Supporting Information For

Chemoselective hydroborative reduction of nitro motifs using a transition-metal-free catalyst

Wubing Yao,*a,b Jiali Wang, ${ }^{\text {a,b }}$ Yinpeng Lou, ${ }^{\text {a }}$ Haijian Wu, ${ }^{a}$ Xinxin Qi, ${ }^{\text {b }}$ Jianguo Yang ${ }^{\text {a,b }}$ and Aiguo Zhong ${ }^{\text {a }}$

${ }^{a}$ School of Pharmaceutical and Materials Engineering, Taizhou University, Jiaojiang 318000, P.R. China
${ }^{b}$ Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China

Corresponding author : Wubing Yao
E-mail: icyyw2010@yeah.net

Table of Contents

1. General considerations S3
2. The typical reaction procedures S4
3. The mechanism studies S5
3.1 The free radical experiment S5
3.2 The homogeneous test S5
3.3 The kinetic studies S6
3.4 The plausible mechanism and DFT calculations S13
4. NMR spectra data S19
5. References S27
6. NMR spectra S28

1. General considerations

1.1 Materials

All manipulations were carried out using standard Schlenk, high vacuum, and glovebox techniques. Glassware was dried in a $140{ }^{\circ} \mathrm{C}$ oven over 4 h prior to use. $\mathrm{KO} t \mathrm{Bu}(95 \%), \mathrm{BEt}_{3}$ (1 M solution in THF) and $\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}(97 \%)$ were purchased from Aladdin and used as received. $\mathrm{BPh}_{3}(96 \%)$ and $\mathrm{HBpin}(97 \%)$ were purchased from Alfa and used as received. Flash colum chromatography was performed on silica gel (particle size 300-400 mesh ASTM), purchased from Yantai, China. All solvents, bases and nitro motifs were obtained from commercial sources and dried and degassed according to standard procedures. All heating reactions were performed on the IKA RCT Basic magnetic stirring apparatus with an oil bath.

1.2 Analytical Methods

NMR spectra data were obtained on Avance (III) HD 400 MHz instruments. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were referenced to residual protic solvent peaks or TMS signal (0 ppm). ${ }^{19} \mathrm{~F}$ NMR chemical shifts were externally referenced to $\mathrm{CCl}_{3} \mathrm{~F}(0 \mathrm{ppm})$. Data for ${ }^{1} \mathrm{H}$ NMR are recorded as follows: chemical shift (δ, ppm), multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=$ broad singlet, coupling constant (s) in Hz , integration). Data for ${ }^{13} \mathrm{C}$ NMR are reported in terms of chemical shift (δ, ppm). GC was performed on a Shimadzu GC-2010 plus spectrometer. GC/MS was performed on a Shimadzu GCMS-QP2010 Plus spectrometer.

2. The typical reaction procedures

2.1 Reduction of nitroarenes

In an argon filled glovebox, a 10 mL dried Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{KOtBu}(5 \mathrm{~mol} \%), \mathrm{BEt}_{3}$ ($5 \mathrm{~mol} \%$), nitro (0.6 mmol), HBpin (6.0 equiv), THF (2.0 mL). The tube was then sealed with a Teflon plug under an argon atmosphere, and removed from the glovebox. Then, the solution was stirred at $100^{\circ} \mathrm{C}$ for 24 h . After that, the reaction was quenched by adding 1 M aqueous $\mathrm{NaOH}(10 \mathrm{~mL})$ at room temperature, and was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The filtrate was collected and the corresponding reduced amines were concentrated in vacuum. After that, the crude product was purified by silica gel column chromatography using the EtOAc/petroleum ether mixture.

2.2 Reduction of nitro alkanes

In an argon filled glovebox, a 10 mL dried Schlenk tube equipped with a magnetic stir bar was charged with $\mathrm{KOt} \mathrm{Bu}(5 \mathrm{~mol} \%), \mathrm{BEt}_{3}(5 \mathrm{~mol} \%)$, nitro (0.6 mmol), HBpin (6.0 equiv), THF (2.0 mL). The tube was then sealed with a Teflon plug under an argon atmosphere, and removed from the glovebox. Then, the solution was stirred at $100^{\circ} \mathrm{C}$ for 24 h . After that, the residue was filtrated though Celite. The filtrate was collected and the corresponding reduced amines were concentrated in vacuum. Consequently, 2.0 mL 1 M aqueous HCl was added to the concentrated amines followed by addition of 10 $\mathrm{mL} \mathrm{Et}_{2} \mathrm{O}$, stirring at $25^{\circ} \mathrm{C}$ for 6 h . The corresponding amine hydrochloride salt was purified by washing with $\mathrm{Et}_{2} \mathrm{O}$. Isolated amine hydrochlorides were characterized through NMR spectroscopy in DMSO- $d 6$ or $\mathrm{D}_{2} \mathrm{O}$.

3. The mechanism studies

3.1 The free radical experiment

Addition of typical radical scavengers, such as TEMPO and 9, 10-dihydroanthracene, did not obviously effect the reduction transformations, rendering a free radical mechanism unlikely to be operative.

3.2 The homogeneous test

Addition of commonly used heterogeneous catalyst poison PMe_{3} or Hg showed no adverse effect on the yield of the product, which indicated that the combined $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ catalyst was likely to be homogeneous under current conditions.

3.3 The kinetic studies

a. General procedure for typical reaction kinetics

For the reaction of 1-methoxy-4-nitrobenzene (0.60 mmol), pinacolborane ($\mathbf{3 . 6} \mathbf{~ m m o l}$) with $\mathrm{KOtBu} / \mathrm{BEt}_{3}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in 2 ml THF:

In a glovebox, $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(3.36 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of 1-methoxy-4-nitrobenzene $(91.9 \mathrm{mg}, 0.60$ mmol) and pinacolborane ($460.7 \mathrm{mg}, 3.6 \mathrm{mmol}$) in 2 mL THF was added. The sealed tube was taken out from the glovebox, and was stirred at $100^{\circ} \mathrm{C}$ taken out at $5,10,15,20,25,30,40,60,90,120$, 180 minutes. The sample was analyzed by GC. The percentage yields of the product $2 \mathbf{2 a}$ were calculated by p-xylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S1. The molar concentrations of the product $\mathbf{2 a}$ were plotted against the reaction time to obtain a typical reaction kinetic profile.

Table S1. The molar concentration of product 2a at different time interval

Time (s)	Yield of 2a (M)
0	0
300	0.02271
600	0.02765
900	0.03330
1200	0.03715
1500	0.04087
1800	0.04365
2400	0.04769
3600	0.05424
5400	0.05675
7200	0.05906
10800	0.06459

Figure S1. Plot of the rise of product 2a from the reaction of 1-methoxy-4-nitrobenzene $(0.60$
mmol), pinacolborane (3.60 mmol) with $\mathrm{KOtBu} / \mathrm{BEt}_{3}(0.03 \mathrm{mmol})$ in 2 ml THF. The reaction in different time interval at $100^{\circ} \mathrm{C}$.
b. General procedure to determine the dependence of reaction rate on the concentration of pinacolborane

For the reaction of 1-methoxy-4-nitrobenzene (0.60 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathrm{KOtBu} / \mathrm{BEt}_{3}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in 2 ml THF :

In a glovebox, $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(3.36 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of 1-methoxy-4-nitrobenzene ($91.9 \mathrm{mg}, 0.60$ mmol) and pinacolborane ($460.7 \mathrm{mg}, 3.60 \mathrm{mmol}$) in 2 mL THF was added. The sealed tube was taken out from the glovebox, and was stirred at $100^{\circ} \mathrm{C}$ taken out at $5,10,15,20$ minutes. The sample was analyzed by GC. The percentage yields of the product $\mathbf{2 a}$ were calculated by p-xylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S2. The molar concentrations of the product 2a were plotted against the reaction time to obtain a typical reaction kinetic profile.

For the reaction of 1-methoxy-4-nitrobenzene (0.60 mmol), pinacolborane ($\mathbf{3 . 0 0} \mathbf{~ m m o l}$) with $\mathbf{K O t B u} / \mathbf{B E t}_{\mathbf{3}}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in $\mathbf{2 ~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~ b u t ~}$ instead of pinacolborane (3.60 mmol), pinacolborane (3.00 mmol) were added in the reaction.

For the reaction of 1-methoxy-4-nitrobenzene ($0.60 \mathbf{~ m m o l}$), pinacolborane ($\mathbf{2 . 4 0} \mathbf{~ m m o l}$) with $\mathbf{K O t B u} / \mathbf{B E t}_{\mathbf{3}}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in $\mathbf{2 ~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~ b u t ~}$ instead of pinacolborane (3.60 mmol), pinacolborane $(2.40 \mathrm{mmol})$ were added in the reaction.

For the reaction of 1-methoxy-4-nitrobenzene ($\mathbf{0 . 6 0} \mathbf{~ m m o l}$), pinacolborane ($\mathbf{1 . 8 0} \mathbf{~ m m o l}$) with $\mathbf{K O t} \boldsymbol{B u} / \mathbf{B E t}_{\mathbf{3}}(\mathbf{0 . 0 3 m m o l})$ in $\mathbf{2} \mathbf{~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~ b u t ~}$ instead of pinacolborane (3.60 mmol), pinacolborane (1.80 mmol) were added in the reaction.

The percentage yields of the product 2a were calculated by p-xylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The molar concentration of product 2a was plotted against the reaction time and the slope of linear portion of the curve was used to determine the initial rates of the reaction. The table showing molar concentration of product $\mathbf{2 a}$ in different concentration of pinacolborane, graph showing the rate at different concentration of pinacolborane, table with $K_{i n}$ in value and the graph showing $K_{\text {in }}$ in versus [HBpin] are shown below.

Table S2. The molar concentration of product 2a in different concentration of pinacolborane at different time interval

Time (s)	HBpin $[360 / 200 \mathrm{M}]$	HBpin $[300 / 200 \mathrm{M}]$	HBpin $[240 / 200 \mathrm{M}]$	HBpin $[180 / 200 \mathrm{M}]$
300	0.02271	0.02201	0.02021	0.01945
600	0.02765	0.02516	0.02384	0.02139
900	0.03330	0.02895	0.02639	0.02378
1200	0.03715	0.03291	0.02897	0.02535

Table S3. The $K_{\text {in }}$ value of product 2a in different concentration of pinacolborane

HBpin (M)	$K_{\text {in }}\left(\mathrm{Ms}^{-1}\right)$
$360 / 200$	1.59232×10^{-5}
$300 / 200$	1.21653×10^{-5}
$240 / 200$	9.61652×10^{-6}
$180 / 200$	6.69135×10^{-6}

Figure S2. (a) Plot of the rise of product 2a from the reaction of $\mathbf{1 a}(0.6 \mathrm{mmol}), \mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.03$ mmol) with $3.60 \mathrm{mmol}, 3.00 \mathrm{mmol}, 2.40 \mathrm{mmol}$ and 1.80 mmol of pinacolborane in 2 mL THF at different time. (b) Plot of $K_{\text {in }}$ versus [HBpin] from the reaction of $\mathbf{1 a}(0.6 \mathrm{mmol}), \mathrm{KO} t \mathrm{Bu}^{2} / \mathrm{BEt}_{3}(0.03$ mmol) with 3.60 mmol , $3.00 \mathrm{mmol}, 2.40 \mathrm{mmol}$ and 1.80 mmol of pinacolborane in 2 mL THF.
c. General procedure to determine the dependence of reaction rate on the concentration of 1a (1-methoxy-4-nitrobenzene)

For the reaction of 1-methoxy-4-nitrobenzene (0.60 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathrm{KOtBu} / \mathrm{BEt}_{3}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in 2 ml THF :

In a glovebox, $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(3.36 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of 1-methoxy-4-nitrobenzene ($91.9 \mathrm{mg}, 0.60$
$\mathrm{mmol})$ and pinacolborane $(460.7 \mathrm{mg}, 3.6 \mathrm{mmol})$ in 2 mL THF was added. The sealed tube was taken out from the glovebox, and was stirred at $100^{\circ} \mathrm{C}$ taken out at $5,10,15,20$ minutes. The sample was analyzed by GC. The percentage yields of the product $\mathbf{2 a}$ were calculated by p-xylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S4. The molar concentrations of the product 2a were plotted against the reaction time to obtain a typical reaction kinetic profile.

For the reaction of 1-methoxy-4-nitrobenzene (0.50 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathbf{K O t} \mathbf{B u} / \mathbf{B E t}_{\mathbf{3}}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in $\mathbf{2 ~ m l ~ T H F}$: The procedure for this reaction was the same as above but instead of 1-methoxy-4-nitrobenzene $(0.60 \mathrm{mmol})$, 1-methoxy-4-nitrobenzene $(0.50 \mathrm{mmol})$ were added in the reaction.

For the reaction of 1-methoxy-4-nitrobenzene (0.40 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathbf{K O t B u} / \mathbf{B E t}_{\mathbf{3}}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in $\mathbf{2 ~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~ b u t ~}$ instead of 1-methoxy-4-nitrobenzene (0.60 mmol),1-methoxy-4-nitrobenzene (0.40 mmol) were added in the reaction.

For the reaction of 1-methoxy-4-nitrobenzene (0.30 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathbf{K O t B u} / \mathbf{B E t}_{\mathbf{3}}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in $\mathbf{2 ~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~ b u t ~}$ instead of 1-methoxy-4-nitrobenzene $(0.60 \mathrm{mmol})$, 1-methoxy-4-nitrobenzene (0.30 mmol) were added in the reaction.

The percentage yields of the product 2a were calculated by p-xylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The molar concentration of product 2a was plotted against the reaction time and the slope of linear portion of the curve was used to determine the initial rates of the reaction. The table showing molar concentration of product 2a in different concentration of 1-methoxy-4-nitrobenzene, graph showing the rate at different concentration of 1-methoxy-4-nitrobenzene, table with $K_{\text {in }}$ in value and the graph showing $K_{\text {in }}$ in versus [1-methoxy-4-nitrobenzene] are shown below.

Table S4. The molar concentration of product 2a in different concentration of 1-methoxy-4nitrobenzene (1a) at different time interval

Time (s)	$\mathbf{1 a}$ $[6 / 20 \mathrm{M}]$	$\mathbf{1 a}$ $[5 / 20 \mathrm{M}]$	$\mathbf{1 a}$ $[4 / 20 \mathrm{M}]$	$\mathbf{1 a}$ $[3 / 20 \mathrm{M}]$
300	0.02271	0.02151	0.02006	0.01924
600	0.02765	0.02566	0.02369	0.02125
900	0.03330	0.02875	0.02624	0.02399
1200	0.03715	0.03291	0.02805	0.02457

Table S5. The $K_{\text {in }}$ value of product 2a in different concentration of 1-methoxy-4-nitrobenzene

$\mathbf{1 a}(\mathrm{M})$	$K_{\text {in }}\left(\mathrm{Ms}^{-1}\right)$
$6 / 20$	1.63233×10^{-5}
$5 / 20$	1.24276×10^{-5}
$4 / 20$	8.84472×10^{-6}

$3 / 20$	6.24529×10^{-6}

Figure S3. (a) Plot of the rise of product 2a from the reaction of pinacolborane (3.60 mmol) with $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.03 \mathrm{mmol})$ with $0.30 \mathrm{mmol}, 0.40 \mathrm{mmol}, 0.50 \mathrm{mmol}$ and 0.60 mmol of 1-methoxy-4nitrobenzene (1a) in 2 mL THF at different time interval. (b) Plot of $K_{\text {in }}$ versus [1-methoxy-4nitrobenzene] from the reaction of pinacolborane (3.60 mmol), $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.03 \mathrm{mmol})$ with 0.30 $\mathrm{mmol}, 0.40 \mathrm{mmol}, 0.50 \mathrm{mmol}$ and 0.60 mmol of 1-methoxy-4-nitrobenzene in 2 mL THF.
d. General procedure to determine the dependence of reaction rate on the concentration of catalyst

For the reaction of 1-methoxy-4-nitrobenzene (0.60 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(\mathbf{0 . 0 3} \mathbf{~ m m o l})$ in 2 ml THF :

In a glovebox, $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(3.36 \mathrm{mg}, 0.03 \mathrm{mmol})$ was added to a Schlenk tube equipped with a magnetic stirring bar and a Teflon cap. Then, a mixture of 1-methoxy-4-nitrobenzene ($91.9 \mathrm{mg}, 0.60$ mmol) and pinacolborane ($460.7 \mathrm{mg}, 3.6 \mathrm{mmol}$) in 2 mL THF was added. The sealed tube was taken out from the glovebox, and was stirred at $100^{\circ} \mathrm{C}$ taken out at $5,10,15,20$ minutes. The sample was analyzed by GC. The percentage yields of the product 2a were calculated by p-xylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The yields in molar concentrations are presented in Table S6. The molar concentrations of the product $\mathbf{2 a}$ were plotted against the reaction time to obtain a typical reaction kinetic profile.

For the reaction of 1-methoxy-4-nitrobenzene (0.6 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathbf{K O t B u} / \mathbf{B E t}_{3}(\mathbf{0 . 0 2 4} \mathbf{~ m m o l})$ in $\mathbf{2} \mathbf{~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~}$ but instead of $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.030 \mathrm{mmol}), \mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.024 \mathrm{mmol})$ were added in the reaction.

For the reaction of 1-methoxy-4-nitrobenzene (0.60 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathbf{K O t B u} / \mathbf{B E t}_{\mathbf{3}}(\mathbf{0 . 0 1 8} \mathbf{~ m m o l})$ in $\mathbf{2} \mathbf{~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~}$ but instead of $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.030 \mathrm{mmol}), \mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.018 \mathrm{mmol})$ were added in the reaction.

For the reaction of 1-methoxy-4-nitrobenzene (0.60 mmol), pinacolborane ($\mathbf{3 . 6 0} \mathbf{~ m m o l}$) with $\mathbf{K O t B u} / \mathrm{BEt}_{\mathbf{3}}(\mathbf{0 . 0 1 2} \mathbf{~ m m o l})$ in $\mathbf{2} \mathbf{~ m l ~ T H F : ~ T h e ~ p r o c e d u r e ~ f o r ~ t h i s ~ r e a c t i o n ~ w a s ~ t h e ~ s a m e ~ a s ~ a b o v e ~}$ but instead of $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.030 \mathrm{mmol}), \mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(0.012 \mathrm{~mol})$ were added in the reaction.

The percentage yields of the product $\mathbf{2 a}$ were calculated by p-xylene as an internal standard, which were then converted to molar concentrations. A duplicate reaction was also run under otherwise identical conditions and an average value was taken for each time point. The molar concentration of product $\mathbf{2 a}$ was plotted against the reaction time and the slope of linear portion of the curve was used to determine the initial rates of the reaction. The table showing molar concentration of product $\mathbf{2 a}$ in different concentration of pinacolborane, graph showing the rate at different concentration of $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$, table with $K_{\text {in }}$ in value and the graph showing $K_{\text {in }}$ in versus $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ are shown below.

Table S6. The molar concentration of product $\mathbf{2 a}$ in different concentration of $\mathrm{KO} t \mathrm{Bu}^{2} / \mathrm{BEt}_{3}$ at different time interval

Time (s)	$\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ $[30 / 2000 \mathrm{M}]$	$\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ $[24 / 2000 \mathrm{M}]$	$\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ $[18 / 2000 \mathrm{M}]$	$\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ $[12 / 2000 \mathrm{M}]$
300	0.02271	0.02109	0.01946	0.01846
600	0.02765	0.02551	0.02259	0.0198
900	0.03330	0.02861	0.02585	0.02291
1200	0.03715	0.03303	0.02903	0.02476

Table S7. The $K_{\text {in }}$ value of product 2a in different concentration of $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$

$\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}(\mathrm{M})$	$K_{\text {in }}\left(\mathrm{Ms}^{-1}\right)$
$30 / 2000$	1.63233×10^{-5}
$24 / 2000$	1.29766×10^{-5}
$18 / 2000$	1.06546×10^{-5}
$12 / 2000$	7.33618×10^{-6}

Figure S4. (a) Plot of the rise of product 2a from the reaction of $\mathbf{1 a}(0.6 \mathrm{mmol})$, pinacolborane (3.6 mmol with $0.012 \mathrm{mmol}, 0.018 \mathrm{mmol}, 0.024 \mathrm{mmol}$ and 0.030 mmol concentration of $\mathrm{KOt} \boldsymbol{B u} / \mathrm{BEt}_{3}$ respectively in different time interval. (b) Plot of $K_{\text {in }}$ versus $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ from the reaction of $\mathbf{1 a}$ $(0.6 \mathrm{mmol})$, pinacolborane (3.6 mmol) with $0.012 \mathrm{mmol}, 0.018 \mathrm{mmol}, 0.024 \mathrm{mmol}$ and 0.030 mmol of $\mathrm{KO} t \mathrm{Bu} / \mathrm{BEt}_{3}$ in 2 mL THF.

3.4 The plausible mechanism and DFT calculations

(2)

Table S8 The calculated gibbs free energies of reactions by DFT/B3LYP/6-311+G*

Eq (1)	$G_{\mathrm{A}} /$ a.u.	$G_{\mathrm{B}} / \mathrm{a} . \mathrm{u}$.	$G_{\text {c }}$ a.u.		$\begin{gathered} \Delta G_{\mathrm{eq}(1)} \\ /(\text { a.u. }) \end{gathered}$	$\begin{gathered} \Delta G_{\mathrm{eq}(1)} \\ /\left(\mathrm{kcal} . \mathrm{mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta G_{\mathrm{eq}(1)} \\ /\left(\mathrm{kJ} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$
	-863.1434	-361.6306	-1224.8444		-0.0704	-44.1767	-184.6585
Eq (2)	$G_{\text {C }} /$ a.u.	$G_{\mathrm{D}} / \mathrm{a} . \mathrm{u}$.	$G_{\mathrm{E}} /$ a.u.	$G_{\mathrm{A}} / \mathrm{a} . \mathrm{u}$.	$\begin{gathered} \Delta G_{\mathrm{eq}(2)} \\ /(\text { a.u. }) \end{gathered}$	$\begin{gathered} \Delta G_{\mathrm{eq}(2)} \\ /\left(\mathrm{kcal} . \mathrm{mol}^{-1}\right) \end{gathered}$	$\begin{gathered} \Delta G_{\mathrm{eq}(2)} \\ /\left(\mathrm{kJ}^{2} / \mathrm{mol}^{-1}\right) \end{gathered}$
	-1224.8444	-411.9700	-773.6774	-863.1434	-0.0064	-4.0161	-16.7871

$(1 \mathrm{a} . \mathrm{u} .=627.5095 \mathrm{kcal} / \mathrm{mol} ; 1 \mathrm{kcal} / \mathrm{mol}=4.18 \mathrm{~kJ} / \mathrm{mol})$
--- Start of file A xyz ---
$\mathrm{G}_{\mathrm{A}}=-863.1434$ a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z

1	5	0	-0.050941	-0.319707	-0.052913
2	6	0	0.240878	1.156912	0.712674
3	6	0	0.468184	2.328865	-0.255577
4	6	0	-2.714726	-0.000620	-0.259737
5	6	0	-1.577405	-0.929000	0.197926
6	6	0	2.535093	-1.028287	-0.278097
7	6	0	1.134706	-1.459955	0.188271
8	1	0	-0.010025	-0.088217	-1.256860

9	1	0	1.136247	1.128769	1.370176
10	1	0	-0.595208	1.468138	1.375111
11	1	0	0.656296	3.281902	0.256314
12	1	0	-0.400360	2.463644	-0.906128
13	1	0	1.320197	2.126343	-0.910418
14	1	0	-3.710273	-0.446716	-0.141589
15	1	0	-2.591243	0.253730	-1.316442
16	1	0	-2.719189	0.947665	0.291599
17	1	0	-1.839745	-1.257179	1.234172
18	1	0	-1.651895	-1.867947	-0.368790
19	1	0	3.289707	-1.817001	-0.165994
20	1	0	2.900420	-0.152444	0.272044
21	1	0	2.509659	-0.744730	-1.334282
22	1	0	0.845910	-2.356812	-0.377916
23	1	0	1.260792	-1.864247	1.223115
24	19	0	-0.100123	-0.620156	2.798061

--- End of file A xyz ---
--- Start of fileB xyz ---
$G_{B}=-361.6306$ a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	7	0	-0.262946	0.878139	0.024833
2	8	0	-0.413190	2.077454	-0.085531
3	6	0	-1.471902	0.094866	-0.004229
4	6	0	-1.287554	-1.283472	0.123512
5	6	0	-2.394519	-2.127794	0.107368
6	6	0	-3.671380	-1.586109	-0.036030

7	6	0	-3.849505	-0.202407	-0.163732
8	6	0	-2.751743	0.644959	-0.148551
9	1	0	-0.278419	-1.665790	0.233074
10	1	0	-2.265193	-3.200060	0.205654
11	1	0	-4.536222	-2.241432	-0.048999
12	1	0	-4.849070	0.204651	-0.274590
13	1	0	-2.857485	1.719245	-0.245178

--- End of file B xyz ---
--- Start of file C xyz ---
$\mathrm{G}_{\mathrm{C}}=-1224.8444$ a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	7	0	-0.660388	-1.692169	0.210566
2	8	0	0.380789	-1.154668	-0.676429
3	6	0	-1.871734	-0.896057	0.245107
4	5	0	1.065112	0.280740	-0.409141
5	6	0	-2.660035	-0.723505	-0.895962
6	6	0	-3.847493	-0.002381	-0.823331
7	6	0	-4.254874	0.555034	0.390016
8	6	0	-3.471058	0.382966	1.528657
9	6	0	-2.281870	-0.342770	1.455666
10	6	0	2.463747	0.052658	-1.261068
11	6	0	1.349017	0.494651	1.222946
12	6	0	0.079295	1.408471	-1.081650
13	6	0	0.682907	2.740559	-1.563980
14	1	0	-2.323760	-1.138367	-1.840833
15	1	0	-4.454386	0.130098	-1.713504
16	1	0	-5.179358	1.120963	0.445379
17	1	0	-3.783279	0.813023	2.475068
18	1	0	-1.666653	-0.485474	2.337011
19	1	0	2.238016	0.065969	-2.336705
20	1	0	0.595616	-0.048109	1.815927
21	1	0	-0.380433	0.927448	-1.956409
22	1	0	1.438862	2.585659	-2.340761
23	1	0	1.161465	3.306877	-0.759210
24	1	0	-0.910011	-2.528395	-0.314560

25	1	0	2.327916	0.068482	1.528773
26	1	0	-0.765999	1.642219	-0.418962
27	6	0	1.359772	1.942605	1.742551
28	1	0	0.411082	2.443718	1.534957
29	1	0	1.525249	1.993711	2.825849
30	1	0	2.146605	2.535339	1.268877
31	6	0	3.628069	1.021474	-0.987525
32	1	0	4.508656	0.793776	-1.600831
33	1	0	3.354593	2.057970	-1.195856
34	1	0	3.953042	0.987649	0.059074
35	1	0	2.855368	-0.973264	-1.100225
36	1	0	-0.082730	3.395582	-1.998223
37	19	0	1.844327	-2.340642	0.957024

--- End of file C xyz ---
--- Start of file D xyz ---
$G_{D}=-411.9700$ a.u.

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	8	0	0.360880	1.085024	1.183550
2	6	0	0.042888	0.789243	-0.213561
3	6	0	-0.042888	-0.789243	-0.213561
4	8	0	-0.360880	-1.085024	1.183550
5	5	0	0.000000	0.000000	1.930062
6	6	0	1.140299	1.379576	-1.091806
7	6	0	-1.294160	1.475976	-0.510164
8	6	0	1.294160	-1.475976	-0.510164
9	6	0	-1.140299	-1.379576	-1.091806
10	1	0	0.000000	0.000000	3.117021
11	1	0	0.972679	1.135849	-2.144928
12	1	0	2.128688	1.019975	-0.806883
13	1	0	1.140828	2.467571	-0.996426
14	1	0	-1.590997	1.349035	-1.554167
15	1	0	-1.197016	2.545236	-0.311158
16	1	0	-2.095535	1.091396	0.124233

17	1	0	1.197016	-2.545236	-0.311158
18	1	0	2.095535	-1.091396	0.124233
19	1	0	1.590997	-1.349035	-1.554167
20	1	0	-1.140828	-2.467571	-0.996426
21	1	0	-0.972679	-1.135849	-2.144928
22	1	0	-2.128688	-1.019975	-0.806883

--- End of file D xyz ---
--- Start of file \mathbf{E} xyz ---
$G_{E}=-773.6774$ a.u.

Center	Atomic	Atom	Coordinates (Angstroms)		
Number	Number	Type	X	Y	Z
1	6	0	-4.470437	-1.250381	0.543850
2	6	0	-3.166425	-1.157061	0.059699
3	6	0	-2.684083	0.074365	-0.391794
4	6	0	-3.517938	1.201273	-0.356156
5	6	0	-4.816626	1.092009	0.126889
6	6	0	-5.303560	-0.134743	0.581316
7	1	0	-4.834750	-2.210887	0.895058
8	1	0	-2.522180	-2.025684	0.032251
9	1	0	-3.149370	2.158571	-0.714952
10	1	0	-5.450708	1.972799	0.150817
11	1	0	-6.317095	-0.216780	0.959069
12	7	0	-1.404843	0.218127	-0.976629
13	1	0	-0.966182	1.100689	-0.725631
14	8	0	-0.521234	-0.835826	-0.576679
15	5	0	0.750569	-0.459077	-0.266810
16	6	0	2.978028	-0.641677	0.125613
17	6	0	2.511675	0.856330	0.332552
18	8	0	1.709682	-1.364396	0.094859
19	8	0	1.181317	0.847478	-0.279032
20	6	0	3.360414	1.903676	-0.377242
21	1	0	2.944822	2.898095	-0.199295
22	1	0	4.385505	1.897989	0.003992
23	1	0	3.391202	1.741695	-1.454335
24	6	0	2.318992	1.234872	1.803538

25	1	0	1.817901	2.203552	1.861155
26	1	0	1.699921	0.505668	2.330555
27	1	0	3.274478	1.315876	2.326996
28	6	0	3.827546	-1.212426	1.254878
29	1	0	4.763065	-0.655811	1.361572
30	1	0	3.301367	-1.193099	2.208919
31	1	0	4.080139	-2.251775	1.034353
32	6	0	3.658963	-0.882619	-1.224971
33	1	0	4.650001	-0.424383	-1.266191
34	1	0	3.773989	-1.957578	-1.377389
35	1	0	3.063991	-0.491451	-2.053222

--- End of file \mathbf{E} xyz ---

4. NMR spectra data

4-Methoxyaniline (2a), white solid, $0.062 \mathrm{~g}, 84 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) $\delta 6.78-6.72(\mathrm{~m}, 2 \mathrm{H}), 6.68-6.61(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 152.9,140.1,116.5,114.9,55.8$. These spectroscopic data correspond to reported data. ${ }^{4}$

4-Chloroaniline (2c), white solid, $0.056 \mathrm{~g}, 73 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) δ 7.14-7.05 (m, 2H), 6.68-6.54 (m, 2H), 3.60 (s, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.20^{\circ} \mathrm{C}\right) \delta 145.1,129.2,123.2,116.3$. These spectroscopic data correspond to reported data. ${ }^{5}$

4-Bromoaniline (2d), gray solid, $0.076 \mathrm{~g}, 74 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) δ $7.22(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 145.5,132.0,116.8,110.2$. These spectroscopic data correspond to reported data. ${ }^{4}$

4-Iodoaniline (2e), grayish-brown solid, $0.088 \mathrm{~g}, 67 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20\right.$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 7.41(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{t}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}$ (101 MHz, $\left.\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 146.2,138.0,117.4,79.5$. These spectroscopic data correspond to reported data. ${ }^{4}$

3-(Trifluoromethyl)aniline (2f), colorless oil, $0.068 \mathrm{~g}, 70 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 7.22(\mathrm{dd}, J=10.5 \mathrm{~Hz}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.87$ $(\mathrm{s}, 1 \mathrm{H}), 6.79(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 146.9,131.7(\mathrm{q}, J=31.8 \mathrm{~Hz}), 129.9,124.4(\mathrm{q}, J=272.2 \mathrm{~Hz}), 118.1(\mathrm{~d}$, $J=1.2 \mathrm{~Hz}), 115.1(\mathrm{q}, J=4.0 \mathrm{~Hz}), 111.4(\mathrm{q}, J=3.9 \mathrm{~Hz}) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(377 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.20^{\circ} \mathrm{C}\right) \delta-62.91$. These spectroscopic data correspond to reported data. ${ }^{4}$

4-(Phenylthio)aniline (2g), yellow solid, $0.078 \mathrm{~g}, 65 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.20^{\circ} \mathrm{C}\right) \delta 7.36-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.16-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.72-6.63(\mathrm{~m}, 2 \mathrm{H})$, $3.81(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right) \delta 147.2,139.8,136.3,128.9$, $127.4,125.4,120.6,116.0$. These spectroscopic data correspond to reported data. ${ }^{6}$

4-(Methylthio)aniline (2h), colorless oil, $0.046 \mathrm{~g}, 55 \% .{ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$, $\left.20^{\circ} \mathrm{C}\right) \delta 7.18(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}$) δ 145.2, 131.1, 115.8, 18.9. These spectroscopic data correspond to reported data. ${ }^{5}$

4-Morpholinoaniline (2i), white solid, $0.079 \mathrm{~g}, 74 \% .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20$
$\left.{ }^{\circ} \mathrm{C}\right) \delta 6.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.91-3.79(\mathrm{~m}, 4 \mathrm{H}), 3.41(\mathrm{~s}, 2 \mathrm{H})$, 3.08-2.94 (m, 4H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) $\delta 144.5,140.4,118.3$, 116.3, 67.2, 51.2.These spectroscopic data correspond to reported data. ${ }^{5}$

\boldsymbol{p}-Phenylenediamine (2j), white solid, $0.042 \mathrm{~g}, 65 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 6.56(\mathrm{~s}, 4 \mathrm{H}), 3.32(\mathrm{~s}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) δ 138.7, 116.8 . These spectroscopic data correspond to reported data. ${ }^{4}$

2-Ethylaniline ($\mathbf{2 k}$), yellow oil, $0.058 \mathrm{~g}, 80 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}$) δ $7.12(\mathrm{dd}, J=17.3 \mathrm{~Hz}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.73(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.65(\mathrm{~s}, 2 \mathrm{H}), 2.57(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) $\delta 144.1,128.4,128.1,126.9,118.9,115.4,24.1,13.1$. These spectroscopic data correspond to reported data. ${ }^{4}$

1-Naphthylamine (2l), white solid, $0.069 \mathrm{~g}, 80 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}$) $\delta 7.84(\mathrm{ddd}, J=5.5 \mathrm{~Hz}, J=3.1 \mathrm{~Hz}, J=1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.56-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.34(\mathrm{qd}, J=$ $8.1 \mathrm{~Hz}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{dd}, J=6.9 \mathrm{~Hz}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) $\delta 142.2,134.5,128.6,126.4,125.9,125.0,123.8,120.9$, 119.1, 109.8. These spectroscopic data correspond to reported data. ${ }^{4}$

2-Chloroaniline (2m), yellow oil, 0.058 g , 76%. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) δ $7.22(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.98(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{dd}, J=8.0 \mathrm{~Hz}, J=1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 6.69-6.62(\mathrm{~m}, 1 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) δ 143.0, 129.5, 127.7, 119.3, 119.1, 116.0. These spectroscopic data correspond to reported data. ${ }^{7}$

2, 6-Dimethylaniline (2n), yellow oil, $0.063 \mathrm{~g}, 87 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 7.02(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}$) $\delta 142.8,128.3,121.7,118.0,17.7$. These spectroscopic data correspond to reported data. ${ }^{4}$

Benzo[b]thiophen-5-amine (20), white solid, $0.064 \mathrm{~g}, 71 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 7.64(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.10(\mathrm{~s}, 1 \mathrm{H}), 6.82-6.73(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 143.6$, $140.9,130.5,127.2,123.1,123.0,115.0,108.4$. These spectroscopic data correspond to reported data. ${ }^{5}$

Benzo[d]thiazol-6-amine (2p), white solid, $0.055 \mathrm{~g}, 61 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 8.87(\mathrm{~s}, 1 \mathrm{H}), 7.72(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{dd}, J=8.7 \mathrm{~Hz}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO$\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 149.1,147.3,144.8,135.2,123.1,114.9,103.8$. These spectroscopic data correspond to reported data. ${ }^{5}$

\boldsymbol{t}-Butyl-4-aminobenzoate (2q), white solid, $0.11 \mathrm{~g}, 99 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, $\left.20^{\circ} \mathrm{C}\right) \delta 7.80(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.66-6.57(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 1.56(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 166.1,150.5,131.5,121.8,113.8,80.2$, 28.4. These spectroscopic data correspond to reported data. ${ }^{8}$

\mathbf{N}-(4-aminophenyl)-N-methylacetamide (2r), yellow solid, $0.060 \mathrm{~g}, 61 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) $\delta 6.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}$, $2 \mathrm{H}), 3.18(\mathrm{~s}, 3 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right) \delta 171.4,146.1$,
135.5, 128.0, 115.7, 37.4, 29.8, 22.4. These spectroscopic data correspond to reported data. ${ }^{9}$

4-Aminobenzenesulfonamide (2s), white solid, $0.083 \mathrm{~g}, 80 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~s}, 2 \mathrm{H}), 6.58(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.80$ $(\mathrm{s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 151.9,130.0,127.4,112.4$. These spectroscopic data correspond to reported data. ${ }^{10}$

4-(Methylsulfonyl)aniline (2t), yellow solid, $0.077 \mathrm{~g}, 75 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.64(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.09(\mathrm{~s}, 2 \mathrm{H}), 3.02$ (s, 3H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 153.5,128.8,125.8,112.7,44.5$. These spectroscopic data correspond to reported data. ${ }^{11}$
$\mathrm{NH}_{3} \mathrm{Cl}$
Ethylamine hydrochloride (5a), white solid, $0.039 \mathrm{~g}, 80 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 7.84(\mathrm{~s}, 3 \mathrm{H}), 2.77(\mathrm{dd}, J=14.0 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.15(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 34.0,12.5$. These spectroscopic data correspond to reported data. ${ }^{12}$
$\sim \mathrm{NH}_{3} \mathrm{C}$
\boldsymbol{n}-Propylamine hydrochloride (5b), white solid, $0.051 \mathrm{~g}, 88 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 2.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{dq}, J=14.7 \mathrm{~Hz}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 0.97(\mathrm{t}$, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 41.1,20.2$, 10.1. These spectroscopic data correspond to reported data. ${ }^{12}$
$\sim_{\mathrm{NH}_{3} \mathrm{Cl}}$
\boldsymbol{n}-Butylamine hydrochloride (5c), white solid, $0.059 \mathrm{~g}, 90 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 7.99(\mathrm{~s}, 3 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{dq}$, $J=14.5 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO$\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 38.4,29.0,19.2,13.5$. These spectroscopic data correspond to reported data. ${ }^{12}$

Hexylamine hydrochloride (5d), white solid, $0.077 \mathrm{~g}, 93 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 8.22(\mathrm{~s}, 3 \mathrm{H}), 2.69(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.63-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{dd}$, $J=14.5 \mathrm{~Hz}, J=7.7 \mathrm{~Hz}, 6 \mathrm{H}), 0.85(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, DMSO$\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 30.8,26.8,25.6,22.0,13.9$. These spectroscopic data correspond to reported
data. ${ }^{12}$

Isobutylamine hydrochloride (5e), white solid, $0.055 \mathrm{~g}, 83 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 8.11(\mathrm{~s}, 3 \mathrm{H}), 2.59(\mathrm{~s}, 2 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 1 \mathrm{H}), 0.91(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $d_{6}, 20{ }^{\circ} \mathrm{C}$) $\delta 45.6,26.3$, 19.8. These spectroscopic data correspond to reported data. ${ }^{12}$

Cyclohexanemethylamine hydrochloride (5f), white solid, $0.079 \mathrm{~g}, 88 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 8.08(\mathrm{~s}, 3 \mathrm{H}), 2.60(\mathrm{~s}, 2 \mathrm{H}), 1.70(\mathrm{dd}, J=24.2 \mathrm{~Hz}, J=$ $12.6 \mathrm{~Hz}, 4 \mathrm{H}), 1.65-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.24-1.05(\mathrm{~m}, 3 \mathrm{H}), 1.02-0.74(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 44.3,35.4,29.8,25.6,25.0$. These spectroscopic data correspond to reported data. ${ }^{12}$

\boldsymbol{i}-Propylamine hydrochloride (5g), white solid, $0.056 \mathrm{~g}, 97 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$) $\delta 3.49(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 44.0$, 19.8. These spectroscopic data correspond to reported data. ${ }^{5}$

\boldsymbol{t}-Butylamine hydrochloride (5h), white solid, $0.059 \mathrm{~g}, 89 \%$. ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right.$, $\left.20{ }^{\circ} \mathrm{C}\right) \delta 1.38(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20{ }^{\circ} \mathrm{C}$) δ 52.0, 26.6. These spectroscopic data correspond to reported data. ${ }^{5}$

Cyclopentylamine hydrochloride (5i), white solid, $0.064 \mathrm{~g}, 87 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 3.66(\mathrm{~s}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=43.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 52.2,30.6,23.5$. These spectroscopic data correspond to reported data. ${ }^{5}$

Cyclohexylamine hydrochloride (5j), white solid, $0.073 \mathrm{~g}, 90 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 3.16(\mathrm{td}, J=10.6 \mathrm{~Hz}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.81(\mathrm{~d}$, $J=4.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.66(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44-1.26(\mathrm{~m}, 4 \mathrm{H}), 1.25-1.10(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ $\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 50.4,30.3,24.3,23.8$. These spectroscopic data correspond to reported data. ${ }^{5}$

Benzylamine hydrochloride (5k), white solid, $0.085 \mathrm{~g}, 99 \%$. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$, $20^{\circ} \mathrm{C}$) $\delta 7.54-7.42(\mathrm{~m}, 5 \mathrm{H}), 4.19(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 132.6$, $129.2,128.8,43.1$. These spectroscopic data correspond to reported data. ${ }^{13}$

Naphthalen-1-ylmethanamine hydrochloride (51), white solid, $0.092 \mathrm{~g}, 79 \% .{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 8.52(\mathrm{~s}, 3 \mathrm{H}), 8.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00(\mathrm{t}, J$ $=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69-7.51(\mathrm{~m}, 4 \mathrm{H}), 4.52(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}(101 \mathrm{MHz}$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 133.2,130.7,130.2,128.9,128.7,127.3,126.8,126.2,125.4,123.5$. These spectroscopic data correspond to reported data. ${ }^{12}$

4-Methylbenzylamine hydrochloride (5m), white solid, $0.093 \mathrm{~g}, 98 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 8.38(\mathrm{~s}, 3 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, 2 H), 3.95 (q, $J=5.7 \mathrm{~Hz}, 2 \mathrm{H}$), $2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $d_{6}, 20$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 137.8,131.0,129.1,128.9,41.9,20.7$. These spectroscopic data correspond to reported data. ${ }^{13}$

4-Methoxybenzylamine hydrochloride (5n), white solid, $0.10 \mathrm{~g}, 99 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 8.29(\mathrm{~s}, 3 \mathrm{H}), 7.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, 2 H), $3.93(\mathrm{q}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $d_{6}, 20$ $\left.{ }^{\circ} \mathrm{C}\right) \delta 159.4,130.5,125.9,113.9,55.2,41.7$. These spectroscopic data correspond to reported data. ${ }^{13}$

\boldsymbol{o}-Anisidine hydrochloride (50), white solid, $0.085 \mathrm{~g}, 82 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 8.33(\mathrm{~s}, 3 \mathrm{H}), 7.39(\mathrm{dd}, J=11.6 \mathrm{~Hz}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.98(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{q}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 157.2,130.3(\mathrm{~d}, J=3.8 \mathrm{~Hz}), 121.7,120.3,110.9,55.5$, 37.6. These spectroscopic data correspond to reported data. ${ }^{12}$

4-Fluorobenzylamine hydrochloride (5p), white solid, $0.084 \mathrm{~g}, 87 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right) \delta 8.52(\mathrm{~s}, 3 \mathrm{H}), 7.56(\mathrm{dd}, J=8.3 \mathrm{~Hz}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J$ $=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{19} \mathrm{~F}$ NMR (377 MHz , DMSO- $d_{6}, 20{ }^{\circ} \mathrm{C}$) $\delta-113.69 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 163.3,160.8,131.3(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 130.4$ (d, $J=$ $3.1 \mathrm{~Hz}), 115.4,115.2,41.4$. These spectroscopic data correspond to reported data. ${ }^{12}$

4-Chlorobenzylamine hydrochloride (5q), white solid, $0.085 \mathrm{~g}, 80 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 2{ }^{\circ} \mathrm{C}$) $\delta 8.60(\mathrm{~s}, 3 \mathrm{H}), 7.55(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, 2 H), $4.00(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz, DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 133.2,133.1,131.0$, 128.5, 41.4. These spectroscopic data correspond to reported data. ${ }^{12}$

[4-(Trifluoromethyl)phenyl]methanamine hydrochloride (5r), white solid, 0.10 g , $79 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 2{ }^{\circ} \mathrm{C}$) $\delta 8.89(\mathrm{~s}, 3 \mathrm{H}), 7.75(\mathrm{q}, J=8.2 \mathrm{~Hz}, 4 \mathrm{H})$, $4.10(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 138.9,130.0,129.0(\mathrm{q}, J=$ $31.8 \mathrm{~Hz}), 125.4(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 124.3(\mathrm{~d}, J=273.7 \mathrm{~Hz}), 41.7 .{ }^{19} \mathrm{~F}$ NMR (377 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta-61.17$. These spectroscopic data correspond to reported data. ${ }^{13}$

2-Phenylethylamine hydrochloride (5s), white solid, $0.069 \mathrm{~g}, 73 \%$. ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right) \delta 7.38(\mathrm{dt}, J=15.0 \mathrm{~Hz}, J=7.1 \mathrm{~Hz}, 5 \mathrm{H}), 3.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.05-2.96 (m, 2H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$) $\delta 136.6,129.0,128.9,127.3$, 40.6, 32.7. These spectroscopic data correspond to reported data. ${ }^{12}$

Phenylethylamine hydrochloride (5t), white solid, $0.087 \mathrm{~g}, 84 \%$. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 8.03(\mathrm{~s}, 3 \mathrm{H}), 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.13(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}$, $J=13.4 \mathrm{~Hz}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.93-1.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (101 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) $\delta 140.9,128.4,128.2,126.0,38.3,31.8$, 28.7. These spectroscopic data correspond to reported data. ${ }^{12}$

5. References

[1] (a) D. Peng, M. Zhang and Z. Huang, Chem. Eur. J., 2015, 21, 14737; (b) W. Yao, J. Wang, A. Zhong, J. Li and J. Yang, Org. Lett., 2020, 22, 8086.
[2] (a) M. G. Manas, L. S. Sharninghausen, D. Balcells and R. H. Crabtree, New J. Chem., 2014, 38, 1694; (b) D. Bedi, A. Brar and M. Findlater, Green Chem., 2020, 22, 1125.
[3] (a) J. Xiao, Y. He, F. Ye and S. Zhu, Chem, 2018, 4, 1645; (b) S. Park, I. S. Lee and J. Park, Org. Biomol. Chem., 2013, 11, 395.
[4] V. Zubar, A. Dewanji and M. Rueping, Org. Lett., 2021, 23, 2742.
[5] L. Zhao, C. Hu, X. Cong, G. Deng, L. L. Liu, M. Luo and X. Zeng, J. Am. Chem. Soc., 2021, 143, 1618.
[6] A. C. Jones, W. I. Nicholson, H. R. Smallman and D. L. Browne, Org. Lett., 2020, 22, 8746.
[7] H. R. Dasgupta, S. Mukherjee and P. Ghosh, Tetrahedron Lett., 2019, 60, 151028.
[8] N. R. Lee, A. A. Bikovtseva, M. Cortes-Clerget, F. Gallou and B. H. Lipshutz, Org. Lett., 2017, 19, 6518.
[9] H.-G. Cheng, M. Pu, G. Kundu and F. Schoenebeck, Org. Lett., 2020, 22, 4581.
[10] G. Fernández, J. Sort and R. Pleixats, ChemistrySelect, 2018, 3, 8597.
[11] D. Han, S. Li, S. Xia, M. Su and J. Jin, Chem. Eur. J. 2020, 26, 12349.
[12] C. Bäumler, C. Bauer and R. Kempe, ChemSusChem, 2020, 13, 3110.
[13] M. Bhunia, S. R. Sahoo, A. Das, J. Ahmed, S. P. and S. K. Mandal, Chem. Sci., 2020, 11, 1848.

6. NMR spectra

Figure S5. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of 2a

Figure S6. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of 2a

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of 2c

Figure S8. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 c}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 d}$

Figure S10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 d}$

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 e}$

Figure S12. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 e}$

Figure S13. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 f}$

Figure S14. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 f}$

Figure S15. ${ }^{19} \mathrm{~F}$ NMR ($377 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 f}$

Figure S16. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 g}$

Figure S17. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 g}$

ヘive

$1 \mid$
Me

Figure S18. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 h}$

Figure S19. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 h}$

Figure S20. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 i}$

Figure S21. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 i}$

Figure S22. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2} \mathbf{j}$

Figure S23. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 j}$

Figure S24. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 k}$

Figure S25. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 k}$

Figure S26. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 l}$

Figure S27. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 l}$
MANAB88888 RNRR88888

Figure S28. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 m}$

Figure S29. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 m}$

$\stackrel{\text { g }}{\square}$
$\stackrel{8}{1}$

11

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 n}$

Figure S31. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 n}$

Figure S32. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 0}$

Figure S33. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 o}$

Figure S34. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 p}$

Figure S35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 p}$

Figure S36. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 q}$

Figure S37. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 q}$

$\underset{1}{\infty} \stackrel{\infty}{\infty}$ \iint
$\int($

Figure S38. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 r}$

Figure S39. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 r}$

Figure S40. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{2 s}$

Figure S41. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 s}$

Figure S42. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{2 t}$

Figure S43. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{2 t}$

Figure S44. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 a}$

[^0]

Figure S45. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{5 a}$

Figure S46. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 b}$

Figure S47. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 b}$

Figure S48. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 c}$

Figure S49. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 c}$

Figure S50. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 d}$

Figure S51. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{5 d}$

 $\int 11$

Figure S52. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 e}$

Figure S53. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 e}$

Figure S54. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 f}$

Figure S55．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$ ，DMSO－$\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 f}$

Figure S56．${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 g}$

Figure S57. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 g}$

Figure S58. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 h}$

Figure S59. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{5} \mathbf{h}$

Figure S60. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 i}$

Figure S61. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{5 i}$

Figure S62. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 j}$

Figure S63. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 j}$

\mid

Figure S64. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 k}$

Figure S65. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 k}$

Figure S66. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 I}$

Figure S67．${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$ ，DMSO－$\left.d_{6}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{5 1}$

Figure S68．${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 m}$

Figure S71. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 n}$
(

Figure S72. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 o}$

Figure S73. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 0}$
 $\int|\mid$

Figure S74. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 p}$

Figure S75. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 p}$

Figure S76. ${ }^{19} \mathrm{~F}$ NMR (377 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 p}$

Figure S77. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 q}$

Figure S78. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20{ }^{\circ} \mathrm{C}\right)$ of $\mathbf{5 q}$

Figure S79. ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 r}$
\qquad

Figure S80. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 r}$

Figure S81. ${ }^{19} \mathrm{~F}$ NMR (377 MHz , DMSO- $d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 r}$

Figure S82. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 s}$

Figure S83. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 s}$

Figure S84. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}, 20^{\circ} \mathrm{C}$) of $\mathbf{5 t}$

Figure S85. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}, 20^{\circ} \mathrm{C}\right)$ of $\mathbf{5 t}$

[^0]: $\mathrm{NH}_{3} \mathrm{Cl}$

