in the way the triazoles are attached to narrow rims?, *New J. Chem.*, 2019, 43, 4562–4580.
- S10. J. Morales-Sanfrutos, M. Ortega-Muñoz, J. Lopez-Jaramillo, F. Hernandez-Mateo and F. Santoyo-Gonzalez, Synthesis of calixarene-based cavitands and nanotubes by click chemistry, J. Org. Chem., 2008, 73, 7768–7771.
- S11. G. M. Sheldrick, A short history of SHELX, Acta Crystallogr., 2008, A64, 112–122.
- S12. A. L. Spek, Single-crystal structure validation with the program *PLATON*, *J. Appl. Cryst.*, 2003, **36**, 7–13.

- S13. (a) F. Neese, The ORCA program system, WIREs Comput. Mol. Sci., 2012, 2, 73–78; (b) F. Neese, Software update: the ORCA program system, version 4.0, WIREs Comput. Mol. Sci., 2018, 8, e1327; (c) F. Neese, F. Wennmohs, A. Hansen and U. Becker, Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A 'chain-of-spheres' algorithm for the Hartree–Fock exchange, Chem. Phys., 2009, 356, 98–109.
- S14. (a) F. Weigend and R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, *Phys. Chem. Chem. Phys.*, 2005, **7**, 3297–3305; (b) F. Weigend, Accurate Coulomb-fitting basis sets for H to Rn, *Phys. Chem. Chem. Phys.*, 2006, **8**, 1057–1065.
- S15. D. Andrae, U. Häußermann, M. Dolg, H. Stoll, H. Preuß, Energy-adjusted ab initio pseudopotentials for the second and third row transition elements, *Theor. Chim. Acta*, 1990, 77, 123–141.