Electronic Supplementary Information

Radical Addition Reaction between Chromenols and Toluene Derivatives

Initiated by Brønsted Acid Catalyst under Light Irradiation

Jun Kikuchi, Shota Kodama, Masahiro Terada*

e-mail: mterada@tohoku.ac.jp

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan.

Contents

- 1. General Information
- 2. Preparation of substrates
- 3. Preparation of catalyst
- 4. Radical addition reaction between chromenol and toluene derivatives
- 5. Enantioselective radical addition reaction using chiral phosphoric acid catalyst
- 6. Additional screening
- 7. UV-Vis absorption spectroscopy
- 8. Stern-Volmer fluorescence quenching experiments
- 9. Light ON/OFF Experiment
- 10. Theoretical studies
- 11. X-ray crystallographic analysis
- 12. NMR spectra
- 13. HPLC chart

1. General Information

All reactions were carried out under argon atmosphere in flame-dried glassware. Dichloromethane (CH₂Cl₂), and toluene were supplied from KANTO Chemical Co., Inc. as "Dehydrated solvent system". Other solvents and reagents were purchased from commercial suppliers and used without further purification. Photo-reactions were carried out using Techno Sigma-PER-AMP. Purification of reaction products was carried out by flash column chromatography using silica gel 60 N (Merck 40-63 µm). Analytical thin layer chromatography (TLC) was performed on Merck precoated TLC plates (silica gel 60 GF 254, 0.25 mm). ¹H NMR spectra were recorded on a JEOL ECA-600 (600 MHz) spectrometer. Chemical shifts are reported in ppm from tetramethylsilane or solvent resonance as the internal standard (CDCl₃: 7.26 ppm, TMS: 0.00 ppm, C₆D₆: 7.16 ppm). ¹³C NMR spectra were recorded on a JEOL ECA-600 (151 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the solvent resonance as the internal standard (CDCl₃: 77.0 ppm, C₆D₆: 128.06 ppm). ³¹P NMR spectra were recorded on a JEOL JNM-ECA600 (243 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm with 85% H₃PO₄ solution as an external standard (0.0 ppm in CDCl₃). ¹⁹F NMR spectra were recorded on JEOL ECA-600 (565 MHz) spectrometer with complete proton decoupling. Chemical shifts are reported in ppm from the $C_6H_5CF_3$ (-67.2 ppm) resonance as the external standard. Infrared spectra were recorded on a Jasco FT/IR-4100 spectrometer. Mass spectra analysis using ESI ionization method was performed on a Bruker Daltonics solariX 9.4T spectrometer at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University. X-ray crystallography analysis was carried out using a Rigaku XtaLAB mini diffractometer using graphite monochromated Mo-Ka radiation at the Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University. UV/Vis absorption spectra were recorded on a JASCO V650DS spectrometer. Fluorescence spectra were recorded on a HITACHI F-4500.

2. Preparation of substrates

Representative procedure for the synthesis of novel chromenols¹

To a solution of PhBr (414.5 mg, 2.64 mmol) in THF (10.6 ml) was added "BuLi (1.6 M in hexane, 1.7 mL, 2.64 mmol) at -78 °C. The resulting mixture was stirred for 30 min at -78 °C. To a solution of S1 (639.1 mg, 2.4 mmol) in THF (24 mL) was added a resulting PhLi solution at -78 °C. After stirring for 2 h at -78 °C, the reaction mixture was quenched by water, and then extracted with EtOAc. The combined organic layers were dried over Na₂SO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (hexane/EtOAc/Et₃N = 7/1/0.01) to give 1b (586.9 mg, 1.7 mmol, 71% yield) as a yellow solid.

2-(4-methylphenyl)-7-methoxy-4-phenyl-2H-chromen-2-ol (1b)

Yellow solid (586.9 mg, 1.7 mmol, 71% yield); $R_f = 0.51$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, C_6D_6) δ 7.60 (d, J = 8.4Hz, 2H), 7.41-7.36 (m, 5H), 7.21 (d, J = 8.4 Hz, 2H), 7.11 (d, J =9.0 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 6.53 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.75 (s, 1H), 3.80 (s, 3H), 3.35 (brs, 1H), 2.36 (s, 3H); ¹³C NMR (151 MHz, C₆D₆) δ 161.7, 154.0, 141.4, 138.3, 138.0, 136.6, $(Ar^1: 4-MeC_6H_4)$ 129.2, 129.1, 128.7, 128.2, 127.3, 126.5, 122.6, 114.2, 108.5, 102.9, 97.7, 55.0, 21.1; IR (ATR) 3370, 3027, 2955, 2835, 1613, 1505, 1444, 1357, 1275, 1199, 1160, 1113, 1031, 991, 822, 747 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₀NaO₃ 367.1310, found: 367.1304.

2-(4-bromophenyl)-7-methoxy-4-phenyl-2H-chromen-2-ol (1c)

Yellow solid (458.4 mg, 1.1 mmol, 56% yield); $R_f = 0.51$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.60 (d, J = 8.4 Hz, 2H), 7.53 (d, J = 8.4 Hz, 2H), 7.42-7.37 (m, 5H), 7.12 (d, J = 9.0 Hz, 1H), 6.70 (d, J = 2.4 Hz, 1H), 6.55 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.71 (s, 1H), 3.82 (s, 1c (Ar¹: 4-BrC₆H₄) 3H), 3.35 (brs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.3, 152.5, 142.0, 137.2, 137.1, 131.4, 128.7, 128.4, 128.3, 127.7, 127.1, 122.7, 120.7, 113.3, 108.4, 102.3, 96.9, 55.5; IR (ATR) 3384, 3055, 2955, 2836, 1613, 1504, 1487, 1444, 1395, 1358, 1323, 1288, 1252, 1199, 1161, 1122, 1072, 1009, 830 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₇BrNaO₃ 431.0259, found: 431.0253.

¹ M. Terada, T. Yamanaka and Y. Toda, Chem. Eur. J. 2013, 19, 13658-13662.

7-methoxy-4-phenyl-2-(4-(trifluoromethyl)phenyl)-2H-chromen-2-ol (1d)

Yellow solid (652.5 mg, 1.6 mmol, 78% yield); $R_f = 0.50$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.85 (d, J = 8.4 Hz, 2H), 7.67 (d, J = 8.4 Hz, 2H), 7.43-7.38 (m, 5H), 7.13 (d, J= 9.0 Hz, 1H), 6.71 (d, J = 2.4 Hz, 1H), 6.56 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.71 (s, 1H), 3.82 (s,

(Ar¹: 4-CF₃C₆H₄) 3H), 3.42 (br, 1H); ¹³C NMR (151 MHz, CDCl₃) & 161.4, 152.5, 146.7, 137.4, 137.2, 130.7 (q, J = 33.2 Hz), 128.7, 128.5, 128.3, 127.2, 126.4, 125.3 (q, J = 2.9 Hz), 124.1 (q, J = 272 Hz), 120.5, 113.3, 108.5, 102.4, 96.8, 55.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.5; IR (ATR) 3357, 2955, 1613, 1505, 1325, 1275, 1164, 1125, 1068, 1019, 846, 749 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for C₂₃H₁₇F₃O₃ 398.1130, found:398.1128.

2-(3-bromophenyl)-7-methoxy-4-phenyl-2H-chromen-2-ol (1e)

Yellow solid (424.4 mg, 1.0 mmol, 61% yield); $R_f = 0.55$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.89 (t, J = 1.8 Hz, 1H), 7.65 (d, J = 7.8 Hz, 1H), 7.48 (d, J = 8.4 Hz, 1H), 7.42-7.35 (m, 5H), 7.28 (t, J = 8.4 Hz, 1H), 7.12 (d, J = 9.0 Hz, 1H), 6.71 (d, J = 2.4 Hz, 1H), 6.55 (dd, $(Ar^1: 3-BrC_6H_4)$ J = 9.0 Hz, 2.4 Hz, 1H), 5.71 (s, 1H), 3.82 (s, 3H), 3.33 (brs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.2, 152.5, 145.2, 137.2, 137.1, 131.5, 129.9, 129.6, 129.2, 128.7, 128.4, 128.3, 127.1, 124.6, 122.4, 120.6, 113.3, 108.4, 102.4, 96.6, 55.5; IR (ATR) 3360, 3055, 2955, 2835, 1613, 1504, 1444, 1358, 1323, 1288, 1252, 1199, 1161, 1122, 1072, 1030, 845 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for C₂₂H₁₇BrNaO₃ 408.0361, found: 408.0360.

2-(2-methylphenyl)-7-methoxy-4-phenyl-2H-chromen-2-ol (1f)

Yellow solid (529.0 mg, 1.5 mmol, 64% yield); $R_f = 0.53$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, C₆D₆) δ 8.06 (dd, *J* = 7.8 Hz, 1.2 Hz, 1H), 7.25-7.22 (m, 2H), 7.19-7.15 (m, 3H), 7.15-7.10 (m, 3H), 7.05 (d, J = 6.0 Hz, 1H), 6.73 (d, J = 2.4 Hz, 1H), 6.51 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.54

(s, 1H), 3.25 (s, 3H), 2.75 (brs, 1H), 2.40 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.2, 152.8, $(Ar^1: 2-MeC_6H_4)$ 140.1, 137.5, 137.3, 136.9, 131.9, 128.8, 128.7, 128.4, 128.1, 127.1, 125.6, 125.4, 120.3, 113.3, 108.2, 102.2, 96.9, 55.4, 21.2; IR (ATR) 3357, 3063, 3008, 2965, 1613, 1541, 1444, 1357, 1275, 1198, 1162, 1110, 1032, 749 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for C₂₃H₂₀O₃ 344.1412, found:344.1411.

7-methoxy-2-phenyl-4-(p-tolyl)-2H-chromen-2-ol (1g)

Yellow solid (702.6 mg, 2.0 mmol, 68% yield); $R_f = 0.35$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, C₆D₆) δ 7.80 (dm, J = 7.2 Hz, 2H), 7.26 (d, J = 8.4 Hz, 1H), 7.22 (d, J = 7.8 Hz, 2 H), 7.19 (t, J = 7.8 Hz, 1H), 7.11 (t, J = 7.2 Hz, 1H), 6.98 (d, J = 8.4 Hz, 2H), 6.81 (d, J = 2.4 Hz, 1H), 6.54

 $(d, J = 8.4 \text{ Hz}, 1\text{H}), 5.72 \text{ (s, 1H)}, 3.27 \text{ (s, 3H)}, 2.87 \text{ (br, 1H)}, 2.14 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, 123 \text{ (s, 3H)}; {}^{13}\text{C} \text{ (s,$ (Ar²: 4-MeC₆H₄) C_6D_6) δ 161.8, 154.0, 144.2, 137.8, 136.7, 135.3, 129.4, 129.2, 128.42, 128.36, 127.4, 126.5, 122.0, 114.3, 108.5, 102.9, 97.7, 55.0, 21.2; IR (ATR) 3381, 3026, 2934, 1613, 1504, 1448, 1356, 1273, 1199, 1121, 1032, 816, 765, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₃H₂₀NaO₃ 367.1310, found: 367.1304.

4-(4-chlorophenyl)-7-methoxy-2-phenyl-2H-chromen-2-ol (1h)

Yellow solid (488.9 mg, 1.3 mmol, 67% yield); $R_f = 0.37$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, C₆D₆) δ 7.77 (dd, *J* = 8.4 Hz, 1.2 Hz, 2H), 7.19 (t, *J* = 7.8 Hz, 2H), 7.12 (tt, *J* = 7.2 Hz, 1.2 Hz, 1H), 7.08 (dt, J = 8.4 Hz, 1.8 Hz, 2H), 7.00 (d, J = 8.4 Hz, 1H), 6.91 (d, J = 9.0 Hz, 2H), 6.80

(d, J = 2.4 Hz, 1H), 6.54 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.54 (s, 1H), 3.27 (s, 3H), 2.75 (br, 1H); ¹³C (Ar²: 4-CIC₆H₄) NMR (151 MHz, CDCl₃) δ 161.3, 152.8, 143.0, 135.9, 135.7, 134.1, 130.1, 128.6, 128.5, 128.3, 126.7, 125.7, 121.5, 113.2, 108.2, 102.5, 97.1, 55.4; IR (ATR) 3408, 3060, 2959, 2837, 1612, 1566, 1504, 1489, 1448, 1354, 1275, 1199, 1160, 1089, 1014, 820, 741, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₇ClNaO₃ 387.0764, found: 387.0758.

7-methoxy-4-(4-methoxyphenyl)-2-phenyl-2H-chromen-2-ol (1i)

Yellow solid (800.1 mg, 2.2 mmol, 74% yield); $R_f = 0.27$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, C₆D₆) δ 7.74-7.72

(Ar²: 4-MeOC₆H₄)

(m, 2H), 7.42 (t, J = 7.8 Hz, 2H), 7.38-7.33 (m, 3H), 7.16 (d, J = 9.0 Hz, 1H), 6.94 (d, J = 9.0 Hz, 1H)2H), 6.71 (d, *J* = 2.4 Hz, 1H), 6.55 (dd, *J* = 9.0 Hz, 2.4 Hz, 1H), 5.74 (s, 1H), 3.84 (s, 3H), 3.82 (s, 3H), 3.35 (brs, 1H); ¹³C NMR (151 MHz, C₆D₆) & 161.8, 160.1, 154.0, 144.3, 136.4, 130.4, 128.42, 128.36, 127.4, 126.5, 121.8, 114.5, 114.2, 108.6, 102.9, 97.7, 55.0, 54.9, one carbon was not found due to overlapping; IR (ATR) 3401, 3066, 3006, 2960, 2835, 1613, 1564, 1504, 1448, 1355, 1318, 1275, 1198, 1161,

1124, 1027, 1006, 809 cm⁻¹; HRMS (FD) m/z: [M] Calcd for C₂₃H₂₀O₄ 360.1362, found 360.1361.

7-methoxy-2-phenyl-4-(3-(trifluoromethyl)phenyl)-2H-chromen-2-ol (1j)

Yellow solid (541.8 mg, 1.4 mmol, 68% yield); $R_f = 0.49$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.72 (d, *J* = 7.2 Hz, 2H), 7.67 (s, 1H), 7.64 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 1H), 7.52 (t, *J* = 7.8Hz, 1H), 7.42 (t, J = 7.8 Hz, 2H), 7.36 (t, J = 7.8 Hz, 1H), 7.01 (d, J = 8.4 Hz, 1H), 6.72 (d, J = 3.0 Hz, MeO 1H), 6.55 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.77 (s, 1H), 3.81 (s, 3H), 3.45 (brs, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 161.4, 152.8, 142.9, 138.4, 135.6, 132.1, 130.9 (q, *J* = 31.9 Hz), 128.9, 128.6, $(Ar^{2}: 3-CF_{3}C_{6}H_{4})$ 128.4, 126.5, 125.7, 125.6 (q, *J* = 2.9 Hz), 124.9 (q, *J* = 2.9 Hz), 122.3 (q, *J* = 273 Hz), 122.1, 113.0, 108.4, 102.6, 97.1, 55.5; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.5; IR (ATR) 3407, 3066, 2938, 2838, 1613, 1567, 1505, 1444, 1325, 1252, 1160, 1122, 1073, 1008, 804, 739 cm⁻¹; HRMS (FD+) m/z; [M] Calcd for $C_{23}H_{17}F_{3}O_{3}421.1027$, found: 421.1022.

4-(3-bromophenyl)-7-methoxy-2-phenyl-2H-chromen-2-ol (1k)

Yellow solid (442.0 mg, 1.1 mmol, 54% yield); $R_f = 0.48$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, C_6D_6) δ 7.75 (d, J = 7.2 Hz, 2H), 7.46 (s, 1H), 7.26 (d, J = 7.8 Hz, 1H), 7.19 (t, J = 8.4 Hz, 2H), 7.12 (t, J = 7.2 Hz, 1H), 6.98-6.95 (m, 2H), 6.78 (d, J = 2.4 Hz, 1H), 6.72 (t, J = 7.8 Hz, 1H), 6.45 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.48 (s, 1H), 3.26 (s, 3H), 2.73 (brs, 1H); ¹³C NMR (151 MHz, CDCl₃) & 161.3, 152.8, 142.9, 139.6, 135.5, 131.7, 131.2, 129.9, 128.6, 128.4, 127.4, 126.7, 125.7, 122.5, 121.8, 113.1, 108.3, 102.5, 97.1, 55.5; IR (ATR) 3388, 3063, 3006, 2963, 2835, 1613, 1563, 1504, 1472, 1449, 1416, 1355, 1319, 1275, 1260, 1199, 1161, 1125, 1032, 1005, 810, 764, 750 cm⁻¹; HRMS (FD+) m/z: [M]⁺ Calcd for

7-methoxy-2-phenyl-4-(o-tolyl)-2H-chromen-2-ol (11)

Yellow solid (743.9 mg, 2.2 mmol, 72% yield); $R_f = 0.40$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃, mixture of two rotamers) δ 7.73-7.70 (m, 2H), 7.43-7.39 (m, 2H), 7.37-7.33 (m, 1H), 7.30-7.06 (m, 4H), 6.71-6.67 (m, 2H), 6.48-

6.45 (m, 1H), 5.67-5.65 (m, 1H), 3.81-3.79 (m, 3H), 3.47-3.33 (m, 1H), 2.32-2.05 (m, 3H); ¹³C NMR (151 MHz, CDCl₃, mixture of two rotamers) δ 161.1, 152.4, 152.1, 143.21, 143.17, 136.9, 136.8, 136.4, 136.24, 136.21, 135.9, 133.1, 130.0, 129.5, 129.3, 128.5, 128.4, 128.32, 128.29, 128.1, 127.9, 126.8, 126.6, 125.8, 125.72, 125.69, 125.64, 121.4, 113.7, 113.6, 108.3, 108.1, 102.2, 102.0, 97.5, 97.3, 55.4, 19.7, some carbons were not found due to overlapping; IR (ATR) 3420,

3060, 3015, 2951, 2836, 1613, 1504, 1448, 1356, 1273, 1199, 1121, 1032, 814, 765, 700 cm⁻¹; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{23}H_{20}NaO_3$ 367.1310, found: 367.1305.

5-methoxy-2,4-diphenyl-2H-chromen-2-ol (1n)

Yellow solid (463 mg, 1.4 mmol, 70% yield); $R_f = 0.39$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 8.00 (dd, J = 8.4 Hz, 1.8 Hz, 2H), 7.55 (tt, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.37-7.32 (m, 3H), 7.20 (t, J = 7.2 Hz, 1.2 Hz, 1H), 7.49 (s, 1H), 7.46-7.41 (m, 4H), 7.49 (s, 1H), 7.49 (s, 1H), 7.40 (s, 1H), 7.40

 $= 8.4 \text{ Hz}, 1\text{H}, 6.68 \text{ (dd}, J = 8.4 \text{ Hz}, 1.2 \text{ Hz}, 1\text{H}, 6.43 \text{ (dd}, J = 8.4 \text{ Hz}, 0.6 \text{ Hz}, 1\text{H}), 6.11 \text{ (brs, 1H)}, 3.49 \text{ (s, 3H)}; {}^{13}\text{C} \text{ NMR} (151 \text{ MHz}, \text{CDCl}_3) \delta 193.3, 157.5, 154.6, 146.6, 140.2, 137.5, 133.1, 130.0, 129.2, 128.8, 128.5, 128.4, 127.0, 126.2, 116.0, 110.2, 103.7, 55.6; IR (ATR) 3336, 3057, 3020, 2937, 2836, 2372, 2350, 1595, 1489, 1466, 1448, 1437, 1362, 1264, 1218, 1177, 1087, 1041, 1020 \text{ cm}^{-1}; \text{HRMS}$

(ESI) m/z: $[M+Na]^+$ Calcd for C₂₂H₁₈NaO₃ 353.1154, found: 353.1149.

7-methyl-2,4-diphenyl-2H-chromen-2-ol (1o)

Yellow solid (434 mg, 1.4 mmol, 69% yield); $R_f = 0.50$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.70 (d, J = 8.4 Hz, 2H), 7.21-7.18 (m, 2H), 7.13-7.02 (m, 7H), 6.92 (s, 1H), 6.56 (d, J = 7.8 Hz, 1H), 5.68 (s, 1H), 3.54 (s, 1H),

2.02 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 152.4, 144.2, 140.4, 138.1, 136.7, 129.3, 128.7, 128.4, 126.5, 126.2, 124.0, 122.5, 118.4, 97.3, 21.4, some carbons were not found due to overlapping; IR (ATR) 3527, 3393, 3058, 2920, 2279, 1563, 1490, 1447, 1417, 1355, 1329, 1309, 1219, 1169, 1154, 1123, 1076, 1010, 920 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₂H₁₈NaO₂ 337.1204, found:

337.1200.

7-fluoro-2,4-diphenyl-2H-chromen-2-ol (1p)

Yellow solid (471 mg, 1.5 mmol, 74% yield); $R_f = 0.49$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 7.11-7.02 (m, 10H), 6.94 (dd, J = 9.0 Hz, 6.6 Hz, 1H), 6.82 (dd, J = 10.8 Hz, 3.0 Hz, 1H), 6.40 (dt, J = 7.8 Hz,

2.4 Hz, 1H), 5.58 (s, 1H), 2.67 (s, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 164.0 (d, J = 248.7 Hz), 153.8 (d, J = 13.0 Hz), 147.7, 136.2, 129.1, 128.5, 128.4, 127.7, 127.6, 126.3, 123.8, 117.5, 108.6 (d, J = 21.7 Hz), 105.3 (d, J = 26.0 Hz), 97.6, some carbons were not found due to overlapping; ¹⁹F NMR (565 MHz, CDCl₃) δ -110.3 to -110.4 (m); IR (ATR) 3544, 3370, 3059, 2354, 1810, 1581, 1498,

1491, 1447, 1355, 1313, 1273, 1218, 1175, 1144, 1107, 1078, 995 cm⁻¹; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{21}H_{15}FNaO_2$ 341.0954, found: 341.0949.

3. Preparation of Catalyst

To a solution of **S2** (141.2 mg, 0.28 mmol) in THF (1.4 mL), "BuLi (1.6 M in hexane, 0.42 mL, 0.67 mmol) was added slowly at -78 °C, and the reaction mixture was stirred at -78 °C for 1 h. To the resulting solution was added C_6F_6 (4.2 M in THF, 0.48 mL, 2.0 mmol) at -78 °C. The reaction mixture allowed warming at room temperature and stirred for 12 h. The reaction was quenched with saturated NH₄Cl aq. and the aqueous layer was extracted with CH₂Cl₂. The combined organic extracts were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The residual crude product was used for next stp without purification.

To the solution of crude **S3** in MeOH (4.7 mL) and CH₂Cl₂ (4.7 mL) was added conc HCl aq. (0.2 mL) at room temperature. The reaction mixture was stirred for 14 h at 50 °C. After cooling to 0 °C, saturated NaHCO₃ solution (5.0 mL) was added. The resulting mixuture was extracted with CH₂Cl₂, and the combined extracts were washed with brine, dried over Na₂SO₄ and concentrated under reduced pressure after filtration. The residual crude product was chromatographed on silica gel (hexane/EtOAc = 4:1 to hexane/CH₂Cl₂ = 1:2) to give the product **S4** as white solid (89.3 mg, 54% yield).

To the solution of S4 (88.6 mg, 0.15 mmol) in pyridine (1.5 mL) was slowly added POCl₃ (46.0 mg, 0.3 mmol). The reaction mixture was stirred at room temperature for 12 h. To the resulting solution was added H₂O (1.0 mL) at room temperature, and then the reaction mixture was stirred for additional 30 min. After cooling to 0 °C, 6 M HCl aq. (2.0 mL) was added and aqueous layer was extracted with CH₂Cl₂. The combined extracts were washed with 6 M HCl aq., dried over Na₂SO₄ and concentrated under reduced pressure. The residual crude product was chromatographed on silica gel (CH₂Cl₂/MeOH = 5:1). The obtained product was dissolved in Et₂O, washed with 6 M HCl aq. (x3), dried over Na₂SO₄ and concentrated under reduced pressure to give the product 1c as white solid (88.1 mg, 90% yield).

(*R*)-6-methyl-2,11-bis(6,6,6,6,6-pentafluoro-6l8-hexa-1,3,5-triyn-1-yl)-6,7-dihydrodibenzo[e,g][1,4]dioxocine-1,12-diol (84)

White solid (89.3 mg, 0.15 mmol, 54% yield); $[\alpha]^{25.3}_{D} = +64.5$ (c = 0.5, CHCl₃, >99% ee); $R_f = 0.38$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.31 (t, J = 9.0 Hz, 2H), 6.95 (dd, J = 8.4 Hz, 4.2 Hz, 2H), 5.60 (s, 1H), 5.57 (s, 1H), 4.45 (dd, J = 12.0 Hz, 3.6 Hz, 1H), 4.39-4.32 (m, 1H), 3.81 (dd, J = 12.0 Hz, 10.2 Hz, 1H), 1.37 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 161.3, 160.8, 150.9, 150.8, 144.4 (dm, J = 251.6 Hz), 140.7 (dm, J = 258.8 Hz), 137.6 (dm, J = 250.1 Hz),

133.2, 116.1, 116.0, 115.54, 115.49, 112.2-111.8 (m), 81.8, 79.0, 16.8, some carbon were not found due to overlapping; ¹⁹F NMR (565 MHz, CDCl₃) δ -139.3 to -139.5 (m, 2F), -139.8 to -140.0 (m, 2F), -154.8 to -154.9 (m, 2F), -162.1 to -162.4 (m, 4F); IR (ATR) 3299, 2983, 2937, 1654, 1603, 1582, 1522, 1496, 1450, 1408, 1323, 1283, 1255, 1218, 1167, 1133, 1060, 1049, 1026, 984, 916, 863, 825 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for C₂₇H₁₂F₁₀O₄ 590.0576, found: 590.0574.

(6*R*,12a*S*)-14-hydroxy-6-methyl-2,11-bis(6,6,6,6,6-pentafluoro-6l8-hexa-1,3,5-triyn-1-yl)-6,7-dihydro-1,12-(epoxyphosphanooxy)dibenzo[e,g][1,4]dioxocine 14-oxide ((*S*)-4)

White solid (88.1 mg, 0.14 mmol, 90% yield); $[\alpha]^{25.0}{}_{D} = +7.2$ (c = 1.0, CHCl₃, >99% ee); R_f= 0.56 (EtOAc); ¹H NMR (600 MHz, CDCl₃) δ 7.40 (t, J = 9.0 Hz, 2H), 7.25 (ddd, J = 8.4 Hz, 3.6 Hz, 1.2 Hz, 2H), 4.87 (brs, 1H), 4.54 (dd, J = 12.0 Hz, 3.0 Hz, 1H), 4.45-4.38 (m, 1H), 3.88 (dd, J = 11.4 Hz, 10.8 Hz, 1H), 1.44 (d, J = 6.0 Hz); ¹³C NMR (151 MHz, CDCl₃) δ 160.6, 160.3, 145.8 (t, J = 7.1 Hz), 144.3 (dm, J = 257.3 Hz), 141.4 (dm, J = 252.9 Hz), 137.7 (dm, J = 250.1 Hz), 137.4 (dm,

J = 261.7 Hz), 133.1, 133.0, 120.9, 120.8, 120.1, 120.0, 115.8, 115.7, 110.1 (t, J = 17.4 Hz), 80.8, 78.2, 17.1, some carbon were not found due to overlapping; ³¹P NMR (243 MHz, CDCl₃) δ 2.49; ¹⁹F NMR (565 MHz, CDCl₃) δ -138.4 to -138.7 (m, 2F), -140.7 to -140.9 (m, 2F), -154.2 to -154.4 (m, 2F), -162.2 to -162.5 (m, 2F), -162.7 to -162.9 (m, 2F); IR (ATR) 2983, 2931, 1608, 1570, 1524, 1496, 1452, 1414, 1277, 1226, 1122, 1053, 1029, 991, 927, 893, 864, 836 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for C₂₇H₁₁F₁₀O₆P 652.0134, found: 652.0129.

4. Radical addition reaction between chromenol and toluene derivatives

Representative procedure for the radical addition reaction of 1 with 2

To a mixture of **1a** (33.0 mg, 0.1 mmol) and **2a** (276.4 mg, 3.0 mmol) was added TFA (10 mol%, 1.1 mg, 0.01 mmol) in CH₂Cl₂ (1.0 ml) at -0 °C under argon atmosphere. The resulting mixture was stirred at 0 °C for 2 h under LED irradiation (405 nm). The reaction was quenched with sat. NaHCO₃ aq., and the aqueous phase was extracted with EtOAc. The combined organic phases were dried over Na₂SO₄, and evaporated. The residue was purified by column chromatography (hexane/EtOAc = 10/1) to give a corresponding product as a mixture of regioisomers (32.8 mg, 81% yield, **3aa/3'aa** = 95/5).

2-benzyl-7-methoxy-2,4-diphenyl-2H-chromene (3aa)

Colorless oil (32.8 mg, 0.08 mmol, 81% yield, **3aa/3'aa** = 95/5); $R_f = 0.41$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.45-7.42 (m, 2H), 7.40-7.33 (m, 3H), 7.32-7.27 (m, 4H), 7.22 (tt, *J*= 7.8 Hz, 1.8 Hz), 7.16-7.13 (m, 3H), 7.00-7.96 (m, 2H), 6.82 (d, *J* = 8.4 Hz, 1H), 6.59 (d, *J* = 2.4 Hz, 1H), 6.32 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 5.91 (s, 1H), 3.79 (s, 3H), 3.39-3.34 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 154.6, 144.4, 138.5, 135.92, 135.89, 130.9, 128.7, 128.3, 127.9, 127.7, 127.6, 127.2, 126.6, 126.3, 125.8, 123.6, 115.9, 106.5, 102.5, 81.3, 55.4, 48.8; IR (ATR) 3083, 3058, 3027, 3003, 2935, 2834, 1611, 1567, 1503, 1493, 1444, 1355, 1314, 1271, 1196, 1124, 1075, 1031, 1000, 912, 837, 808, 758, 737 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₄NaO₂ 427.1674, Found 427.1669.

2-benzyl-7-methoxy-4-phenyl-2-(p-tolyl)-2H-chromene (3ba)

2-benzyl-2-(4-bromophenyl)-7-methoxy-4-phenyl-2H-chromene (3ca)

Colorless oil (29.5 mg, 0.06 mmol, 61% yield, 3ca/3'ca = 95/5); $R_f = 0.48$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.41-7.35 (m, 5H), 7.32-7.28 (m, 4H), 7.18-7.15 (m, 3H), 6.99-6.95 (m, 2H), 6.83 (d, J = 8.4 Hz), 6.58 (d, J = 2.4 Hz, 1H), 6.34 (dd, J = 8.4 Hz, 3.0 Hz, 1H), 5.88 (s, J = 2.4 Hz, 1H), 5.1H), 3.80 (s, 3H), 3.35 (d, J = 13.8 Hz, 1H), 3.32 (d, J = 13.8 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) 8 160.8, 154.3, 143.4, 138.3, 136.4, 135.4, 130.94, 130.89, 128.7, 128.3, 127.9, 127.7, 126.7, 126.5, 122.8, 121.2, 115.9,

106.7, 102.6, 80.8, 55.4, 48.6; IR (ATR) 3480, 3409m 2921, 2853, 1612, 1522, 1455, 1412, 1275, 1160, 1198, 1160, 1111, 1073, 1010, 818, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₃BrNaO₂ 505.0779, Found: 505.0773.

2-benzyl-7-methoxy-4-phenyl-2-(4-(trifluoromethyl)phenyl)-2H-chromene (3da)

Colorless oil (28.4 mg, 0.06 mmol, 60% yield, 3da/3'da = 90/10); R_f = 0.40 (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) & 7.53 (m, 4H), 7.40-7.34 (m, 3H), 7.31-7.29 (m, 2H), 7.18-7.15 (m, 3H), 6.98-6.95 (m, 2H), 6.84 (d, J = 8.4 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 6.35 (dd, J = 2.4 Hz, 1H), 6.4 8.4 Hz, 2.4 Hz, 1H), 5.92 (s, 1H), 3.80 (s, 3H), 3.37 (d, J = 13.8 Hz, 1H), 3.35 (d, J = 13.8 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.9, 154.3, 148.5, 138.2, 136.7, 135.3, 130.9, 129.2 (q, *J* = 33.2)

Hz), 128.7, 128.3, 127.9, 127.7, 126.8, 126.6, 126.2, 124.9 (q, J = 2.9 Hz), 124.1 (q, J = 273.3 Hz), 122.7, 115.7, 106.8, 102.6, 80.9, 55.4, 48.7; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.3; IR (ATR) 3063, 3029, 2936, 1613, 1567, 1504, 1444, 1408, 1323, 1275, 1160, 1122, 1068, 1033, 841, 764, 700 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for C₃₀H₂₃F₃O₂ 472.1650, Found: 472.1649.

2-benzyl-2-(3-bromophenyl)-7-methoxy-4-phenyl-2H-chromene (3ea)

Colorless oil (30.0 mg, 0.06 mmol, 62% yield, 3ea/3'ea = 97/3); $R_f = 0.43$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.58 (t, J = 1.8 Hz, 1H), 7.441-7.32 (m, 5H), 7.32-7.29 (m, 2H), 7.18-7.16 (m, 3H), 7.14 (t, J = 7.8 Hz, 1H), 7.00-6.96 (m, 2H), 6.84 (d, J = 9.0 Hz, 1H), 6.60 (d, J Ph = 3.0 Hz, 1H), 6.35 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.85 (s, 1H), 3.80 (s, 3H), 3.34-3.32 (m, 2H); ¹³C

NMR (151 MHz, CDCl₃) δ 160.9, 154.3, 146.9, 138.3, 136.5, 135.4, 130.9, 130.3, 129.5, 129.0, 128.7, 128.3, 127.9, 127.7, 126.7, 126.6, 124.5, 122.7, 122.2, 115.7, 106.8, 102.6, 80.8, 55.4, 48.7; IR (ATR) 3028, 2992, 2952, 2918, 2835, 1611, 1563, 1502, 1468, 1356, 1316, 1275, 1197, 1161, 1126, 1032, 763, 749, 699 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₃BrNaO₂ 505.0779, Found: 505.0774.

2-benzyl-7-methoxy-4-phenyl-2-(o-tolyl)-2H-chromene (3fa)

Colorless oil (35.6 mg, 0.09 mmol, 85% yield, 3fa/3'fa = 93/7); $R_f = 0.44$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.41 (d, J = 7.8 Hz, 1H), 7.39-7.33 (m, 3H), 7.31-7.28 (m, 2H), 7.16-7.12 (m, 5H), 7.07-7.02 (m, 3H), 6.77 (d, J = 7.8 Hz, 1H), 6.56 (d, J = 2.4 Hz, 1H), 6.29 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.87 (s, 1H), 3.77 (s, 3H), 3.52 (d, J = 13.8 Hz, 1H), 3.46 (d, J = 13.8 Hz, 1H), 2.64 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.6, 154.8, 141.9, 138.7, 136.13, 136.12, 135.4,

132.4, 131.0, 128.7, 128.3, 127.64, 127.58, 127.51, 127.3, 126.6, 126.4, 125.2, 123.5, 116.0, 106.4, 102.2, 82.6, 55.3, 46.9, 22.3; IR (ATR) 3059, 3027, 2958, 2931, 2835, 1613, 1567, 1504, 1455, 1443, 1357, 1314, 1285, 1196, 1160, 1125, 1075, 1032, 988, 910, 836, 804, 762, 734, 700, 671, 648 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₆NaO₂ 441.1830, Found: 441.1825.

2-benzyl-7-methoxy-2-phenyl-4-(*p*-tolyl)-2H-chromene (3ga)

Colorless oil (37.7 mg, 0.09 mmol, 86% yield, $3ga/3^{\circ}ga = 96/4$); R_f = 0.42 (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, J = 8.4 Hz, 2H), 7.28 (t, J = 7.2 Hz, 2H), 7.23-7.17 (m, 5H), 7.15-7.12 (m, 3H), 6.99-6.95 (m, 2H), 6.83 (d, J = 8.4 Hz, 1H), 6.58 (d, J = 2.4 Hz, 1H), 6.31 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.90 (s, 1H), 3.79 (s, 3H), 3.36-3.34 (m, 2H), 2.39 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.6, 154.6, 144.5, 137.5, 135.9, 135.8, 135.6, 130.9,

128.9, 128.6, 127.9, 127.6, 127.1, 126.6, 126.3, 125.8, 123.2, 116.0, 106.5, 102.5, 81.3, 55.4, 48.9, 21.2; IR (ATR) 3057, 3004, 2921, 1611, 1501, 1445, 1275, 1261, 1197, 1160, 1125, 1032, 814 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for $C_{30}H_{26}O_2$ 418.1933, Found: 418.1931.

2-benzyl-4-(4-chlorophenyl)-7-methoxy-2-phenyl-2H-chromene (3ha)

Colorless oil (39.9 mg, 0.09 mmol, 91% yield, **3ha/3'ha** = 93/7); $R_f = 0.39$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.43-7.41 (m, 2H), 7.34 (dt, *J* = 9.0 Hz, 2.4 Hz, 2H), 7.29 (tt, *J* = 7.8 Hz, 1.8 Hz, 2H), 7.25-7.21 (m, 3H), 7.16-7.14 (m, 3H), 6.99-6.95 (m, 2H), 6.76 (d, *J* = 9.0 Hz, 1H), 6.59 (d, *J* = 2.4 Hz, 1H), 6.32 (dd, *J* = 9.0 Hz, 2.4 Hz, 1H), 5.90 (s, 1H), 3.80 (s, 3H), 3.40-3.30 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) δ 160.9, 154.6, 144.2, 136.9, 135.8, 135.0, 133.6, 130.9, 130.1,

128.5, 127.9, 127.6, 127.2, 126.4, 126.3, 125.7, 123.9, 115.5, 106.6, 102.7, 81.3, 55.4, 48.8; IR (ATR) 3061, 3029, 2931, 2835, 1612, 1504, 1489, 1444, 1353, 1316, 1275, 1197, 1160, 1125, 1089, 1032, 1014,1001, 911, 837, 749, 699 cm⁻¹; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{29}H_{23}CINaO_2$ 461.1284, Found: 461.1279.

2-benzyl-7-methoxy-4-(4-methoxyphenyl)-2-phenyl-2H-chromene (3ia)

White solid (13.0 mg, 0.03 mmol, 29% yield, **3ia/3'ia** = 95/5); $R_f = 0.73$ (hexane/EtOAc = 4/1); ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, J = 7.2 Hz, 2H), 7.28 (t, J = 7.2 Hz, 2H), 7.25 (dt, J = 8.4 Hz, 2.4 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.16-7.12 (m, 3H), 6.99-6.95 (m, 2H), 6.91 (dt, J = 9.0 Hz, 2.4 Hz, 2H), 6.84 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 2.4 Hz, 1H), 6.32 (dd, J = 9.0 Hz, 3.0 Hz, 1H), 5.88 (s, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.36-3.34 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 159.2,

154.7, 144.5, 136.0, 135.5, 130.9, 129.9, 127.9, 127.6, 127.1, 126.6, 126.3, 125.8, 123.0, 116.2, 113.7, 106.5, 102.6, 81.3, 55.4, 55.3, 48.9; IR (ATR) 2936, 2878, 2356, 1739, 1510, 1453, 1254, 1162, 1111, 1031, 830 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for $C_{30}H_{26}O_3$ 434.1882, Found: 434.1880.

2-benzyl-7-methoxy-2-phenyl-4-(3-(trifluoromethyl)phenyl)-2H-chromene (3ja)

Colorless oil (42.5 mg, 0.09 mmol, 90% yield, 3ja/3'ja = 94/6); $R_f = 0.46$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.61 (d, J = 6.6 Hz, 1H), 7.55 (s, 1H), 7.51-7.46 (m, 2H), 7.45-7.42 (m, 2H), 7.31 (t, J = 7.2 Hz, 2H), 7.23 (tt, J = 7.8 Hz, 1.2 Hz, 1H), 7.17-7.15 (m, 3H), 7.01-6.98 (m, 2H), 6.71 (d, J = 8.4 Hz, 1H), 6.61 (d, J = 2.4 Hz, 1H), 6.33 (dd, J = 8.4 Hz, 3.0 Hz, 1H), 5.93 (s, 1H), 3.80 (s, 3H), 3.39-3.35 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 161.1, 154.6, 144.2, 139.4, 135.8, 134.9, 132.1, 130.9, 130.8 (q, *J* = 33.2 Hz), 128.8, 128.0, 127.6, 127.3, 126.5, 126.2, 125.7, 125.4 (q, *J* = 4.4 Hz), 124.6, 124.5 (q, *J* = 2.9 Hz), 124.1 (q, *J* = 254.6 Hz), 115.2, 106.7, 102.7, 81.4, 55.4, 48.8; ¹⁹F NMR (565 MHz, CDCl₃) δ -62.4; IR (ATR) 3063, 3030, 2935, 2916, 2837, 1613, 1504, 1443, 1327, 1276, 1259, 1161, 1125, 1032, 910, 806, 750, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₃F₃NaO₂ 495.1548, Found: 495.1542.

2-benzyl-4-(3-bromophenyl)-7-methoxy-2-phenyl-2H-chromene (3ka)

Colorless oil (32.9 mg, 0.07 mmol, 68% yield, **3ka/3'ka** = 96/4); $R_f = 0.45$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.49-7.45 (m, 2H), 7.44-7.41 (m, 2H), 7.30 (t, J = 7.8 Hz, 2H), 7.25-7.21 (m, 3H), 7.17-7.14 (3H), 6.99-6.96 (m, 2H), 6.77 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 3.0 Hz, 1H), 6.34 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.91 (s, 1H), 3.80 (s, 3H), 3.38-3.32 (m, 2H); ¹³C NMR (151 MHz, CDCl₃) δ 160.9, 154.6, 144.2, 140.6, 135.8, 134.8, 131.6, 130.9, 130.8, 129.8, 128.0, 127.6,

127.4, 127.3, 126.4, 126.3, 125.7, 124.3, 122.3, 115.3, 106.7, 102.7, 81.3, 55.4, 48.8; IR (ATR) 3060, 3028, 2954, 2927, 2835, 1612, 1564, 1504, 1472, 1444, 1352, 1275, 1197, 1160, 1128, 1032, 910, 750, 698 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for $C_{29}H_{23}BrO_2$ 482.0881, Found: 482.0880.

2-benzyl-7-methoxy-2-phenyl-4-(o-tolyl)-2H-chromene (3la)

Colorless oil (28.0 mg, 0.07 mmol, 67% yield, **3la/3'la** = 98/2); $R_f = 0.45$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃, mixture of two rotamers) δ 7.53-7.43 (m, 2H), 7.34-7.28 (m, 2H), 7.26-7.22 (m, 2H), 7.21-7.15 (m, 5H), 7.13-7.09 (m, 2H), 7.04-7.01 (m, 1H), 6.60-6.57 (m, 1H), 6.40-6.35 (m, 1H), 6.26-6.21 (m, 1H), 5.79-5.77 (m, 1H), 3.78-3.76 (m, 3H), 3.45-3.23 (m, 2H), 2.05-1.82 (m, 3H); ¹³C NMR (151 MHz, CDCl₃, mixture of two rotamers) δ 160.8, 160.7, 154.1, 154.0,

145.4, 144.8, 138.01, 137.93, 136.63, 136.61, 136.0, 135.4, 135.2, 130.9, 130.8, 129.9, 129.8, 129.6, 129.4, 128.1, 127.9, 127.8, 127.7, 127.6, 127.2, 127.1, 126.4, 126.2, 125.7, 125.6, 125.5, 123.6, 123.5, 115.8, 115.7, 106.5, 106.4, 102.3, 102.2, 81.6, 81.5, 55.35, 55.30, 49.5, 48.9, 19.6, 19.3; IR (ATR) 3059, 3027, 2958, 2931, 2835, 1613, 1567, 1504, 1455, 1443, 1357, 1314, 1285, 1196, 1160, 1125, 1032, 910, 836, 762, 734, 700 cm⁻¹; HRMS (FD+) m/z: [M] Calcd for $C_{30}H_{26}O_2$ 418.1933, Found: 418.1933.

2-benzyl-6-methoxy-2,4-diphenyl-2H-chromene (3ma) and 4-benzyl-6-methoxy-2,4-diphenyl-4H-chromene (3'ma)

Colorless oil (racemic reaction: 28.3 mg, 0.07 mmol, 70% yield, **3ma/3'ma** = 64/36, enantioselective reaction: 14.2 mg, 0.035 mmol, 35% yield, **3ma/3'ma** = 74/26); $[\alpha]^{25.1}_{D}$ = +4.5 (*c* = 0.4, CHCl₃, **3ma** = 60% ee, **3'ma** = 26% ee); R_f = 0.42 (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) **3ma**: δ 7.58-7.53 (m,

1H), 7.43-7.41 (m, 2H), 7.41-7.30 (m, 4H), 7.27 (m, 1H), 7.21 (tt, *J* = 7.8 Hz, 1.8 Hz, 1H), 7.16-7.13 (m, 3H), 6.97-6.94 (m, 3H), 6.81-6.78 (m, 1H), 6.71 (dd, *J* = 9.0 Hz, 3.6 Hz, 1H), 6.47 (d, *J* = 3.6 Hz, 1H), 6.11 (s, 1H), 3.61 (s, 3H), 3.36-3.34 (m, 2H); **3'ma**: δ7.58-7.53 (m, 1H), 7.40-7.30 (m, 7H), 7.29-7.25 (m, 4H), 7.25-7.22 (m, 1H), 7.09-7.01 (m, 3H), 6.69 (dd, *J* = 9.0 Hz, 3.0 Hz, 1H), 6.58 (d, *J* = 2.4 Hz, 1H), 5.27 (s, 1H), 3.71 (s, 3H), 3.64-3.61 (m, 1H), 3.38-3.36 (m, 1H); ¹³C NMR (151 MHz, CDCl₃) (for mixture of regioisomers) δ 155.2, 153.6, 149.4, 147.8, 147.2, 145.8, 144.2, 138.2, 137.6, 136.3, 135.9, 134.4, 130.9, 130.6, 128.8, 128.4, 128.3, 128.2, 127.9, 127.8, 127.6, 127.34, 127.29, 127.1, 126.4, 126.1, 125.9, 124.8, 123.3, 117.5, 116.9, 114.4, 113.6, 113.3, 111.5, 103.3, 80.6, 55.6, 48.7, 47.8, 46.2; IR (ATR) 3059, 3029, 2917, 2832, 1601, 1575, 1487, 1446, 1427, 1264, 1181, 1051, 699 cm⁻¹; HRMS (FD+) m/z: $[M]^+$ Calcd for C₂₉H₂₄O₂ 404.1776, Found: 404.1776.

2-benzyl-7-methyl-2,4-diphenyl-2H-chromene (30a) and 4-benzyl-7-methyl-2,4-diphenyl-4H-chromene (3'oa)

Colorless oil (26.4 mg, 0.07 mmol, 68% yield, **30a**/**3'0a** = 80/20); $R_f = 0.43$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) **30a**: δ 7.55 (t, J = 7.2 Hz, 1H), 7.43 (d, J = 7.2 Hz, 2H), 7.39-7.30 (m, 5H), 7.28 (t, J = 7.8 Hz, 2H), 7.21 (t, J = 7.2 Hz, 1H), 7.16-7.13 (m, 2H), 7.00-6.97 (m, 2H), 6.85 (s, 1H), 6.78 (d, J = 7.8 Hz,

1H), 6.57 (d, J = 7.8 Hz, 1H), 5.99 (s, 1H), 3.37-3.35 (m, 2H), 2.30 (s, 3H); **3'oa**: δ 7.45-7.41 (m, 1H), 7.40-7.30 (m, 5H), 7.23 (d, J = 7.2 Hz, 2H), 7.22-7.19 (m, 1H), 7.16-7.13 (m, 2H), 7.06 (d, J = 7.2 Hz, 1H), 7.03 (d, J = 7.2 Hz, 2H), 6.95 (d, J = 7.8 Hz, 1H), 6.80 (d, J = 9.6 Hz, 1H), 6.77-6.57 (m, 1H), 6.69 (s, 1H), 5.31 (s, 1H), 3.58 (d, J = 13.2 Hz, 1H), 3.38 (d, J = 12.6 Hz, 1H), 2.28 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) (for mixture of regioisomers) δ 153.2, 151.0, 149.8, 144.5, 139.7, 138.5, 137.8, 137.4, 136.1, 136.0, 134.4, 130.9, 130.6, 128.8, 128.3, 128.2, 127.93, 127.86, 127.7, 127.6, 127.3, 127.1, 126.3, 126.2, 126.0, 125.8, 125.5, 125.3, 124.7, 124.2, 121.5, 119.9, 117.5, 116.5, 104.2, 80.9, 48.9, 47.8, 21.4, 21.0, some carbon were not found due to overlapping; IR (ATR) 3059, 3029, 2921, 2856, 2350, 1575, 1541, 1495, 1445, 1410, 1375, 1331, 1306, 1267, 1219, 1148, 1075, 1028 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₄NaO 411.1725, Found: 411.1721.

2-benzyl-7-fluoro-2,4-diphenyl-2H-chromene (3pa) and 4-benzyl-7-fluoro-2,4-diphenyl-4H-chromene (3'pa)

Colorless oil (20.0 mg, 0.05 mmol, 51% yield, **3pa/3'pa** = 70/30); $R_f = 0.42$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) **3pa**: δ 7.43 (d, J = 8.4 Hz, 2H), 7.40-7.27 (m, 7H), 7.24 (tt, J = 7.2 Hz, 1.2 Hz, 1H), 7.17-7.14 (m, 3H), 7.00-6.97 (m, 2H), 6.83 (dd, J = 7.8 Hz, 6.6 Hz, 1H), 6.75-6.70 (m, 1H), 6.44 (dt, J = 8.4

Hz, 2.4 Hz, 1H), 5.99 (s, 1H), 3.38 (d, J = 13.8 Hz, 1H), 3.34 (d, J = 13.8 Hz, 1H); **3'pa**: δ 7.55-7.51 (m, 4H), 7.40-7.27 (m, 7H), 7.08 (tt, J = 7.2 Hz, 1.8 Hz, 1H), 7.03 (t, J = 7.8 Hz, 2H), 7.00-6.97 (m, 1H), 6.75-6.71 (m, 2H), 6.57 (dd, J = 9.6 Hz, 2.4 Hz, 1H), 5.33 (s, 1H), 3.54 (d, J = 12.6 Hz, 1H), 3.38 (d, J = 12.6 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃) (for mixture of regioisomers) δ 163.2 (d, J = 247.2 Hz), 161.5 (d, J = 245.8 Hz), 154.7 (d, J = 11.6 Hz), 152.0 (d, J = 13.0 Hz), 149.33, 147.5, 144.1, 138.1, 137.3, 135.6, 135.5, 133.8, 130.9, 130.6, 130.3 (d, J = 8.8 Hz), 128.7, 128.5, 128.4, 128.3, 128.2, 128.0, 127.95, 127.93, 127.7, 127.4, 126.8 (d, J = 10.1 Hz), 126.5, 126.2, 125.7, 125.1, 124.7, 122.0 (d, J = 2.9 Hz), 118.8 (d, J = 2.9 Hz), 110.6 (d, J = 21.7 Hz), 107.6 (d, J = 21.6 Hz), 104.5 (d, J = 24.4 Hz), 104.4, 103.2 (d, J = 24.6 Hz), 81.7, 49.0, 48.0, some carbon were not found due to overlapping; ¹⁹F NMR (565 MHz, CDCl₃) **3pa**: δ -111.2 to -111.2 (m); **3'pa**: δ -114.3 to -114.5 (m); IR (ATR) 3060, 3030, 2925, 2309, 1541, 1497, 1447, 1423, 1354, 1330, 1311, 1270, 1219, 1146, 1110, 1073, 1025 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₈H₂₁FNaO 415.1474, Found: 415.1470.

7-methoxy-2-(4-methylbenzyl)-2,4-diphenyl-2H-chromene (3ab)

Colorless oil (35.2 mg, 0.08 mmol, 84% yield, **3ab/3'ab** = 92/8); $R_f = 0.50$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.44 (d, J = 7.2 Hz), 7.40-7.34 (m, 3H), 7.33-7.30 (m, 2H), 7.28 (t, J = 7.2 Hz, 2H), 7.21 (t, J = 7.8 Hz, 1H), 6.95 (d, J = 7.8 Hz, 2H), 6.86-6.81 (m, 3H), 6.59 (d, J = 2.4 Hz, 1H), 6.32 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.92 (s, 1H), 3.79 (s, 3H), 3.36-3.33 (m, 2H), 2.27 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 154.6, 144.5, 138.6, 135.9,

135.8, 132.8, 130.8, 128.8, 128.33, 128.25, 127.9, 127.7, 127.1, 126.6, 125.9, 123.7, 116.0, 106.5, 102.6, 81.3, 55.4, 48.4, 21.0; IR (ATR) 3051, 3026, 3003, 2919, 2835, 1611, 1567, 1504. 1444, 1356, 1314, 1286, 1270, 1197, 1160, 1125, 1033 cm⁻¹; HRMS (ESI) m/z: $[M+Na]^+ C_{30}H_{26}NaO_2$ 441.1830, Found 441.1825.

7-methoxy-2-(3-methylbenzyl)-2,4-diphenyl-2H-chromene (3ac)

Colorless oil (36.0 mg, 0.09 mmol, 86% yield, **3ac/3'ac** = 98/2); $R_f = 0.50$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.43 (m, 2H), 7.39-7.34 (m, 3H), 7.33-7.27 (m, 4H), 7.22 (tt, *J* = 7.2 Hz, 1.2 Hz, 1H), 7.03 (t, *J* = 7.8 Hz, 1H), 6.96 (d, *J* = 7.2 Hz, 1H), 6.81 (d, *J* = 8.4 Hz, 1H), 6.77 (d, *J* = 8.4 Hz, 2H), 6.59 (d, *J* = 2.4 Hz, 1H), 6.32 (dd, *J* = 8.4 Hz, 2.4 Hz, 1H), 5.91 (s, 1H), 3.79 (s, 3H), 3.34 (d, *J* = 13.8 Hz, 1H), 3.31 (d, *J* = 13.8 Hz, 1H), 2.21 (s, 3H); ¹³C NMR (151 MHz,

CDCl₃) δ 160.7, 154.7, 144.5, 138.6, 137.0, 135.9, 135.7, 131.9, 128.8, 128.3, 127.9, 127.8, 127.7, 127.4, 127.13, 127.06, 126.5, 125.9, 123.6, 115.9, 106.5, 102.5, 81.3, 55.4, 48.8, 21.3; IR (ATR) 3057, 3026, 2921, 2835, 1610, 1504, 1491, 1444, 1274, 1197, 1159, 1125, 1072, 1032, 765, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₆NaO₂ 441.1830, Found 441.1825.

7-methoxy-2-(2-methylbenzyl)-2,4-diphenyl-2H-chromene (3ad)

3ad

Colorless oil (36.8 mg, 0.09 mmol, 88% yield, **3ad/3'ad** = 95/5); $R_f = 0.52$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, J = 7.2 Hz, 2H), 7.40-7.35 (m, 3H), 7.34-7.31 (m, 2H), 7.27 (t, J = 7.2 Hz, 2H), 7.22 (t, J = 7.2 Hz, 1H), 7.10-7.00 (m, 4H), 6.79 (d, J = 9.0 Hz, 1H), 6.56 (d, J= 2.4 Hz, 1H), 6.29 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.97 (s, 1H), 3.78 (s, 3H), 3.42 (d, J = 13.8 Hz, 1H), 3.36 (d, J = 13.8 Hz, 1H), 2.07 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 154.6, 144.9,

138.6, 137.9, 135.9, 134.3, 131.8, 130.0, 128.7, 128.3, 127.9, 127.7, 127.2, 126.5, 125.8, 125.0, 123.6, 115.7, 106.4, 102.4, 81.7, 55.4, 45.7, 20.0; IR (ATR) 3058, 3022, 2956, 2931, 2864, 2835, 1611, 1567, 1504, 1491, 1462, 1444, 1356, 1313, 1274, 1197, 1159, 1124, 1071, 1031, 992, 842, 808, 757, 719, 699 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₆NaO₂ 441.1830, Found 441.1825.

2-(3,5-dimethylbenzyl)-7-methoxy-2,4-diphenyl-2H-chromene (3ae)

Colorless oil (30.3 mg, 0.07 mmol, 70% yield, **3ae/3'ae** = 97/3); $R_f = 0.51$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.46-7.43 (m, 2H), 7.40-7.34 (m, 3H), 7.33-7.27 (m, 4H), 7.22 (tt, J = 7.2 Hz, 1.8 Hz, 1H), 6.81 (d, J = 8.4 Hz, 1H), 6.78 (m, 1H), 6.58 (d, J = 2.4 Hz, 1H), 6.55 (m, 2H), 6.31 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.90 (s, 1H), 3.79 (s, 3H), 3.30 (d, J = 13.2 Hz, 1H), 3.26 (d, J = 13.2 Hz, 1H), 2.17 (s, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 160.6,

154.7, 144.5, 138.6, 136.8, 135.8, 135.5, 128.9, 128.8, 128.2, 127.9, 127.8, 127.7, 127.1, 126.5, 125.9, 123.6, 116.0, 106.5, 102.5, 81.3, 55.3, 48.7, 21.2; IR (ATR) 3056, 3024, 2916, 2835, 1567, 1504, 1491, 1463, 1443, 1355, 1314, 1284, 1269, 1196, 1125, 1073, 1032, 848, 738, 718, 699 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₁H₂₈NaO₂ 455.1987, Found: 455.1981.

7-methoxy-2,4-diphenyl-2-(1-phenylethyl)-2H-chromene (3af) and 7-methoxy-2,4-diphenyl-4-(1-phenylethyl)-4H-chromene (3'af)

Colorless oil (34.7 mg, 0.08 mmol, 83% yield, $3af/3^{\circ}af = 86/14$, 3af : 51/49 dr, $3^{\circ}af : 51/49$ dr); $R_f = 0.45$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) 3af (for mixture of diastereomers) $\delta7.40-7.00$ (m, 30H), 6.83 (d, J = 8.4 Hz, 1H), 6.71 (d, J = 8.4 Hz, 1H), 6.65-6.63 (m, 1H), 6.62-6.60 (m, 1H), 6.31 (dt, J = 9.0

Hz, 2.4 Hz, 1H), 6.26 (dt, J = 8.4 Hz, 2.4 Hz, 1H), 5.98 (s, 1H), 5.87 (s, 1H), 3.79 (s, 3H), 3.78 (s, 3H), 3.39-3.34 (m, 2H), 1.43 (d, J = 7.2 Hz, 3H), 1.41 (d, J = 7.2 Hz, 3H); **3'af** (for mixture of diastereomers) δ 7.70 (d, J = 7.2 Hz, 2H), 7.66 (d, J = 7.8 Hz, 2H), 7.63 (d, J = 7.8 Hz, 2H), 7.48 (d, J = 7.2 Hz, 2H), 7.45-7.03 (m, 19H), 6.97 (t, J = 7.8 Hz, 2H), 6.92 (d, J = 8.4 Hz, 1H), 6.89 (d, J = 7.2 Hz, 2H), 6.67 (d, J = 8.4 Hz, 1H), 6.58 (t, J = 2.4 Hz, 1H), 6.47 (dt, J = 8.4 Hz, 2.4 Hz, 1H), 6.18 (t, J = 2.4 Hz, 1H), 5.69 (s, 1H), 5.43 (s, 1H), 3.80 (s, 3H), 3.65 (s, 3H), 2.96-2.91 (m, 1H), 2.82-2.77 (m, 1H), 1.30 (d, J = 7.2 Hz, 3H), 1.28 (d, J = 6.6 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃) (for mixture of regioisomers and their diastereomers) δ 160.74, 160.68, 158.9, 158.4, 154.8, 154.7, 152.7, 150.7, 149.3, 147.8, 147.6, 147.5, 145.8, 144.8, 143.7, 142.7, 142.6, 141.8, 141.5, 138.7, 135.8, 135.4, 134.5, 134.2, 129.8, 129.7, 129.5, 129.3, 128.74, 128.72, 128.4, 128.3, 128.24, 128.18, 128.0, 127.9, 127.76, 127.68, 127.65, 127.59, 127.52, 127.33, 127.30, 126.93, 126.89, 126.7, 126.5, 126.4, 126.3, 126.14, 126.05, 125.99, 125.93, 125.89, 125.7, 124.9, 124.7, 123.9, 123.0, 119.4, 117.3, 115.7, 115.6, 110.2, 106.4, 106.1, 103.6, 102.5, 102.3, 100.8, 100.3, 100.1, 83.7, 83.3, 55.4, 55.3, 51.2, 50.6, 48.7, 48.5, 48.4, 48.0, 47.2, 46.4, 17.9, 17.8, 16.3, 15.7, some carbon could not be assigned due to presence of regioisomers and their diastereomers; IR (ATR) 3082, 3058, 3027, 2968, 2934, 2907, 2876, 2830, 2249, 1568, 1541, 1492, 1374, 1322, 1275, 1218, 1197, 1160, 1072, 1032, 1020, 987 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₀H₂₆NaO₂ 441.1830, Found: 441.1825.

7-methoxy-2,4-diphenyl-2-(2-phenylpropan-2-yl)-2H-chromene (3ag)

Colorless oil (31.6 mg, 0.07 mmol, 73% yield, $3ag/3^{2}ag = 91/9$); R_f = 0.42 (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.39-7.33 (m, 4H), 7.28 (d, J = 8.4 Hz, 2H), 7.19-7.15 (m, 3H), 7.13-7.09 (m, 5H), 7.06 (d, J = 6.6 Hz, 2H), 6.72 (d, J = 9.0 Hz, 1H), 6.56 (t, J = 3.0 Hz, 1H), 6.24 (dt, J = 8.4 Hz, 2.4 Hz, 1H), 6.12 (s, 1H), 3.77 (s, 3H), 1.56 (s, 3H), 1.52 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ

160.6, 154.7, 144.4, 142.2, 138.9, 135.8, 129.1, 128.8, 128.3, 128.1, 127.6, 126.8, 126.4, 126.1, 122.9, 115.8, 106.1, 102.5, 85.1, 55.3, 46.3, 24.8, 24.4; IR (ATR) 3056, 3027, 2959, 2933, 2835, 2370, 1782, 1569, 1504, 1463, 1443, 1386, 1357, 1307, 1274, 1197, 1160, 1123, 1033, 1014, 970 cm⁻¹; HRMS (ESI) m/z: $[M+Na]^+$ Calcd for $C_{31}H_{28}NaO_2$ 455.1987, Found:455.1982.

2-(4-isopropylbenzyl)-7-methoxy-2,4-diphenyl-2H-chromene (3ah)

Colorless oil (39.7 mg, 0.09 mmol, 89% yield, **3ah/3'ah** = 92/8); $R_f = 0.40$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.47-7.44 (m, 2H), 7.39-7.33 (m, 3H), 7.32-7.27 (m, 4H), 7.22 (tt, J = 7.8 Hz, 1.2 Hz, 1H), 7.00 (d, J = 7.8 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 6.80 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 2.4 Hz, 1H), 6.31 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 5.91 (s, 1H), 3.79 (s, 3H), 3.35 (d, J = 13.8 Hz, 1H), 3.31 (d, J = 13.8 Hz, 1H), 2.82 (sep, 7.2 Hz, 1H), 1.19 (d, J = 13.8 Hz, 1H), 7.90 (d, J = 13.8 H

= 7.2 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃) δ 160.7, 154.7, 146.8, 144.6, 138.6, 135.9, 133.2, 130.8, 128.8, 128.2, 127.9, 127.7, 127.1, 126.5, 125.9, 125.7, 123.7, 115.9, 106.4, 102.6, 81.4, 55.4, 48.5, 33.6, 23.98, 23.96; IR (ATR) 3079, 3056, 2959, 2929, 1611, 1567, 1505, 1462, 1444, 1315, 1275, 1197, 1160, 1125, 1033, 910, 749, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₃₂H₃₀NaO₂ 469.2143, Found: 469.2138.

2-(4-bromobenzyl)-7-methoxy-2,4-diphenyl-2H-chromene (3ai)

Colorless oil (10.2 mg, 0.02 mmol, 21% yield, **3ai/3'ai** = 95/5); $R_f = 0.40$ (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.42 (d, J = 7.2 Hz, 2H), 7.40-7.33 (m, 3H), 7.32 (d, J = 1.2 Hz, 1H), 7.32-7.30 (m, 1H), 7.29 (s, 1H), 7.28-7.27 (m, 1H), 7.27-7.25 (m, 1H), 7.22 (tt, J = 7.2 Hz, 1.2 Hz, 1H), 6.85-6.82 (m, 3H), 6.57 (d, J = 2.4 Hz, 1H), 6.34 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.88 (s, 1H), 3.79 (s, 3H), 3.32 (d, J = 13.2 Hz, 1H), 3.28 (d, J = 13.8 Hz, 1H); ¹³C NMR

(151 MHz, CDCl₃) δ 160.8, 154.4, 144.0, 138.4, 136.2, 134.9, 132.5, 130.7, 128.7, 128.3, 128.0, 127.8, 127.3, 126.7, 125.7, 123.3, 120.5, 115.8, 106.6, 102.6, 81.0, 55.4, 48.1; IR (ATR) 3058, 3027, 2933, 2835, 1611, 1504, 1488, 1444, 1274, 1197, 1160, 1125, 1071, 1032, 1012, 759, 699 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₃BrNaO₂ 505.0779, Found: 505.0773.

2-(4-fluorobenzyl)-7-methoxy-2,4-diphenyl-2H-chromene (3aj)

Colorless oil (34.6 mg, 0.08 mmol, 82% yield, 3aj/3'aj = 96/4); R_f = 0.40 (hexane/EtOAc = 10/1); ¹H NMR (600 MHz, CDCl₃) δ 7.42 (dd, J = 8.4 Hz, 1.2 Hz, 2H), 7.40-7.33 (m, 3H), 7.32-7.27 (m, 4H), 7.22 (tt, J = 7.2 Hz, 1.8 Hz, 1H), 6.95-6.91 (m, 2H), 6.85-6.81 (m, 3H), 6.58 (d, J = 3.0 Hz, 1H), 6.32 (dd, J = 9.0 Hz, 2.4 Hz, 1H), 5.89 (s, 1H), 3.80 (s, 3H), 3.33 (d, J = 13.8 Hz, 1H), 3.31 (d, J = 13.8 Hz, 1H), ; ¹³C NMR (151 MHz, CDCl₃) δ 161.7 (d, J = 244.3 Hz),

160.8, 154.5, 144.2, 138.4, 136.1, 132.3 (d, J = 7.2 Hz), 131.6 (d, J = 2.9 Hz), 128.7, 128.3, 128.0, 127.8, 127.2, 126.7, 125.7, 123.4, 115.8, 114.4 (21.7 Hz), 106.5, 102.6, 81.1, 55.4, 48.0; ¹⁹F NMR (565 MHz, CDCl₃) δ -116.7 to -116.8; IR (ATR) 3057, 3027, 3002, 2929, 2854, 1724, 1610, 1567, 1508, 1444, 1356, 1313, 1286, 1271, 1257, 1221, 1197, 1159, 1032, 835, 700 cm⁻¹; HRMS (ESI) m/z: [M+Na]⁺ Calcd for C₂₉H₂₃FNaO₂ 445.1580, Found: 445.1574.

5. Enantioselective radical addition reaction using chiral phosphoric acid catalyts

Procedure for the enantioselective radical addition reaction between chromenol 1m and toluene 2a catalyzed by chiral phosphoric acid (S)-4.

To a mixture of **1m** (0.1 mmol) and (*S*)-**4** (5 mol%) was added toluene (1.0 ml) under argon atmosphere. The reaction mixture was stirred -75 °C for 12 h under LED irradiation (405 nm). The reaction mixture was purified by flash column chromatography (Hexane/ EtOAc = 10/1) to give a mixture of **3ma** and **3'ma** (14.2 mg, 35% yield, **3ma/3'ma** = 74/26, ee of **3ma** = 60%, ee of **3'ma** = 26%). The enantiomeric excess was determined by chiral stationary phase HPLC analysis (CHIRALPAK AD-3 (hexane:^{*i*}PrOH = 99/1, 1.0 mL/min, 30 °C, 254 nm) 14.7 min (minor of **3ma**), 17.4 min (major of **3ma**), 18.8 min (minor of **3'ma**), 21.5 min (major of **3'ma**).

6. Additional screening

6-1. The reaction of benzopyrylium cation salts $1^{a}X^{-}$

6-2. Screening of chiral phosphoric acids for enantioselective reaction

In the case of using (*R*)-5 (especially in using (*R*)-5a), the degradation of the catalysts was observed probably due to the oxidation of catalysts. In contrast, no degradation of the catalysts was observed when (*R*)-6, (*R*)-7, and (*S*)-4 were used in this reaction conditions.

6-3. Investigation of reaction conditions

6-4. Enantioselective reaction of 1a

7. UV-Vis absorption spectroscopy

To a solution of **1a** or **1i** in CH_2Cl_2 (1.0×10^{-5} M) was added 1.0 equiv of TFA, and then a UV/Vis spectra was recorded (Figure S1). The spectra data indicates that the treatment of TFA enables the formation of the benzopyrylium cation intermediates. As shown in Figure S1c, the introduction of the methoxy group leads to a redshift in the absorption spectra of the generated benzopyrylium cation intermediate.

Figure S1a. UV/Vis spectroscopy analysis of 1'a+TFA-

Figure S1b. UV/Vis spectroscopy analysis of 1'i+TFA-

Figure S1c. UV/Vis spectroscopy analysis of $1a^{+}TFA^{-}$ and $1i^{+}TFA^{-}$

8. Stern-Volmer luminescence quenching experiments

Emission intensities were recorded on a HITACHI F-4500. The solutions were excited at 360 nm and the luminescence was measured at 479 nm. Stern-Volmer luminescence quenching experiments were run with prepared mixture of $1^{a}^{+}BF_{4}^{-}$ (1.0×10⁻⁶ M) and toluene (indicated concentration) in CH₂Cl₂ solutions (Figure S2). The data shows that toluene is competent at quenching the excited state of the $1^{a}^{+}BF_{4}^{-}$.

Figure S2. (a) Fluorescence spectra of $1'a^+BF_4^-$ in DCM with increasing amount of toluene. (b) The Stern-Volmer plots.

9. Light ON/OFF Experiment

Light On/Off experiment was conducted to confirm if the reaction proceeds in a chain process or not. As a result, the present reaction proceeded only in the presence of light irradiation. This result indicates that the present reaction does not proceed in a chain process.

10. Theoretical Studies

10-1. Energy profile in the carbon-carbon bond forming step

DFT calculation was conducted to determine the actual reaction pathway in the carbon-carbon bond formation step. All calculations were performed with the Gaussian 16 package (Revision B.01). Geometries were optimized and characterized using frequency calculations at the UM06-2X/6-311+G(d,p) level. Gibbs free energies in the solution phase were calculated using single-point energy calculations at the same level according to the SMD solvation model (dichloromethane: $\varepsilon = 8.93$) for the optimized structures.

(a) Radical coupling pathway

(b) Radical addition pathway

(c) Electron transfer process

Cartesian coordinates

Benzopyrylium radical (A) Benzopyrylium radical (A)
UM062X/6-311g(d, p)
E(UM062X) = -998.835704 hartree
Zero-point Energy Correction = 0.329416 hartree
Thermal Correction to Enthalpy = 0.348528 hartree
Thermal correction to Enthalpy = 0.349472 hartree
Thermal correction to Gibbs Free Energy = 0.279545 hartree
Sum of electronic and Zero-point Energies = -998.506288 hartree
Sum of electronic and thermal Enthalpies = -998.4867176 hartree
Sum of electronic and thermal Fintalers = -998.4867176 hartree
Sum of electronic and thermal Fintalpies = -998.486231 hartree
Sum of electronic and thermal Fintalpies = -998.556159 hartree
Sum Of electronic and thermal Fintalpies = -998.556159 hartree
Gibbs Free Energy in CH₂Cl₂ = -998.58568 hartree
The number of Imaginary frequencies = 0

01003 1100	LICESY IN CILC	J12 JJ0. 00000	nartice
The number	of Imaginary	frequencies = 0	

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	I ype	λ	<u> </u>	L
1	6	0	2.654434	4.718728	0.110435
2	6	Ő	3. 015223	3.672177	0.954807
3	6	Ő	1,603822	4, 544852	-0.784936
4	6	0	2, 336537	2,461839	0.901562
5	1	0	3,822135	3,803169	1.666375
6	6	Ō	0.923033	3.334918	-0.838758
7	1	0	1.318894	5.351021	-1.450821
8	6	0	1.277419	2.271514	0.002296
9	1	0	2.603220	1.662519	1.583763
10	1	0	0.120230	3. 197203	-1.554828
11	6	0	0.517524	1.011606	-0.031377
12	6	0	1.154550	-0.288651	-0.036621
13	6	0	-0.875748	1.035567	-0.048057
14	6	0	2.530158	-0.518880	-0.159619
15	6	0	0.329822	-1.432601	0.023971
16	6	0	-1.640306	-0.109684	0.003379
17	6	0	3.069151	-1.799521	-0.173391
18	1	0	3.195509	0.328499	-0.263900
19	6	0	0.841242	-2.714336	0.017583
20	6	0	2.220413	-2.903793	-0.072446
21	1	0	0.177953	-3.567545	0.070273
22	1	0	3.186289	5.661565	0.151881
23	1	0	-1.382265	1.990972	-0.044868
24	6	0	-3.092517	-0.191039	0.028228
25	6	0	-3.729240	-1.431403	0.197887
26	6	0	-3.895455	0.954023	-0.117205
27	6	0	-5.114656	-1.517512	0.227913
28	1	0	-3.128477	-2.323727	0.308606
29	6	0	-5.276750	0.858994	-0.084884
30	1	0	-3.442021	1.926072	-0.263867
31	6	0	-5.897929	-0.376942	0.088817
32	1	0	-5.584740	-2.484707	0.361921
33	1	0	-5.874940	1.755197	-0.199624
34	1	0	-6.978484	-0.447097	0.112602
35	8	0	-1.030247	-1.333587	0.081556
36	1	0	4.138656	-1.921560	-0.271231
37	8	0	2.636171	-4.193207	-0.066806
38	6	0	4.024133	-4.438702	-0.167460
39	1	0	4.565348	-3.990870	0.671425
40	1	0	4.140619	-5.519420	-0.138666
41	1	0	4.425514	-4.053873	-1.109794

Benzyl radical (C) UM062X/6-311g(d, p) E(UM062X) = -270.852205 hartree Zero-point Energy Correction = 0.115117 hartree Thermal Correction to Enthalpy = 0.120795 hartree Thermal correction to Enthalpy = 0.121739 hartree Thermal correction to Gibbs Free Energy = 0.085448 hartree Sum of electronic and Zero-point Energies = -270.737088 hartree Sum of electronic and thermal Energies = -270.730460 hartree Sum of electronic and thermal Enthalpies = -270.730466 hartree Sum of electronic and thermal Free Energies = -270.766757 hartree Sum of electronic and thermal Free Energies = -270.766757 hartree Sum of electronic and thermal Free Energies = -270.766757 hartree Sum of electronic and thermal Free Energies = -270.7762 hartree Gibbs Free Energy in CH₂Cl₂ = -270.77762 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.832861	0.000000	-0.000010
2	6	0	-1.130222	-1.207353	-0.000005
3	6	0	0.251932	-1.212821	0.000003
4	6	0	0.987232	0.000000	0.000005
5	6	0	0.251932	1.212821	0.000000
6	6	0	-1.130222	1.207353	-0.000008
7	1	0	-2.915847	0.000000	-0.000016
8	1	0	-1.671470	-2.146260	-0.000006
9	1	0	0.793878	-2.152360	0.000007
10	1	0	0.793877	2.152360	0.000002
11	1	0	-1.671470	2.146260	-0.000012
12	6	0	2.396542	0.000000	0.000013
13	1	0	2.952519	-0.927818	0.000017
14	1	0	2.952519	0.927818	0.000015

Int-A
UM062X/6-311g(d, p)
E(UM062X) = -1269.704040 hartre
Zero-point Energy Correction =
Thermal Correction to Energy =

Zero-point Energy Correction = 0.445344 hartree Thermal Correction to Energy = 0.471111 hartree Thermal correction to Enthalpy = 0.472055 hartree Thermal correction to Enthalpy = 0.472055 hartree Thermal correction to Gibbs Free Energy= 0.386886 hartree Sum of electronic and Zero-point Energies = -1269.258696 hartree Sum of electronic and thermal Energies = -1269.232929 hartree Sum of electronic and thermal Enthalpies = -1269.231985 hartree Sum of electronic and thermal Erree Energies = -1269.317154 hartree SUM(CHcl:)/UM062X/6-311g(d,p) E(UM062X) = -1269.739887 hartree Gibbs Free Energy in CHcl: = -1269.353 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-2 842827	4 784974	-0 464954
2	6	0	-3.197440	3. 783520	-1.365350
3	ő	ŏ	-1.735116	4.602252	0.357721
4	6	ŏ	-2.459111	2,609402	-1.437878
5	1	Ō	-4.047218	3.922977	-2.023455
6	6	0	-0.995654	3.428978	0.285726
7	1	0	-1.450881	5.373985	1.063695
8	6	0	-1.344374	2.408026	-0.610469
9	1	0	-2.723521	1.850925	-2.165739
10	1	0	-0.146044	3.283872	0.944046
11	6	0	-0.524492	1.191198	-0.700726
12	6	0	-1.092293	-0.137403	-0.801372
13	6	0	0.865688	1.281716	-0.667830
14	6	0	-2.449370	-0.454114	-0.669023
15	6	0	-0.210400	-1.225385	-0.973787
16	6	0	-2.918500	-1.759137	-0.749586
17	1	0	-3.155501	0.341313	-0.468584
18	6	0	-0.651791	-2.530108	-1.068933
19	6	0	-2.014347	-2.802877	-0.958422
20	1	0	0.056896	-3. 337249	-1.201125
21	1	0	-3.421508	0.098281	-0.408164
22	1	0	1. 32/32/	2.204307	-0. 000399
23	8	0	1. 140079	-1.049506 -1.047018	-1.040467
24	6	0	1 694771	0 199579	-0.700820
20	6	0	2 126720	0.162372	_0.799629
20	6	0	3 871221	1 306222	-0.370035
21	6	0	3 841192	-1 025677	-0.986587
20	6	0	5 253338	1. 261732	-0.281608
30	1	0	3 362259	2 235558	-0 146775
31	6	Ő	5 225832	-1.061472	-0.894629
32	ĩ	ŏ	3. 291171	-1.917398	-1.255429
33	6	ŏ	5, 942099	0.078311	-0.542988
34	1	0	5, 798198	2.155495	-0.001215
35	1	0	5.749089	-1.988322	-1.098848
36	1	0	7.022271	0.046996	-0.470241
37	6	0	2.005452	-1.612594	2.008239
38	1	0	2.116243	-2.667187	1.792405
39	1	0	2.894667	-0.995848	2.010210
40	6	0	0.734865	-1.059764	2.273292
41	6	0	-0.432713	-1.866748	2.275017
42	6	0	0.576378	0.323307	2.539039
43	6	0	-1.676288	-1.318622	2.521112
44	1	0	-0.335404	-2.927213	2.067951
45	6	0	-0.673994	0.861997	2.786366
46	1	0	1.457758	0.957284	2.537491
47	6	0	-1.808916	0.049635	2.774497
48	1	U	-2.555322	-1.952863	2.505359
49	1	0	-0.776987	1.922074	2.987482
5U 51	1	0	-2. (86225	0.478794	2.960013
50	6 6	0	-2.300473	4.111210	-0.020840
0Z	0	0	-3. (28285	-4.440052	-0.920840
00 54	1	0	-4. 324417 _2 700077	-5 520890	-1 094071
04 55	1	0	-0. 100011	-4 145470	0.060078
	1	v	7.117212	4. 140470	0.000078

TS-1

 $\begin{array}{l} \textbf{TS-1} \\ \text{UMO62X}/6-311g\,(d,p) \\ \text{E}\,(\text{UMO62X}) = -1269.\,656599 \text{ hartree} \\ \text{Zero-point Energy Correction = 0.\,445911 hartree} \\ \text{Thermal Correction to Energy = 0.\,471321 hartree} \\ \text{Thermal correction to Enthalpy = 0.\,472265 hartree} \\ \text{Thermal correction to Gibbs Free Energy= 0.388688 hartree} \\ \text{Sum of electronic and Zero-point Energies = -1269.\,185278 hartree} \\ \text{Sum of electronic and thermal Energies = -1269.\,185278 hartree} \\ \text{Sum of electronic and thermal Energies = -1269.\,184334 hartree} \\ \text{Sum of electronic and thermal Free Energies = -1269.\,267911 hartree} \\ \text{SMD}\,(CH_2C1_2)/\text{UMO62X}/6-311g\,(d,p) \\ \text{E}\,(\text{UMO62X}) = -1269.\,2679 hartree \\ \text{Gibbs Free Energy in CH_2C1_2} = -796477.\,67 hartree \\ \text{The number of Imaginary frequencies = 1} \\ \end{array}$ The number of Imaginary frequencies = 1

Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	Х	Y	Z
1	6	0	-1.971348	5.059087	-0.931440
2	6	0	-2.474476	4.022463	-1.716532
3	0	0	-0.906998	4.802543	-0.071343

4	6	0	-1.939424	2.746975	-1.629056
5	1	0	-3.279745	4.215803	-2.416016
6	6	0	-0.361557	3.529674	0.012752
7	1	0	-0.499385	5.600523	0.538800
8	6	0	-0.877354	2.459879	-0.746902
9	1	0	-2.308213	1.967986	-2.285072
10	1	0	0.460373	3.346547	0.695421
11	6	0	-0.279219	1.138963	-0.646233
12	6	0	-0.989695	-0.074804	-0.738804
13	6	0	1.160250	1.031121	-0.426795
14	6	0	-2.405676	-0.206537	-0.785493
15	6	0	-0.267606	-1.310925	-0.722150
16	6	0	-3.033398	-1.423258	-0.932781
17	1	0	-3.011563	0.681025	-0.665748
18	6	0	-0.886861	-2.534638	-0.901819
19	6	0	-2.269549	-2.601446	-1.028094
20	1	0	-0.296844	-3.442134	-0.904145
21	1	0	-2.392484	6.054487	-1.001628
22	1	0	1.780937	1.914197	-0.470223
23	8	0	1.070739	-1.357576	-0.505423
24	1	0	-4.114083	-1.458340	-0.954168
25	6	0	1.758584	-0.196892	-0.145158
26	6	0	3.231365	-0.369670	-0.339298
27	6	0	4.114836	0.633797	0.068338
28	6	0	3.745844	-1.533942	-0.909412
29	6	0	5.482943	0.484679	-0.110311
30	1	0	3.732921	1.535817	0.534033
31	6	0	5.118880	-1.680855	-1.084553
32	1	0	3.068779	-2.316310	-1.224852
33	6	0	5.991898	-0.675374	-0.688733
34	1	0	6.154248	1.273401	0.207980
35	1	0	5.504512	-2.587438	-1.535920
36	1	0	7.060004	-0.792881	-0.825766
37	6	0	1.695563	-0.461313	1.834487
38	1	0	2.187092	-1.430309	1.850878
39	1	0	2.332301	0.361242	2.145694
40	6	0	0.316439	-0.420672	2.278834
41	6	0	-0.476519	-1.579836	2.278115
42	6	0	-0.286598	0.799866	2.633250
43	6	0	-1.824963	-1.518956	2.603941
44	1	0	-0.024440	-2.526998	2.003393
45	6	0	-1.632544	0.860525	2.952426
46	1	0	0.314837	1.703279	2.636811
47	6	0	-2.408469	-0.299945	2.936652
48	1	0	-2.423208	-2.422743	2.587663
49	1	0	-2.083734	1.811964	3.208714
50	1	0	-3.462904	-0.250248	3.181279
51	8	0	-2.794102	-3.840505	-1.201051
52	6	0	-4.197745	-3.954346	-1.313858
53	1	0	-4.573127	-3.383015	-2.168115
54	1	0	-4.401939	-5.011455	-1.467077
55	1	0	-4.697037	-3.616720	-0.400335

3aa IMO62X/6-311g(d, p) E(UM062X) = -1269.774432 hartree Zero-point Energy Correction = 0.451798 hartree Thermal correction to Energy = 0.476746 hartree Thermal correction to Enthalpy = 0.477690 hartree Thermal correction to Gibbs Free Energy = 0.395930 hartree Sum of electronic and Zero-point Energies = -1269.297686 hartree Sum of electronic and thermal Energies = -1269.297686 hartree Sum of electronic and thermal Enthalpies = -1269.297686 hartree Sum of electronic and thermal Enthalpies = -1269.297686 hartree Sum of electronic and thermal Enthalpies = -1269.297686 hartree Sum of electronic and thermal Enthalpies = -1269.297686 hartree Sum of electronic and thermal Free Energies = -1269.378502 hartree Sum (CHcCla)/UM062X/=-311g(d, p) E(UM062X) = -1269.8113 hartree Gibbs Free Energy in CHcL₂ = -1269.4154 hartree The number of Imaginary frequencies = 0

Contor	antor Atomic Atomic Coordinatos (Angetroms				stroms)
Number	Number	Туре	X	Y	Z
1	6	0	-1.170352	5.284683	-0.880218
2	6	0	-1.425068	4.355786	-1.886032
3	6	0	-0.551743	4.874231	0.295110
4	6	0	-1.066048	3.024817	-1.715715
5	1	0	-1.901500	4.670509	-2.807064
6	6	0	-0.187811	3.541937	0.463364
7	1	0	-0.357019	5.589808	1.085307
8	6	0	-0.434979	2.603809	-0.540723
9	1	0	-1.258645	2.303033	-2.501799
10	1	0	0.281695	3.216067	1.384673
11	6	0	-0.008241	1.192007	-0.369237
12	6	0	-0.945537	0.096700	-0.645803
13	6	0	1.240743	0.889706	0.005795
14	6	0	-2.323098	0.242957	-0.772107
15	6	0	-0.412264	-1.195659	-0.782611
16	6	0	-3.152421	-0.832209	-1.078491
17	1	0	-2.762516	1.222770	-0.625686
18	6	0	-1.205679	-2.270422	-1.136466
19	6	0	-2.581243	-2.089539	-1.281004
20	1	0	-0.773671	-3.256086	-1.251862
21	1	0	-1.454820	6.321748	-1.012524
22	1	0	1.976315	1.670375	0.163916
23	8	0	0.911032	-1.440154	-0.588417
24	1	0	-4.218580	-0.676369	-1.159288
25	6	0	1.681020	-0.537674	0.221723
26	6	0	3.137181	-0.717834	-0.196704

27	6	0	4.132131	0.036564	0.430028
28	6	0	3.506043	-1.628750	-1.183536
29	6	0	5.467248	-0.115374	0.078465
30	1	0	3.868425	0.755161	1.199208
31	6	0	4.845211	-1.781747	-1.534228
32	1	0	2.742580	-2.213137	-1.677957
33	6	0	5.829496	-1.028890	-0.906956
34	1	0	6.224565	0.480450	0.574084
35	1	0	5.116183	-2.493957	-2.304859
36	1	0	6.870213	-1.149377	-1.182887
37	6	0	1.534776	-0.969347	1.714401
38	1	0	1.874030	-2.007422	1.773074
39	1	0	2.224410	-0.361867	2.305553
40	6	0	0.134646	-0.831492	2.251923
41	6	0	-0.774007	-1.885091	2.149836
42	6	0	-0.304853	0.379248	2.789441
43	6	0	-2.101910	-1.719316	2.525829
44	1	0	-0.442204	-2.832353	1.737328
45	6	0	-1.630698	0.551140	3.170840
46	1	0	0.398762	1.198895	2.894526
47	6	0	-2.535833	-0.496068	3.027604
48	1	0	-2.798360	-2.543003	2.419464
49	1	0	-1.958141	1.502135	3.574814
50	1	0	-3.572384	-0.361775	3.313751
51	8	0	-3.285384	-3.205246	-1.600468
52	6	0	-4.686493	-3.083778	-1.729513
53	1	0	-4.950543	-2.382656	-2.527010
54	1	0	-5.052438	-4.075959	-1.983502
55	1	0	-5.142853	-2.756160	-0.790274

Benzopyrylium cation (D)

Benzopyrylium cation (D) UMO62X/6-311g(d, p) E(UMO62X) = -998.636307 hartree Zero-point Energy Correction = 0.332247 hartree Thermal Correction to Enthalpy = 0.352041 hartree Thermal correction to Enthalpy = 0.352041 hartree Thermal correction to Enthalpy = 0.352041 hartree Sum of electronic and Zero-point Energies = -998.304150 hartree Sum of electronic and thermal Energies = -998.285301 hartree Sum of electronic and thermal Enthalpies = -998.285301 hartree Sum of electronic and thermal Free Energies = -998.352487 hartree Sum of electronic and thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And thermal Free Energies = -998.352487 hartree Sum Of electronic And therm

Center Number	Atomic Number	Atomic Type	Coor X	dinates (Ang Y	stroms) Z
1	6	0	2.617019	4.685525	0.160251
2	6	0	2.948726	3.652616	1.032467
3	6	0	1.602290	4.511606	-0.776684
4	6	0	2.281804	2.437699	0.958083
5	1	0	3.724023	3.795602	1.774790
6	6	0	0.912508	3.309007	-0.838102
7	1	0	1.347765	5.313655	-1.458165
8	6	0	1.257690	2.258045	0.019701
9	1	0	2.522709	1.642732	1.654702
10	1	0	0.128805	3.169490	-1.574523
11	6	0	0.505066	0.995056	-0.037172
12	6	0	1.146002	-0.272940	-0.059100
13	6	0	-0.888145	1.034165	-0.050393
14	6	0	2.541124	-0.481637	-0.174770
15	6	0	0.331806	-1.427558	-0.014009
16	6	0	-1.632813	-0.133737	-0.017311
17	6	0	3.071772	-1.745100	-0.190124
18	1	0	3. 194334	0.374840	-0.276960
19	6	0	0.839598	-2.709669	-0.016935
20	6	0	2.220889	-2.876207	-0.094085
21	1	0	0.186424	-3.570949	0.023634
22	1	0	3.145973	5.629118	0.214647
23	1	0	-1.397763	1.984544	0.002026
24	6	0	-3.086983	-0.218617	0.023021
25	6	0	-3.708753	-1.418727	0.397575
26	6	0	-3.870703	0.894184	-0.315252
27	6	0	-5.091153	-1.494880	0.445201
28	1	0	-3.108190	-2.279317	0.661162
29	6	0	-5.252314	0.806424	-0.272597
30	1	0	-3.410138	1.819863	-0.636397
31	6	0	-5.863388	-0.385094	0.111028
32	1	0	-5.568955	-2.419261	0.743819
33	1	0	-5.854546	1.664308	-0.543028
34	1	0	-6.944138	-0.449129	0.146763
35	8	0	-1.019904	-1.310133	0.022013
36	1	0	4.140321	-1.872396	-0.291521
37	8	0	2.654727	-4.130096	-0.091649
38	6	0	4.055322	-4.393226	-0.174503
39	1	0	4.580290	-3.949070	0.673614
40	1	0	4.148869	-5.474306	-0.138590
41	1	0	4.461461	-4.019515	-1.116614

Int-B UM062X/6-311g(d,p) E(UM062X) = -1269.509834 hartree Zero-point Energy Correction = 0.448238 hartree Thermal Correction to Energy = 0.474662 hartree

Thermal correction to Enthalpy = 0.475606 hartree Thermal correction to Gibbs Free Energy = 0.388824 hartree Sum of electronic and Zero-point Energies = -1269.061596 hartree Sum of electronic and thermal Energies = -1269.035172 hartree Sum of electronic and thermal Enthalpies = -1269.034228 hartree Sum of electronic and thermal Free Energies = -1269.034228 hartree Sum (CH:Cl:)/UM062X/6-311g(d, p) E (UM062X) = -1269.5938 hartree Gibbs Free Energy in CH:Cl: = -1269.205 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coord	Coordinates (Angstroms)	
Number	Number	Туре	Х	Y	Z
1	6	0	-2. 474315	4.801336	-0.854059
2	6	0	-2.793308	3.786411	-1.750887
3	6	0	-1.479648	4.603112	0.099935
4	6	0	-2.136072	2.565168	-1.683588
5	1	0	-3.549975	3.948126	-2.508487
6	6	0	-0.802843	3.393206	0.156064
7	1	0	-1.230225	5.393336	0.797172
8	6	0	-1.136902	2.357630	-0.724680
9	1	0	-2.365276	1.787031	-2.402522
10	1	0	-0.034283	3.233070	0.903626
11	6	0	-0.391013	1.088990	-0.677346
12	6	0	-1.034600	-0.176171	-0.734964
13	6	0	1.001258	1.122051	-0.618114
14	6	0	-2.433192	-0.380088	-0.090278
10	6	0	-0.221711	-1. 329323	-0.802112
10	6	0	-2 067752	-0.040384	-0.000000
17	1	0	-3 087873	0 466036	-0.567590
10	6	0	-0 739463	-2 607649	-0.001884
20	6	0	-2 114942	-2 770946	-0.903112
20	1	0	-0.079311	-3.468041	-0.958385
22	1	Ő	-2.994410	5. 750126	-0.903812
23	1	Ő	1.515287	2.071537	-0.616439
24	6	ŏ	3. 199515	-0.135155	-0.648491
25	6	0	3.831199	-1.328353	-1.023209
26	6	0	3.973986	0.966599	-0.259545
27	6	0	5.215222	-1.410907	-1.016071
28	1	0	3.238383	-2.180587	-1.328273
29	6	0	5.356070	0.874142	-0.249285
30	1	0	3.503871	1.888343	0.060127
31	6	0	5.978593	-0.312885	-0.629614
32	1	0	5.700235	-2.331758	-1.314369
33	1	0	5.950126	1.725143	0.058890
34	1	0	7.059615	-0.381219	-0.623282
35	8	0	1. 129493	-1.218570	-0.768453
30	1	0	-4.040349	-1. 772209	-0.745518
31	8	0	-2. 001474	-4.024106	-0.995252
30	1	0	-4 497519	-3 784502	-1 860408
40	1	0	-4 052124	-5 356385	-1 112091
41	1	0	-4 415705	-3 955980	-0.074321
42	6	0	0. 591026	-0.427148	2.510178
43	6	Ő	-0.270905	-1.551060	2. 421308
44	6	Ő	-1.642885	-1.400717	2,495108
45	6	Ō	-2.209214	-0.131880	2.648219
46	6	0	-1.381691	0.989832	2.738212
47	6	0	-0.007031	0.848209	2.674745
48	1	0	0.165061	-2.538566	2.309668
49	1	0	-2.282378	-2.274792	2.441795
50	1	0	-3.284687	-0.019900	2.715874
51	1	0	-1.818396	1.973030	2.872060
52	1	0	0.638167	1.715835	2.774295
53	6	0	1.991773	-0.571269	2.435270
54	1	0	2. 447661	-1.546685	2.323708
55	1	0	2.645959	0.282579	2.555574

TS-2	
------	--

TS-2 UM062X/6-311g(d, p) E(UM062X) = -1269. 499080 hartree Zero-point Energy Correction = 0. 449581 hartree Thermal correction to Energy = 0. 475533 hartree Thermal correction to Enthalpy = 0. 475533 hartree Thermal correction to Gibbs Free Energy = 0. 393891 hartree Sum of electronic and thermal Energies = -1269. 024492 hartree Sum of electronic and thermal Energies = -1269. 024492 hartree Sum of electronic and thermal Energies = -1269. 023548 hartree Sum of electronic and thermal Free Energies = -1269. 105189 hartree SUM of electronic and thermal Free Energies = -1269. 105189 hartree SUM of electronic and thermal Free Energies = -1269. 105189 hartree SUM 0(CHcCl₂)/UM062X/6-311g(d, p) E(UM062X) = -1269. 583961 hartree Gibbs Free Energy in CHcL₂ = -1269. 1903 hartree The number of Imaginary frequencies = 1

Center	Atomic	c Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-1.990067	5.070265	-0.841720
2	6	0	-2.304150	4.081053	-1.768988
3	6	0	-1.107351	4.793620	0.197887
4	6	0	-1.751670	2.812847	-1.650254
5	1	0	-2.974544	4.300117	-2.590849
6	6	0	-0.540116	3.531246	0.309945
7	1	0	-0.859775	5.562054	0.919786
8	6	0	-0.864781	2.524714	-0.605877
9	1	0	-1.978180	2.052844	-2.389387

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1	0	0.145869	3.318600	1.122211	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11	6	0	-0.230985	1.194925	-0.503065	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	6	0	-0.983795	-0.019983	-0.658381	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	13	6	0	1.123190	1.091192	-0.303744	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14	6	0	-2.387969	-0.100831	-0.699419	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	15	6	0	-0.272074	-1.235067	-0.782901	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	1.766521	-0.173885	-0.235996	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17	6	0	-3.033936	-1.297071	-0.917558	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18	1	0	-2.969248	0.799050	-0.543409	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	6	0	-0.892564	-2.441367	-1.043652	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	0	-2.282296	-2.477562	-1.116895	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	0	-0.315864	-3.349884	-1.156419	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	1	0	-2.426720	6.057170	-0.933312	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1	0	1,731380	1,980692	-0.211132	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6	0	3, 231925	-0.328500	-0.391159	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	6	Ō	3, 759442	-1.488751	-0.964879	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	6	0	4,098716	0.679261	0.047256	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	6	0	5, 134141	-1.627851	-1.109506	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	1	Ō	3,096853	-2.270390	-1.311527	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	6	0	5,469569	0.532726	-0.098890	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1	0	3, 713273	1.579018	0.513326	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	6	Ō	5, 991031	-0.621404	-0.678461	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	1	0	5, 535358	-2.524696	-1.564842	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1	0	6, 132599	1.318299	0.241246	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1	Ō	7.062084	-0.733784	-0.792531	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	8	0	1.077731	-1.264613	-0.654431	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	1	0	-4.114417	-1.323082	-0.934132	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	37	8	Ō	-2.822465	-3.674398	-1.353518	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38	6	0	-4.237886	-3.788743	-1.464374	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	39	1	0	-4.613047	-3.166765	-2.280083	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	40	1	0	-4,429921	-4.834860	-1.684027	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	41	1	Ō	-4.724025	-3.515944	-0.524720	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	42	6	0	0.331175	-0.575919	2,269904	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43	6	0	-0.370570	-1.800221	2,222757	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	44	6	Ō	-1.718672	-1.848599	2.529798	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45	6	0	-2.393430	-0.679681	2.885765	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	46	6	0	-1.713380	0.539191	2,954340	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	47	6	Ō	-0.366025	0.591547	2.651134	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	48	1	0	0.161152	-2.703251	1.941286	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	49	1	0	-2.247995	-2.793226	2,497478	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	50	1	Ō	-3.449325	-0.719441	3.126025	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	51	1	0	-2.240144	1.438604	3.248985	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	52	1	0	0.173196	1.530595	2.713328	
54 1 0 2.264373 -1.431274 1.788121 55 1 0 2.283213 0.363895 2.166973	53	6	Ō	1.702963	-0.507528	1.883798	
55 1 0 2.283213 0.363895 2.166973	54	1	0	2.264373	-1.431274	1.788121	
	55	1	0	2.283213	0.363895	2.166973	
							-

E						
UM062X/6-311g(d,p)						
E(UMO62X) = -1269.514329 hartree						
Zero-point Energy Correction = 0.451603 hartree						
Thermal Correction to Energy = 0.476738 hartree						
Thermal correction to Enthalpy = 0.477682 hartree						
Thermal correction to Gibbs Free Energy = 0.394866 hartree						
Sum of electronic and Zero-point Energies = -1269.062726 hartree						
Sum of electronic and thermal Energies = -1269.037591 hartree						
Sum of electronic and thermal Enthalpies = -1269.036647 hartree						
Sum of electronic and thermal Free Energies = -1269.119464 hartree						
SMD (CH ₂ C1 ₂) /UM062X/6-311g (d, p)						
E(UM062X) = -1269.6023 hartree						
Gibbs Free Energy in CH2Cl2 = -1269.2074 hartree						
The number of Imaginary frequencies = 0						
Center Atomic Atomic Coordinates (Angstroms)						
Number Number Type X Y Z						

enter	Atomic	Atomic	Coordinates (Angstroms)		
umber	Number	Туре	Х	Y	Z
1	6	0	-1.076133	5.302480	-0.842668
2	6	0	-1.374307	4.387840	-1.848536
3	6	0	-0.447581	4.876362	0.323776
4	6	0	-1.055055	3.046334	-1.685981
5	1	0	-1.847466	4.721375	-2.763762
6	6	0	-0.113985	3.538103	0.484391
7	1	0	-0.218169	5.586945	1.108103
8	6	0	-0.421594	2.611235	-0.516293
9	1	0	-1.264216	2.338572	-2.480846
10	1	0	0.364902	3.205139	1.398648
11	6	0	-0.041580	1.192406	-0.353521
12	6	0	-0.950328	0.129478	-0.614002
13	6	0	1.224718	0.853029	0.055933
14	6	0	-2.343044	0.313320	-0.812508
15	6	0	-0.432299	-1.211650	-0.709851
16	6	0	1.667985	-0.549656	0.261600
17	6	0	-3.152897	-0.727115	-1.164301
18	1	0	-2.759828	1.301875	-0.667420
19	6	0	-1.231205	-2.256467	-1.127478
20	6	0	-2.586687	-2.027913	-1.355695
21	1	0	-0.824394	-3.253341	-1.231486
22	1	0	-1.328192	6.348082	-0.970023
23	1	0	1.947033	1.630439	0.280276
24	6	0	3.102527	-0.739868	-0.226821
25	6	0	3.406522	-1.634224	-1.249273
26	6	0	4.126909	-0.002557	0.370462
27	6	0	4.726370	-1.790851	-1.664465
28	1	0	2.622237	-2.211076	-1.719382
29	6	0	5.441129	-0.161468	-0.048435
30	1	0	3.913187	0.699977	1.169660
31	6	0	5.744120	-1.058383	-1.068295
32	1	0	4, 954525	-2.490655	-2.459041

33	1	0	6 227777	0 414370	0 423140
34	1	0	6 769014	-1 183495	-1 30/702
34	1	0	0.00014	1.103423	1.354752
50	0	0	0.041300	-1.479522	-0.435440
36	1	0	-4.214077	-0.567598	-1.292893
37	8	0	-3.297596	-3.076708	-1.722895
38	6	0	-4.699864	-2.950440	-1.979223
39	1	0	-4.877005	-2.240863	-2.788928
40	1	0	-5.025917	-3.941348	-2.279549
41	1	0	-5.227515	-2.645843	-1.073879
42	6	0	0.163261	-0.846181	2.322835
43	6	0	-0.701752	-1.937282	2.227279
44	6	0	-2.024505	-1.833463	2.648687
45	6	0	-2.495250	-0.635236	3.174000
46	6	0	-1.634780	0.454578	3.294648
47	6	0	-0.315774	0.345280	2.873947
48	1	0	-0.334288	-2.874527	1.821029
49	1	0	-2.680984	-2.692843	2.578923
50	1	0	-3.522200	-0.554019	3.509244
51	1	0	-1.990104	1.382242	3.727030
52	1	0	0.356451	1.191254	2.984646
53	6	0	1.563978	-0.934851	1.786976
54	1	0	1.956016	-1.952602	1.850123
55	1	0	2.239660	-0.279313	2.338773

10-2. The calculation of redox potential

The redox potential of benzopyrylium cation salt $(1^{a}+BF_{4})$ in MeCN was calculated with the UB3LYP/6-31+g(d,p) method.² The geometries of benzopyrylium cation salt $(1^{a}+BF_{4})$ and the reduced radical (1^{a}) were fully optimized using the UB3LYP/6-31+g(d,p) methods in solution phase (E) by performing CPCM calculation. The nature of the stationary points and thermal corrections to Gibbs free energy (G) were obtained by frequency calculations at the same level of theory.

 $G(1'a^+BF_4) = -1423.3023$ hartree

G(1"a) = -1423.4490 hartree

 $\Delta G = G(1^{"a}) - G(1^{"a} + BF_{4}) = -0.146649$ hartree = -92.023641 kcal/mol

$$E_{red}(1'a^+BF_4/1'') = \Delta G/nF - E^0(SHE) + E^0(SCE) = 3.990 - 4.281 - 0.141 = -0.432V$$
 (vs SCE)

n is the number of electrons transferred, F is the Faraday constant (23.061 kcal mol⁻¹V⁻¹). E⁰(SHE) is the absolute value for the standard hydrogen electrode (4.281 V) and E⁰(SCE) is the potential of the saturated calomel electrode (SCE) relative to SHE in acetonitrile (-0.141 V).

From the absorption and fluorescence spectra (Figure S1) of the preformed benzopyrylium cation salt $(1'a^+BF_4)$, the redox potential of the excited $1'a^{+*}BF_4$ was estimated employing the following equation.

$$E^*_{red} = E_{red} + E_{0,0}$$

 $E_{0,0}$, which is the excited state energy of the benzopyrylium salt, was estimated to $E_{0,0} = +2.73$ V from the crossing point between the absorption and fluorescence spectra recorded in MeCN (Figure S3).

$$E_{red}^* = +2.30 V (vs SCE in MeCN)$$

Figure S3. UV-Vis absorption spectrum of $1^{a}BF_{4}$ in MeCN at room temperature (blue). Fluorescence spectrum of $1^{a}BF_{4}$ in MeCN at room temperature upon excitation at 360 nm (orange)

² H. G. Roth, N. A. Romero and D. A. Nicewicz, Synlett 2016, 27, 714–723.

Cartesian coordinates

Cartestan coorcumates 1' aBr² CPCM(MeCN)/UB3LYP/6-31g(d, p) E(UB3LYP) = -1423.583168 hartree Zero-point Energy Correction = 0.343749 hartree Thermal correction to Energy = 0.369671 hartree Thermal correction to Enthalpy = 0.370615 hartree Thermal correction to Gibbs Free Energy = 0.280846 hartree Sum of electronic and Zero-point Energies = -1423.239419 hartree Sum of electronic and thermal Energies = -1423.213497 hartree Sum of electronic and thermal Enthalpies = -1423.302322 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-6.642855	0.049399	-0.320556
2	6	0	-5.856492	-0.748453	-1.157609
3	6	0	-6.033207	0.875570	0.629528
4	6	0	-4.466727	-0.736420	-1.036801
5	1	0	-6.323556	-1.378926	-1.907647
6	6	0	-4.643459	0.909612	0.739196
7	1	0	-6.638595	1.494804	1.283945
8	6	0	-3.844509	0.093434	-0.084420
9	1	0	-3.864258	-1.339551	-1.707860
10	1	0	-4.176726	1.547365	1.483421
11	6	0	-2.372277	0.160083	0.025880
12	6	0	-1.546936	-1.000282	0.099194
13	6	0	-1.752503	1.415513	0.048580
14	6	0	-2.010258	-2.338236	0.199298
15	6	0	-0.136402	-0.815921	0.119533
16	6	0	-0.369051	1.541469	0.081789
17	6	0	-1.133120	-3.398983	0.266642
18	1	0	-3.074772	-2.529981	0.242347
19	6	0	0.768638	-1.862459	0.174803
20	6	0	0.268323	-3.167828	0.239964
21	1	0	1.837778	-1.677737	0.178540
22	1	0	-7.724544	0.031167	-0.411285
23	1	0	-2.358053	2.307249	-0.022156
24	6	0	0.388191	2.790565	0.073345
25	6	0	1.792125	2.768739	-0.070239
26	6	0	-0.270950	4.030643	0.212901
27	6	0	2.510418	3.961675	-0.081313
28	1	0	2.319426	1.828268	-0.177567
29	6	0	0.457049	5.216659	0.203221
30	1	0	-1.345757	4.078607	0.342312
31	6	0	1.848369	5.186868	0.054051
32	1	0	3.589107	3.934655	-0.196639
33	1	0	-0.060384	6.163817	0.315206
34	1	0	2.413044	6.114027	0.045341
35	8	0	0.394373	0.441605	0.095901
36	1	0	-1.523755	-4.404535	0.351048
37	8	0	1. 188427	-4.145267	0.291381
38	6	0	0.769489	-5.520736	0.365714
39	1	0	0.176513	-5.792630	-0.511948
40	1	0	1.691627	-6.099206	0.381799
41	1	0	0.201841	-5.703562	1.282408
42	5	0	5.023603	-0.618790	-0.214414
43	9	0	4.074564	-1.596216	0.175263
44	9	0	6.023815	-0.515064	0.777304
45	9	0	5.609575	-0.996970	-1.442692
46	9	0	4.373991	0.628687	-0.364727

1' aa CPCM(MeCN)/UB3LYP/6-31g(d,p) E(UB3LYP) = -1423.725140 hartree Zero-point Energy Correction = 0.340688 hartree Thermal Correction to Energy = 0.360821 hartree Thermal correction to Enthalpy = 0.367865 hartree Thermal correction to Gibbs Free Energy = 0.276169 hartree Sum of electronic and Zero-point Energies = -1423.384153 hartree Sum of electronic and thermal Energies = -1423.38219 hartree Sum of electronic and thermal Enthalpies = -1423.357275 hartree Sum of electronic and thermal Free Energies= -1423.448971 hartree The number of Imaginary frequencies = 0

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Y	Z
1	6	0	-6.735460	-0.021960	-0.245801
2	6	0	-5.953584	-0.857921	-1.050717
3	6	0	-6.106532	0.851283	0.648197
4	6	0	-4.560901	-0.826701	-0.959850
5	1	0	-6.428277	-1.531228	-1.758960
6	6	0	-4.713908	0.885123	0.738516
7	1	0	-6.700665	1.502570	1.283100
8	6	0	-3.909727	0.046060	-0.062140
9	1	0	-3.971841	-1.461082	-1.614456
10	1	0	-4.241075	1.555119	1.450755
11	6	0	-2.436854	0.131625	0.014062
12	6	0	-1.568498	-1.033358	0.064109
13	6	0	-1.815597	1.387678	0.043353
14	6	0	-1.992747	-2.372297	0.172235
15	6	0	-0.164527	-0.824118	0.064374
16	6	0	-0.440280	1.554236	0.047925

17	6	0	-1.096064	-3.439652	0.234038
18	1	0	-3.053363	-2.588048	0.220854
19	6	0	0.749896	-1.865782	0.118862
20	6	0	0.283445	-3.186994	0.196438
21	1	0	1.815502	-1.661029	0.112250
22	1	0	-7.818813	-0.049874	-0.315477
23	1	0	-2.434142	2.275853	0.016282
24	6	0	0.296239	2.809293	0.046288
25	6	0	1.710525	2.816893	-0.011335
26	6	0	-0.370369	4.057779	0.104174
27	6	0	2.418025	4.019401	-0.013259
28	1	0	2.253710	1.880614	-0.056595
29	6	0	0.345082	5.251583	0.100951
30	1	0	-1.452845	4.100824	0.155421
31	6	0	1.745800	5.244734	0.042145
32	1	0	3.503201	3.996225	-0.058945
33	1	0	-0.193167	6.194047	0.146700
34	1	0	2.300117	6.178360	0.040583
35	8	0	0.376684	0.439649	0.020392
36	1	0	-1.480820	-4.448355	0.315760
37	8	0	1.247628	-4.150320	0.241296
38	6	0	0.843751	-5.520656	0.328840
39	1	0	0.243460	-5.810945	-0.540216
40	1	0	1.767218	-6.099129	0.344284
41	1	0	0.278837	-5.707363	1.248590
42	5	0	5.206776	-0.567073	-0.166447
43	9	0	4.207264	-1.513596	0.162409
44	9	0	6.215212	-0.584197	0.824492
45	9	0	5.771630	-0.895612	-1.420390
46	9	0	4.630149	0.721925	-0.230914

11. X-ray crystallographic analysis

3ia was recrystallized from DCM/MeOH to give a colorless block crystal. The structure of **3ia** was determined by X-ray crystallographic analysis.³

Figure S1: ORTEP Drawing of 3ia

EXPERIMENTAL DETAILS

A. Crystal Data

Empirical Formula Formula Weight Crystal Color, Habit Crystal Dimensions Crystal System Lattice Type Lattice Parameters $\begin{array}{l} C_{30}H_{26}O_{3}\\ \\ 434.53\\ colorless, block\\ 0.350 \ X \ 0.200 \ X \ 0.200 \ mm\\ monoclinic\\ Primitive\\ a = 10.1631(15) \ Å\\ b = 10.5208(15) \ Å\\ c = 10.9954(16) \ Å\\ \beta = 102.394(7) \ ^{o}\\ V = 1148.3(3) \ Å^{3}\\ P2_{1} \ (\#4) \end{array}$

Space Group

³ J. Kikuchi, CCDC 2064775: CSD Communication, 2021, DOI: 10.5517/ccdc.csd.cc279kns.

Z value D_{calc} F₀₀₀ μ(ΜοΚα) 2 1.257 g/cm³ 460.00 0.798 cm⁻¹

B. Intensity Measurements

Diffractometer	XtaLAB mini		
Radiation	MoK α ($\lambda = 0.71075$ Å)		
	graphite monochromated		
Voltage, Current	50kV, 12mA		
Temperature	-123.0°C		
Detector Aperture	75.0 mm (diameter)		
Data Images	540 exposures		
ω oscillation Range (χ=54.0, φ=0.0)	-60.0 - 120.0 ⁰		
Exposure Rate	$48.0 \text{ sec.}^{/0}$		
Detector Swing Angle	30.00 ⁰		
ω oscillation Range (χ=54.0, φ=120.0)	-60.0 - 120.0 ⁰		
Exposure Rate	$48.0 \text{ sec.}^{/0}$		
Detector Swing Angle	30.00 ⁰		
ω oscillation Range (χ=54.0, φ=240.0)	-60.0 - 120.0 ⁰		
Exposure Rate	$48.0 \text{ sec.}^{/0}$		
Detector Swing Angle	30.00 ⁰		
ω oscillation Range (χ=54.0, φ=0.0)	-60.0 - 120.0 ⁰		
Exposure Rate	$48.0 \text{ sec.}^{/0}$		
Detector Swing Angle	30.00 ⁰		
ω oscillation Range (χ=54.0, φ=120.0)	-60.0 - 120.0 ⁰		
Exposure Rate	$48.0 \text{ sec.}^{/0}$		
Detector Swing Angle	30.00 ⁰		
ω oscillation Range (χ=54.0, φ=240.0)	-60.0 - 120.0 ⁰		
Exposure Rate	$48.0 \text{ sec.}^{/0}$		
Detector Swing Angle	30.00 ⁰		
Detector Position	50.00 mm		
Pixel Size	0.073 mm		
20 _{max}	55.0^{0}		
No. of Reflections Measured	Total: 12206		
	Unique: 5252 ($R_{int} = 0.1609$)		
	Parsons quotients (Flack x parameter): 1432		

S34

Corrections

Lorentz-polarization Absorption (trans. factors: 0.676 - 0.984)

C. Structure Solution and Refinement

Direct Methods (SHELXT Version 2014/5)
Full-matrix least-squares on ${ m F}^2$
$\Sigma \le (Fo^2 - Fc^2)^2$
w = 1/ [$\sigma^2(Fo^2) + (0.0650 \cdot P)^2$
+ 0.0000 · P]
where $P = (Max(Fo^2, 0) + 2Fc^2)/3$
54.90
All non-hydrogen atoms
5252
298
17.62
0.0909
0.0957
0.2228
1.029
-1.1(10)
0.000
$0.39 \text{ e}^{-}/\text{Å}^{3}$
-0.32 e ⁻ /Å ³

12. NMR Spectra

 ^1H NMR (600 MHz, C_6D_6) and ^{13}C NMR (151 MHz, C_6D_6) spectra of 1b

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of 1d

¹⁹F NMR (565 MHz, CDCl₃) spectra of 1d

 ^1H NMR (600 MHz, C_6D_6) and ^{13}C NMR (151 MHz, CDCl_3) spectra of 1h

 ^1H NMR (600 MHz, CDCl₃) and ^{13}C NMR (151 MHz, CDCl₃) spectra of 1j

^{19}F NMR (565 MHz, CDCl₃) spectra of 1j

S60

¹⁹F NMR (565 MHz, CDCl₃) spectra of **3da**

0.26 0.24 0.22 MeO Ph 0.2 Ph 0.18 3ha (Ar²: 4-CIC₆H₄) 0.16 0.14 0.12 0.1 0.08 0.06 0.040.02 abundance 77.211 77.211 76.789 76.789 210.0 200.0 190.0 180.0 170.0 160.0 150.0 140.0 130.0 120.0 110.0 100.0 90.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0

160.875 -154.594 -136.948 133.887 130.887 130.887 130.887 130.887 130.887 127.939 127.939 127.612 127.639 127.639 127.6388 127.6388 127.6388 127.6388 127.6388 127.6388 127.6388 127.6388 127.6388 127.6388

X : parts per Million : Carbon13

¹H NMR (600 MHz, CDCl₃) and ¹³C NMR (151 MHz, CDCl₃) spectra of **3ha**

106.605 -

55.390 --48.812 --

 ^1H NMR (600 MHz, CDCl_3) and ^{13}C NMR (151 MHz, CDCl_3) spectra of **3ja**

^{19}F NMR (565 MHz, CDCl_3) spectra of 3pa and 3'pa

S75

0.000

X : parts per Million : Proton

13. HPLC chart

	Retention Time (1)	Retention Time (2)	%Area (1)	% Area (2)
rac-3ma	14.4	17.0	50.0	50.0
3ma	14.7	17.4	20.2	79.8
rac-3'ma	19.0	21.8	49.8	50.2
3'ma	18.8	21.5	37.3	62.7