Electronic Supplementary Information

Amide-assisted $\alpha-\mathrm{C}\left(\mathrm{sp}^{3}\right)-\mathrm{H}$ acyloxyation of organic sulfides to access α-acyloxy sulfides

Ke Yang,* Shengfei Dai, Zhi Li, Zhengyi Li and Xiaoqiang Sun*

Table of contents

\qquad
II. Experimental Section

I. General Information

All the solvents and commercially available reagents were purchased and used directly. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light. Column chromatography was performed on EMD Silica Gel $60\left(200-300\right.$ Mesh) using a forced flow of $0.5-1.0$ bar. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a Bruker AVANCE III-300 or 400 spectrometer. ${ }^{1} \mathrm{H}$ NMR data was reported as: chemical shift ($\delta \mathrm{ppm}$), multiplicity, coupling constant (Hz), and integration. ${ }^{13} \mathrm{C}$ NMR data was reported in terms of chemical shift ($\delta \mathrm{ppm}$), multiplicity, and coupling constant (Hz). Mass (HRMS) analysis was obtained using Agilent 6200 Accurate-Mass TOF LC/MS system with Electrospray Ionization (ESI). Melting points were measured by an X4-A microscopic melting point apparatus.

II. Experimental Section

1. Starting materials:

1a

1e

$1 i$

1b

1f

1j

1c

1g

1k

1d

1h

11

1 m

1q

1n

1r

1v

10

1s

1t

Scheme S1. 2-Alkylthiobenzamide 1

2-Alkylthiobenzamides ($\mathbf{1 a - k}$ and $\mathbf{1 m} \mathbf{- w}$) were prepared from commercial 2(methylthio) benzoic acid (2.0 mmol) and the corresponding amines (3.0 mmol) in DCM at room temperature according to the reported procedure. ${ }^{1}$ 2-Alkylthiobenzamide (11) was
prepared from commercial 2-(methylthio)benzoic acid (2.0 mmol) and the corresponding ammonium hydroxide $(1.5 \mathrm{~mL})$ according to the reported procedure. ${ }^{2}$

4a

$4 e$

4b

$4 f$

4c

$4 g$

4d

4h

Scheme S2. Aryl methyl sulfide 4

Aryl methyl sulfides (4a-d) were purchased from Energy-chemical, Adamas-beta ${ }^{\circledR}$, TCI, J\&K ${ }^{@}$, Sigma-Aldrich, Chemieliva Pharmaceutical or Enamine. Aryl methyl sulfides (4eh) were prepared from commercial methylthiobenzoic acids (2.0 mmol) and corresponding amines (3.0 mmol) in DCM at room temperature according to the reported procedure. ${ }^{1}$

2. Optimization of the reaction conditions

A 30 mL Schlenk tube was charged with N-butyl-2-(methylthio)benzamide 1a (0.2 $\mathrm{mmol})$, electrophilic fluorinating reagent $(0.1 \sim 0.4 \mathrm{mmol})$, "OAc" source $(0.2 \sim 1.2$ $\mathrm{mmol})$ and solvent $(2.0 \mathrm{~mL})$. The tube was sealed and the reaction was then stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo, and the crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR in
CDCl_{3}. Yields are based on 1a, determined by crude ${ }^{1} \mathrm{H}$ NMR using dibromomethane as the internal standard. And the residue was purified by flash chromatography on silica gel to yield the product $\mathbf{2 a}$.

3. General procedure for the scope study

A 30 mL Schlenk tube was charged with 2-alkylthiobenzamides 1 (0.2 mmol), Selectfluor ($0.2 \mathrm{mmol}, 70.9 \mathrm{mg}$), carboxylic acid sodium salt (0.6 mmol), carboxylic acid $(0.2 \mathrm{mmol})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was sealed and the reaction was then stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel to yield the desired products 2 and $\mathbf{3}$.

4. Mechanistic studies

A 30 mL Schlenk tube was charged with N-butyl-2-(methylthio)benzamide 1a (0.2 mmol), TEMPO ($0.2 \sim 0.6 \mathrm{mmol}$), Selectfluor ($0.2 \mathrm{mmol}, 70.9 \mathrm{mg}$), NaOAc (0.6 mmol , $49.2 \mathrm{mg})$, $\mathrm{HOAc}(0.2 \mathrm{mmol}, 11.4 \mu \mathrm{~L})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was then sealed and stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction
mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the product 2a.

A 30 mL Schlenk tube was charged with N-butyl-2-(methylsulfinyl)benzamide 6 (0.2 mmol), $\mathrm{NaOAc}(0.6 \mathrm{mmol}, 49.2 \mathrm{mg})$, $\mathrm{HOAc}(0.2 \mathrm{mmol}, 11.4 \mu \mathrm{~L})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was then sealed and stirred vigorously at $120^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the product $\mathbf{2 a}(29.8 \mathrm{mg}, 53 \%)$.

A 30 mL Schlenk tube was charged with N -butyl-2-(methylsulfinyl)benzamide 6 (0.2 $\mathrm{mmol})$, HOAc $(0.2 \mathrm{mmol}, 11.4 \mu \mathrm{~L})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was then sealed and stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the product $\mathbf{2 a}(15.7 \mathrm{mg}, 28 \%)$.

A 30 mL Schlenk tube was charged with N -butyl-2-(methylsulfinyl)benzamide 6 (0.2 $\mathrm{mmol}), \mathrm{NaOAc}(0.6 \mathrm{mmol}, 49.2 \mathrm{mg})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was then sealed and stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction
mixture was then concentrated in vacuo. No desired product 2a was detected by GC-MS and ${ }^{1} \mathrm{H}$ NMR.

A 30 mL Schlenk tube was charged with (methylsulfinyl)benzene (0.2 mmol), NaOAc $(0.6 \mathrm{mmol}, 49.2 \mathrm{mg})$, $\mathrm{HOAc}(0.2 \mathrm{mmol}, 11.4 \mu \mathrm{~L})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was then sealed and stirred vigorously at $120^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. No desired product 5a was detected by GC-MS and ${ }^{1} \mathrm{H}$ NMR.

A 30 mL Schlenk tube was charged with N-butyl-2-(methylthio)benzamide 1a (0.2 mmol), Selectfluor ($0.2 \mathrm{mmol}, 70.9 \mathrm{mg}$), HOAc ($0.2 \mathrm{mmol}, 11.4 \mu \mathrm{~L}$) and $\mathrm{MeCN}(2.0$ mL). The tube was then sealed and stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel, cyclic product 7 (31.1 mg , 75%) was isolated.

$$
\mathbf{1 a} \xrightarrow[\substack{\text { Selectfluor (1.0 eq.) } \\ \text { MeCN, } 120^{\circ} \mathrm{C}}]{\text { NaOAc (3.0 eq.) }} \quad \mathbf{2 a (4 2 \%)}+\mathbf{6 (2 2 \%)}+\mathbf{7 (3 0 \%)}
$$

A 30 mL Schlenk tube was charged with N-butyl-2-(methylthio)benzamide 1a (0.2 mmol), Selectfluor ($0.2 \mathrm{mmol}, 70.9 \mathrm{mg}$), NaOAc ($0.6 \mathrm{mmol}, 49.2 \mathrm{mg}$) and $\mathrm{MeCN}(2.0$ mL). The tube was then sealed and stirred vigorously at $120^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the desired product

2a ($23.6 \mathrm{mg}, 42 \%$), N-butyl-2-(methylsulfinyl)benzamide $6(10.5 \mathrm{mg}, 22 \%$) and cyclic product 7 ($12.4 \mathrm{mg}, 30 \%$).

A 30 mL Schlenk tube was charged with N-butyl-2-(methylthio)benzamide 1a (0.2 mmol), Selectfluor ($0.2 \mathrm{mmol}, 70.9 \mathrm{mg}$), $\mathrm{EtCO}_{2} \mathrm{Na}(0.6 \mathrm{mmol}, 57.6 \mathrm{mg})$, HOAc (0.2 $\mathrm{mmol}, 11.4 \mu \mathrm{~L})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was then sealed and stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR. Yields are based on 1a, determined by crude ${ }^{1} \mathrm{H}$ NMR using dibromomethane as the internal standard. The desired products 2a and 3a were analyzed by crude ${ }^{1} \mathrm{H}$ NMR.

$$
\text { 1a } \xrightarrow[\substack{\text { Selectfluor (1.0 eq.) } \\ \text { MeCN, } 120^{\circ} \mathrm{C}}]{\substack{\mathrm{NaOAc}(3.0 \mathrm{eq} .)}} \quad \text { 2a (30\%) } \quad+\quad \text { 3a (46\%) }
$$

A 30 mL Schlenk tube was charged with N-butyl-2-(methylthio)benzamide 1a (0.2 mmol), Selectfluor ($0.2 \mathrm{mmol}, 70.9 \mathrm{mg}$), $\mathrm{NaOAc}(0.6 \mathrm{mmol}, 49.2 \mathrm{mg}), \mathrm{EtCO}_{2} \mathrm{H}(0.2$ $\mathrm{mmol}, 15.0 \mu \mathrm{~L})$ and $\mathrm{MeCN}(2.0 \mathrm{~mL})$. The tube was then sealed and stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was analyzed by ${ }^{1} \mathrm{H}$ NMR. Yields are based on 1a, determined by crude ${ }^{1} \mathrm{H}$ NMR using dibromomethane as the internal standard. The desired products $\mathbf{2 a}$ and $\mathbf{3 a}$ were analyzed by crude ${ }^{1} \mathrm{H}$ NMR.

5. The gram-scale reaction for the synthesis of NS1040

A 100 mL Schlenk tube was charged with N-(3-amino-3-oxopropyl)-2(methylthio)benzamide 1q ($1.072 \mathrm{~g}, 4.5 \mathrm{mmol}$), Selectfluor ($4.5 \mathrm{mmol}, 1.595 \mathrm{~g}$), n $\mathrm{PrCO}_{2} \mathrm{Na}(1.486 \mathrm{~g}, 13.5 \mathrm{mmol}), n-\mathrm{PrCO}_{2} \mathrm{H}(411.3 \mu \mathrm{~L}, 4.5 \mathrm{mmol})$ and $\mathrm{MeCN}(10.0 \mathrm{~mL})$. The tube was sealed and the reaction was then stirred vigorously at $120{ }^{\circ} \mathrm{C}$ for 24 h . After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The residue was then diluted with $\mathrm{DCM}(15 \mathrm{~mL})$. Next, the diluted solution was washed with saturated NaHCO_{3} solution ($3 \times 5 \mathrm{~mL}$), and the aqueous layer was extracted with DCM $(3 \times 5 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 5 \mathrm{~mL})$ and brine (5 mL), then dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. Finally, the solid was washed with n-hexane (5 mL) to yield the desired product $8(1.241 \mathrm{~g}, 85 \%)$.

6. Data of compounds

Yellow oil, 49.5 mg , yield: $88 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.33$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{br}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.36(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.55-$ $1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.26,168.02,138.40,132.38,131.77,130.64,128.49,127.72,68.00,39.83,31.54$, 21.00, 20.19, 13.77. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 282.1158$, found: 282.1154.

Yellow oil, 34.3 mg , yield: $61 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35$ - $7.20(\mathrm{~m}, 2 \mathrm{H}), 6.25(\mathrm{br}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.87-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.25,168.10$, $138.45,132.40$, 131.73, 130.65, 128.49, 127.71, 67.98, 47.43, 28.56, 21.03, 20.28. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 282.1158$, found: 282.1155 .

S10

White solid, 29.8 mg , yield: 53%, m.p. $93-95{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.90(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 4.09-3.99(\mathrm{~m}, 1 \mathrm{H}), 2.02$ $(\mathrm{s}, 3 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.16(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.26,167.44,138.70,132.34,131.65,130.55,128.37,127.68$, 68.02, 47.37, 29.69, 21.04, 20.35, 10.49. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 282.1158$, found: 282.1157.

Yellow oil, 33.7 mg , yield: $60 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.50-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31$ $-7.20(\mathrm{~m}, 2 \mathrm{H}), 5.88(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.28,167.43,139.49,132.09,131.50,130.33,128.21,127.64,67.97,52.11$, 28.79, 21.06. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 282.1158$, found: 282.1158 .

White solid, 35.1 mg , yield: 57 \%, m.p. $105-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.52-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.02(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 3.96-3.86(\mathrm{~m}, 1 \mathrm{H})$, $2.02-1.95(\mathrm{~m}, 5 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.38-1.28(\mathrm{~m}, 2 \mathrm{H}), 1.23-1.11(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.26,167.11,138.60,132.30,131.71,130.56,128.46$,
127.71, 68.01, 48.90, 33.02, 25.55, 24.84, 21.05. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 308.1315$, found: 308.1310 .

White solid, 51.7 mg , yield: 82%, m.p. $86-87{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 7 \mathrm{H}), 6.54(\mathrm{br}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 2 \mathrm{H}), 4.54(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 2 \mathrm{H})$, 1.92 (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.23,167.94,138.08,137.84,132.57$, 132.00, 130.86, 128.78, 128.57, 128.02, 127.80, 127.67, 68.12, 44.19, 20.91. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 316.1002$, found: 316.0996.

White solid, 49.4 mg , yield: 75%, m.p. $81-83{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-$ $7.44(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.19(\mathrm{~m}, 7 \mathrm{H}), 6.56(\mathrm{br}, 1 \mathrm{H}), 5.30-5.20(\mathrm{~m}, 3 \mathrm{H}), 1.93(\mathrm{~s}, 3 \mathrm{H}), 1.51$ $(\mathrm{d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.26,167.11,142.84,138.22$, $132.39,131.98,130.74,128.72,128.62,127.79,127.49$, 126.37, 68.07, 49.50, 21.69, 20.95. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 330.1158$, found: 330.1154 .

Brown solid, 36.1 mg , yield: 60%, m.p. $106-107{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.27(\mathrm{br}, 1 \mathrm{H}), 7.65-7.54(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.25(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.04(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H})$, $1.89(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.33,165.97,138.43,137.81,132.90$, 132.14, 131.19, 129.15, 129.11, 128.31, 124.72, 120.08, 68.32, 20.89. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NNaO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 324.0665$, found: 324.0665 .

White solid, 40.2 mg , yield: 63%, m.p. $116-118{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29$ (br, 1H), $7.65-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.41-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.99-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.30(\mathrm{~s}, 2 \mathrm{H}), 1.90$ (s, 3H). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.29,165.91,159.59(\mathrm{~d}, J=244.0 \mathrm{~Hz}), 138.15$, 133.81, 132.92, 132.09, 131.31, 129.17, 128.34, 121.89 (d, $J=7.8 \mathrm{~Hz}$), 115.75 (d, $J=$ 22.5 Hz), 68.28, 20.89. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{FNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 320.0751$, found: 320.0741 .

White solid, 47.7 mg , yield: 72%, m.p. $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26$ (br, 1H), $7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.63-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.34(\mathrm{~m}$, $2 \mathrm{H}), 6.89-6.84(\mathrm{~m}, 2 \mathrm{H}), 5.36(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 170.32,165.81,156.65,138.44,132.68,132.21,131.06,130.94,129.05,128.18$, 121.88, 114.20, 68.28, 55.52, 20.92. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{NNaO}_{4} \mathrm{~S}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 354.0770$, found: 354.0763.

White solid, 28.4 mg , yield: 47%, m.p. $131-133{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.85$ (br, 1H), 8.31 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.83$ $(\mathrm{m}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.22,166.77,151.61$, $147.44,138.60,138.04,133.43,131.83,131.27,128.50,127.77,119.90,114.53,68.02$, 20.98. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 303.0798$, found: 303.0796.

White solid, 24.8 mg , yield: 55%, m.p. $98-100{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ $-7.64(\mathrm{~m}, 2 \mathrm{H}), 7.49-7.35(\mathrm{~m}, 2 \mathrm{H}), 6.43(\mathrm{br}, 1 \mathrm{H}), 6.08(\mathrm{br}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 2 \mathrm{H}), 2.12(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.22,169.73,136.60,132.97,132.02,131.34$, 129.02, 127.77, 67.94, 21.00. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NaNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 248.0352, found: 248.0342 .

Yellow oil, 49.0 mg , yield: $83 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34$ $-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.30(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 3.35(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.25(\mathrm{~m}, 2 \mathrm{H})$, $1.54-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.05(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.67,167.02,137.23,131.50,130.62,129.58$, $127.43,126.59,66.81,38.80,30.50,26.56,19.16,12.76,7.84$. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 296.1315$, found: 296.1311 .

Yellow oil, 49.5 mg , yield: $80 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34$ - $7.20(\mathrm{~m}, 2 \mathrm{H}), 6.23(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.21(\mathrm{~m}, 2 \mathrm{H}), 1.58$ $-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.91-0.83(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $172.88,168.01,138.22,132.61,131.53,130.59,128.45,127.57,67.73,39.82,36.10$, 31.55, 20.20, 18.24, 13.79, 13.60. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 310.1471, found: 310.1466 .

Yellow oil, 48.5 mg , yield: $75 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.34$ - $7.20(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{br}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 2 \mathrm{H}), 3.40-3.33(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.38$ $-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 177.67, 168.02, 138.02, 132.82, 131.42, 130.52, 128.43, 127.48, 67.87, 39.84, 38.85, 31.56, 26.98, 20.21, 13.80. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 324.1628$, found: 324.1627.

3d

White solid, 64.3 mg , yield: 90%, m.p. $90-92{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.15(\mathrm{~m}, 8 \mathrm{H}), 6.06(\mathrm{br}, 1 \mathrm{H}), 5.33(\mathrm{~s}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.33(\mathrm{q}, J=$ $6.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.54-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.74,168.03,138.51,133.37,132.14,131.93,130.53,129.34$, 128.66, 128.30, 127.68, 127.26, 68.34, 41.37, 39.82, 31.56, 20.20, 13.81. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 358.1471$, found: 358.1468.

White solid, 48.8 mg , yield: 71%, m.p. $96-97{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.97-$ $7.94(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.27(\mathrm{~m}, 4 \mathrm{H}), 6.17(\mathrm{br}, 1 \mathrm{H}), 5.60(\mathrm{~s}, 2 \mathrm{H}), 3.34-$ $3.27(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.26(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.98,165.84,138.51,133.50,132.39,132.18,130.71$, 129.80, 129.46, 128.60, 128.54, 127.87, 68.89, 39.85, 31.51, 20.19, 13.76. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 344.1315$, found: 344.1308.

White solid, 45.0 mg , yield: 63%, m.p. $101-103{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85$ - $7.82(\mathrm{~m}, 2 \mathrm{H}), 7.59-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.16(\mathrm{~m}, 4 \mathrm{H}), 6.19(\mathrm{br}, 1 \mathrm{H}), 5.57(\mathrm{~s}, 2 \mathrm{H}), 3.30$ $(\mathrm{q}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.31-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.85(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.95,165.88,144.34,138.50,132.42$, $132.22,130.70,129.84,129.26,128.62,127.84,126.69,68.74,39.85,31.51,21.75,20.20$, 13.78. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 358.1471$, found: 358.1468 .

White solid, 52.9 mg , yield: 70%, m.p. $193-194{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.75$ (d, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.19(\mathrm{~m}, 5 \mathrm{H})$, $6.12(\mathrm{br}, 1 \mathrm{H}), 5.61(\mathrm{~s}, 2 \mathrm{H}), 3.34(\mathrm{q}, ~ J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.35-1.28(\mathrm{~m}$, $2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.93,163.72,137.31$, 133.02, 132.06, 131.44, 130.72, 130.21, 129.69, 128.07, 127.39, 126.71, 125.68, 68.16, 38.81, 30.49, 19.14, 12.73. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 378.0925, found: 378.0920 .

White solid, 65.2 mg , yield: 80%, m.p. $110-111^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88$ $-7.71(\mathrm{~m}, 3 \mathrm{H}), 7.42-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.05(\mathrm{~m}, 3 \mathrm{H}), 5.91(\mathrm{br}, 1 \mathrm{H}), 5.32(\mathrm{~s}, 2 \mathrm{H}), 4.03$ (s, 2H), $3.34-3.27(\mathrm{~m}, 2 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.27(\mathrm{~m}, 2 \mathrm{H}), 0.86(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.74,168.02,138.32,133.81,131.98,131.69$, $130.41,129.93,128.74,128.24,128.19,128.17,127.55,126.52,125.89,125.53,123.78$, 68.30, 39.80, 39.23, 31.53, 20.18, 13.80. HRMS (ESI, m/z): calcd. for $\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{NO}_{3} \mathrm{~S}$ $[\mathrm{M}+\mathrm{H}]^{+}: 408.1628$, found: 408.1629 .

White solid, 55.6 mg , yield: 70%, m.p. $106-108{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.72$ - $7.28(\mathrm{~m}, 8 \mathrm{H}), 6.31(\mathrm{br}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 2 \mathrm{H}), 3.42(\mathrm{q}, ~ J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{~s}, 3 \mathrm{H}), 1.60-$ $1.52(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $168.05,159.59,154.56,140.06,138.99,132.49,131.96,130.71,128.89,128.51,128.30$, $128.05,127.21,123.38,121.30,112.23,69.21,39.89,31.54,20.20,13.76,9.51$. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 398.1421$, found: 398.1416.

3j

White solid, 59.9 mg , yield: 78%, m.p. $107-108^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.54$ - $7.46(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.15(\mathrm{br}, 1 \mathrm{H}), 5.52(\mathrm{~s}, 2 \mathrm{H})$, $3.36-3.29(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.00,160.31,138.72,138.34,133.86,132.33,132.06$, $130.95,130.68,128.44,128.01,127.54,69.22,39.86,31.55,20.21,13.80$. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{ClNO}_{3} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 384.0489$, found: 384.0481 .

Yellow oil, 42.5 mg , yield: $72 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.31(\mathrm{~s}, 1 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{br}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 2 \mathrm{H}), 3.39-3.32(\mathrm{~m}, 2 \mathrm{H}), 2.31(\mathrm{~s}$, $3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.23,166.87,139.99,134.43,131.58,130.89,127.77$, 127.59, 67.16, 38.78, 30.54, 20.29, 19.99, 19.19, 12.76. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 296.1315$, found: 296.1311.

Yellow oil, 42.3 mg , yield: $67 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47$ - 7.43 (m, 2H), 7.31 $-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.24(\mathrm{br}, 1 \mathrm{H}), 5.29(\mathrm{~s}, 2 \mathrm{H}), 3.39-3.33(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.55-1.50$ $(\mathrm{m}, 2 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $170.16,166.60$, 139.88, 134.11, 133.44, 130.70, 130.65, 128.66, 67.94, 39.93, 31.49, 21.00, 20.19, 13.79. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{ClNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 316.0769, found: 316.0761 .

Yellow oil, 48.5 mg , yield: $78 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.13$ - $7.12(\mathrm{~m}, 1 \mathrm{H}), 6.87-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{br}, 1 \mathrm{H}), 5.20(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.32$ $(\mathrm{m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.24,167.69,160.10,141.45,136.66,120.89,116.79$, $114.25,69.55,55.55,39.85,31.49,20.99,20.22,13.77$. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 312.1264$, found: 312.1262.

Red solid, 36.6 mg , yield: 51%, m.p. $96-98{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.74-$ $7.72(\mathrm{~m}, 1 \mathrm{H}), 7.47-7.41(\mathrm{~m}, 2 \mathrm{H}), 6.22(\mathrm{br}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 3.51-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.12$ $(\mathrm{s}, 3 \mathrm{H}), 1.64-1.54(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.12,167.01,136.71,134.89,133.74,130.64,129.88,124.63,67.43$, 39.91, 31.51, 20.97, 20.19, 13.76. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BrNO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 360.0264, found: 360.0260 .

White solid, 46.9 mg , yield: 83%, m.p. $173-174{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.49$ $-8.47(\mathrm{~m}, 1 \mathrm{H}), 7.74-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.04(\mathrm{~m}, 1 \mathrm{H}), 6.15(\mathrm{br}, 1 \mathrm{H}), 5.81(\mathrm{~s}, 2 \mathrm{H}), 3.38$ - $3.34(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.54-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.72,165.01,152.96,149.49,135.29,129.19$,
119.04, 61.30, 38.92, 30.41, 20.04, 19.14, 12.73. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 283.1111$, found: 283.1108.

Yellow oil, 29.5 mg , yield: $50 \% .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.55(\mathrm{~m}, 1 \mathrm{H}), 7.48$ $-7.45(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{br}, 1 \mathrm{H}), 6.16(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.46-3.31$ $(\mathrm{m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.56-1.36(\mathrm{~m}, 7 \mathrm{H}), 0.89(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 169.94,167.99,140.54,135.67,130.21,129.11,128.90,128.56,76.88,39.79$, 31.56, 21.08, 21.01, 20.24, 13.80. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 296.1315, found: 296.1318.

Yellow oil, 29.7 mg , yield: $48 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.59-7.54(\mathrm{~m}, 1 \mathrm{H}), 7.50$ $-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.26(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{br}, 1 \mathrm{H}), 6.01(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.29$ $(\mathrm{m}, 2 \mathrm{H}), 1.91(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.97$ $-0.87(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.10,168.02,140.68,135.80,130.17$, $129.13,128.85,128.58,81.97,39.79,31.58,28.14,20.96,20.25,13.79,10.25$. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 310.1471$, found: 310.1465.

Yellow oil, 23.9 mg , yield: $37 \%{ }^{1}{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.66-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.57$ - $7.52(\mathrm{~m}, 1 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 2 \mathrm{H}), 6.64(\mathrm{br}, 1 \mathrm{H}), 6.16(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.37$ $(\mathrm{m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.64-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.00$ $-0.90(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.08,168.02,140.70,135.86,130.15$, 129.12, 128.88, 128.58, 80.43, 39.78, 36.80, 31.59, 20.95, 20.25, 19.08, 13.79, 13.53. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 324.1628$, found: 324.1623 .

Yellow oil, 45.9 mg , yield: $65 \%{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.33$ $-7.30(\mathrm{~m}, 2 \mathrm{H}), 6.54(\mathrm{br}, 1 \mathrm{H}), 6.22(\mathrm{~s}, 1 \mathrm{H}), 4.07-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.35(\mathrm{~m}, 2 \mathrm{H}), 2.10$ $(\mathrm{s}, 3 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.68$, 167.63, 166.09, 140.43, 135.02, 130.38, 129.30, 129.20, 127.82, 76.90, 62.56, 39.91, 31.49, 20.77, 20.25, 13.88, 13.80. HRMS (ESI, m / z): calcd. for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 354.1370$, found: 354.1370 .

8

Yellow solid, 1.241 g , yield: 85%, m.p. $135-137{ }^{\circ} \mathrm{C}\left(\right.$ known compound $\left.{ }^{3}\right) .{ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.60-7.53(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.06(\mathrm{br}, 1 \mathrm{H}), 6.30(\mathrm{br}, 1 \mathrm{H})$, 5.85 (br, 1H), 5.38 (s, 2H), 3.67 (q, $J=5.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.57(\mathrm{t}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.33$ (t, $J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.64(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 174.18,173.10,168.48,137.56,133.35,130.83,130.77,127.97,127.30,67.51$, 36.13, 35.84, 34.76, 18.26, 13.63.

III. References and notes:

(1) Y. Naro, M. Thomas, M. D. Stephens, C. M. Connelly and A. Deiters, Bioorg. Med. Chem. Lett., 2015, 25, 4793.
(2) G. Hallas and A. D. Towns, Dyes Pigm., 1997, 35, 219.
(3) L. Miller Jenkins, E. Paine and L. Deshmukh, J. Am. Chem. Soc., 2019, 141, 8327.

IV. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

,	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	,
180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

		98 U EN W	¢	$\underset{\text { in }}{\substack{\text { in }}}$	$\stackrel{\infty}{\infty}$

1	8	7	1	1	1	1	1	11	1	1	1	1	1	1	1	1	1	1	1
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

|

¢	
1 \|	

$$
\begin{aligned}
& \text { ®̀ } \\
& \text { І̀ }
\end{aligned}
$$

器
ลิ

ก

${ }^{2} \mathrm{OAc}$

3d

3d

$3 e$

80	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0

$3 f$

S43

轧象逄

$3 g$

3h

3h

| |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

3j

3j

- へiN	i	$\overline{\bar{n}}$		$\stackrel{\overline{1}}{1}$		

-ivins	\#	ì ì		$\xrightarrow[\text { ® }]{\text { İ }}$	

$\stackrel{\text { in }}{i}$ i $\stackrel{\sim}{\infty}$
$\frac{2}{1}$


```
N~mmon
```


永俞

$$
\begin{aligned}
& \text { 为 }
\end{aligned}
$$

S53

S57

