Electronic Supplementary Information

Amide-assisted α -C(sp³)–H acyloxyation of organic sulfides to access α -acyloxy sulfides

Ke Yang,* Shengfei Dai, Zhi Li, Zhengyi Li and Xiaoqiang Sun*

Table of contents

I. General Information	·····S2
II. Experimental Section	······S3
III. References and Notes	······S22
IV. ¹ H and ¹³ C NMR Spectra	S23

I. General Information

All the solvents and commercially available reagents were purchased and used directly. Thin layer chromatography (TLC) was performed on EMD precoated plates (silica gel 60 F254, Art 5715) and visualized by fluorescence quenching under UV light. Column chromatography was performed on EMD Silica Gel 60 (200–300 Mesh) using a forced flow of 0.5–1.0 bar. The ¹H and ¹³C NMR spectra were obtained on a Bruker AVANCE III–300 or 400 spectrometer. ¹H NMR data was reported as: chemical shift (δ ppm), multiplicity, coupling constant (Hz), and integration. ¹³C NMR data was reported in terms of chemical shift (δ ppm), multiplicity, and coupling constant (Hz). Mass (HRMS) analysis was obtained using Agilent 6200 Accurate-Mass TOF LC/MS system with Electrospray Ionization (ESI). Melting points were measured by an X4-A microscopic melting point apparatus.

II. Experimental Section

1. Starting materials:

Scheme S1. 2-Alkylthiobenzamide 1

2-Alkylthiobenzamides (**1a-k** and **1m-w**) were prepared from commercial 2-(methylthio)benzoic acid (2.0 mmol) and the corresponding amines (3.0 mmol) in DCM at room temperature according to the reported procedure.¹ 2-Alkylthiobenzamide (**1l**) was

prepared from commercial 2-(methylthio)benzoic acid (2.0 mmol) and the corresponding ammonium hydroxide (1.5 mL) according to the reported procedure.²

Scheme S2. Aryl methyl sulfide 4

Aryl methyl sulfides (**4a-d**) were purchased from Energy-chemical, Adamas-beta[®], TCI, J&K[@], Sigma-Aldrich, Chemieliva Pharmaceutical or Enamine. Aryl methyl sulfides (**4e-h**) were prepared from commercial methylthiobenzoic acids (2.0 mmol) and corresponding amines (3.0 mmol) in DCM at room temperature according to the reported procedure.¹

2. Optimization of the reaction conditions

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylthio)benzamide **1a** (0.2 mmol), electrophilic fluorinating reagent (0.1 ~ 0.4 mmol), "OAc" source (0.2 ~ 1.2 mmol) and solvent (2.0 mL). The tube was sealed and the reaction was then stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo, and the crude product was analyzed by ¹H NMR in

CDCl₃. Yields are based on **1a**, determined by crude ¹H NMR using dibromomethane as the internal standard. And the residue was purified by flash chromatography on silica gel to yield the product **2a**.

3. General procedure for the scope study

A 30 mL Schlenk tube was charged with 2-alkylthiobenzamides 1 (0.2 mmol), Selectfluor (0.2 mmol, 70.9 mg), carboxylic acid sodium salt (0.6mmol), carboxylic acid (0.2 mmol) and MeCN (2.0 mL). The tube was sealed and the reaction was then stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The residue was purified by flash chromatography on silica gel to yield the desired products 2 and 3.

4. Mechanistic studies

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylthio)benzamide **1a** (0.2 mmol), TEMPO ($0.2 \sim 0.6$ mmol), Selectfluor (0.2 mmol, 70.9 mg), NaOAc (0.6 mmol, 49.2 mg), HOAc (0.2 mmol, 11.4 µL) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction

mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the product 2a.

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylsulfinyl)benzamide **6** (0.2 mmol), NaOAc (0.6 mmol, 49.2 mg), HOAc (0.2 mmol, 11.4 μ L) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the product **2a** (29.8 mg, 53%).

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylsulfinyl)benzamide **6** (0.2 mmol), HOAc (0.2 mmol, 11.4 μ L) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the product **2a** (15.7 mg, 28%).

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylsulfinyl)benzamide **6** (0.2 mmol), NaOAc (0.6 mmol, 49.2 mg) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 $^{\circ}$ C for 24 h. After cooling to room temperature, the reaction

mixture was then concentrated in vacuo. No desired product **2a** was detected by GC-MS and ¹H NMR.

A 30 mL Schlenk tube was charged with (methylsulfinyl)benzene (0.2 mmol), NaOAc (0.6 mmol, 49.2 mg), HOAc (0.2 mmol, 11.4 μ L) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. No desired product **5a** was detected by GC-MS and ¹H NMR.

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylthio)benzamide **1a** (0.2 mmol), Selectfluor (0.2 mmol, 70.9 mg), HOAc (0.2 mmol, 11.4 μ L) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel, cyclic product **7** (31.1 mg, 75%) was isolated.

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylthio)benzamide **1a** (0.2 mmol), Selectfluor (0.2 mmol, 70.9 mg), NaOAc (0.6 mmol, 49.2 mg) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 $^{\circ}$ C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was purified by flash chromatography on silica gel to yield the desired product

2a (23.6 mg, 42%), *N*-butyl-2-(methylsulfinyl)benzamide **6** (10.5 mg, 22%) and cyclic product **7** (12.4 mg, 30%).

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylthio)benzamide **1a** (0.2 mmol), Selectfluor (0.2 mmol, 70.9 mg), EtCO₂Na (0.6 mmol, 57.6 mg), HOAc (0.2 mmol, 11.4 μ L) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was analyzed by ¹H NMR. Yields are based on **1a**, determined by crude ¹H NMR using dibromomethane as the internal standard. The desired products **2a** and **3a** were analyzed by crude ¹H NMR.

A 30 mL Schlenk tube was charged with *N*-butyl-2-(methylthio)benzamide **1a** (0.2 mmol), Selectfluor (0.2 mmol, 70.9 mg), NaOAc (0.6 mmol, 49.2 mg), EtCO₂H (0.2 mmol, 15.0 μ L) and MeCN (2.0 mL). The tube was then sealed and stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The crude product was analyzed by ¹H NMR. Yields are based on **1a**, determined by crude ¹H NMR using dibromomethane as the internal standard. The desired products **2a** and **3a** were analyzed by crude ¹H NMR.

5. The gram-scale reaction for the synthesis of NS1040

100 N-(3-amino-3-oxopropyl)-2-А mL Schlenk tube was charged with (methylthio)benzamide 1q (1.072 g, 4.5 mmol), Selectfluor (4.5 mmol, 1.595 g), n-PrCO₂Na (1.486 g, 13.5 mmol), *n*-PrCO₂H (411.3 μL ,4.5 mmol) and MeCN (10.0 mL). The tube was sealed and the reaction was then stirred vigorously at 120 °C for 24 h. After cooling to room temperature, the reaction mixture was then concentrated in vacuo. The residue was then diluted with DCM (15 mL). Next, the diluted solution was washed with saturated NaHCO₃ solution (3×5 mL), and the aqueous layer was extracted with DCM $(3 \times 5 \text{ mL})$. The combined organic layers were washed with H₂O $(3 \times 5 \text{ mL})$ and brine (5 mL), then dried over anhydrous Na₂SO₄ and concentrated in vacuo. Finally, the solid was washed with *n*-hexane (5 mL) to yield the desired product 8 (1.241 g, 85%).

6. Data of compounds

Yellow oil, 49.5 mg, yield: 88%. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.46 (m, 2H), 7.33 – 7.20 (m, 2H), 6.22 (br, 1H), 5.32 (s, 2H), 3.36 (q, *J* = 7.2 Hz, 2H), 2.01 (s, 3H), 1.55 – 1.50 (m, 2H), 1.38 – 1.31 (m, 2H), 0.89 (t, *J* = 7.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.26, 168.02, 138.40, 132.38, 131.77, 130.64, 128.49, 127.72, 68.00, 39.83, 31.54, 21.00, 20.19, 13.77. HRMS (ESI, *m/z*): calcd. for C₁₄H₂₀NO₃S [M+H]⁺: 282.1158, found: 282.1154.

Yellow oil, 34.3 mg, yield: 61%. ¹H NMR (300 MHz, CDCl₃) δ 7.53 – 7.47 (m, 2H), 7.35 – 7.20 (m, 2H), 6.25 (br, 1H), 5.32 (s, 2H), 3.20 (t, *J* = 6.4 Hz, 2H), 2.01 (s, 3H), 1.87 – 1.78 (m, 1H), 0.92 (d, *J* = 6.7 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 170.25, 168.10, 138.45, 132.40, 131.73, 130.65, 128.49, 127.71, 67.98, 47.43, 28.56, 21.03, 20.28. HRMS (ESI, *m/z*): calcd. for C₁₄H₂₀NO₃S [M+H]⁺: 282.1158, found: 282.1155.

White solid, 29.8 mg, yield: 53%, m.p. 93 – 95 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.44 (m, 2H), 7.35 – 7.20 (m, 2H), 5.90 (br, 1H), 5.33 (s, 2H), 4.09 – 3.99 (m, 1H), 2.02 (s, 3H), 1.53 – 1.48 (m, 2H), 1.16 (d, *J* = 6.7 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.26, 167.44, 138.70, 132.34, 131.65, 130.55, 128.37, 127.68, 68.02, 47.37, 29.69, 21.04, 20.35, 10.49. HRMS (ESI, *m/z*): calcd. for C₁₄H₂₀NO₃S [M+H]⁺: 282.1158, found: 282.1157.

Yellow oil, 33.7 mg, yield: 60%. ¹H NMR (300 MHz, CDCl₃) δ 7.50 – 7.41 (m, 2H), 7.31 – 7.20 (m, 2H), 5.88 (br, 1H), 5.33 (s, 2H), 2.02 (s, 3H), 1.39 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ 170.28, 167.43, 139.49, 132.09, 131.50, 130.33, 128.21, 127.64, 67.97, 52.11, 28.79, 21.06. HRMS (ESI, *m/z*): calcd. for C₁₄H₂₀NO₃S [M+H]⁺: 282.1158, found: 282.1158.

White solid, 35.1 mg, yield: 57 %, m.p. 105 – 107 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.45 (m, 2H), 7.35 – 7.20 (m, 2H), 6.02 (br, 1H), 5.33 (s, 2H), 3.96 – 3.86 (m, 1H), 2.02 – 1.95 (m, 5H), 1.71 – 1.54 (m, 3H), 1.38 – 1.28 (m, 2H), 1.23 – 1.11 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.26, 167.11, 138.60, 132.30, 131.71, 130.56, 128.46,

127.71, 68.01, 48.90, 33.02, 25.55, 24.84, 21.05. HRMS (ESI, m/z): calcd. for $C_{16}H_{22}NO_3S [M+H]^+$: 308.1315, found: 308.1310.

White solid, 51.7 mg, yield: 82%, m.p. 86 – 87 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.52 – 7.48 (m, 2H), 7.33 – 7.19 (m, 7H), 6.54 (br, 1H), 5.28 (s, 2H), 4.54 (d, *J* = 5.7 Hz, 2H), 1.92 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.23, 167.94, 138.08, 137.84, 132.57, 132.00, 130.86, 128.78, 128.57, 128.02, 127.80, 127.67, 68.12, 44.19, 20.91. HRMS (ESI, *m/z*): calcd. for C₁₇H₁₈NO₃S [M+H]⁺: 316.1002, found: 316.0996.

White solid, 49.4 mg, yield: 75%, m.p. 81 - 83 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.44 (m, 2H), 7.33 – 7.19 (m, 7H), 6.56 (br, 1H), 5.30 – 5.20 (m, 3H), 1.93 (s, 3H), 1.51 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.26, 167.11, 142.84, 138.22, 132.39, 131.98, 130.74, 128.72, 128.62, 127.79, 127.49, 126.37, 68.07, 49.50, 21.69, 20.95. HRMS (ESI, *m/z*): calcd. for C₁₈H₂₀NO₃S [M+H]⁺: 330.1158, found: 330.1154.

Brown solid, 36.1 mg, yield: 60%, m.p. 106 – 107 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.27 (br, 1H), 7.65 – 7.54 (m, 4H), 7.37– 7.25 (m, 4H), 7.18 – 7.04 (m, 1H), 5.29 (s, 2H), 1.89 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.33, 165.97, 138.43, 137.81, 132.90, 132.14, 131.19, 129.15, 129.11, 128.31, 124.72, 120.08, 68.32, 20.89. HRMS (ESI, *m/z*): calcd. for C₁₆H₁₅NNaO₃S [M+Na]⁺: 324.0665, found: 324.0665.

White solid, 40.2 mg, yield: 63%, m.p. 116 - 118 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.29 (br, 1H), 7.65 – 7.50 (m, 4H), 7.41 – 7.29 (m, 2H), 6.99 – 6.94 (m, 2H), 5.30 (s, 2H), 1.90 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.29, 165.91, 159.59 (d, J = 244.0 Hz), 138.15, 133.81, 132.92, 132.09, 131.31, 129.17, 128.34, 121.89 (d, J = 7.8 Hz), 115.75 (d, J = 22.5 Hz), 68.28, 20.89. HRMS (ESI, m/z): calcd. for C₁₆H₁₅FNO₃S [M+H]⁺: 320.0751, found: 320.0741.

White solid, 47.7 mg, yield: 72%, m.p. 106 – 108 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.26 (br, 1H), 7.70 – 7.65 (m, 1H), 7.63 – 7.58 (m, 1H), 7.55 – 7.51 (m, 2H), 7.46 – 7.34 (m, 2H), 6.89 – 6.84 (m, 2H), 5.36 (s, 2H), 3.79 (s, 3H), 1.97 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.32, 165.81, 156.65, 138.44, 132.68, 132.21, 131.06, 130.94, 129.05, 128.18, 121.88, 114.20, 68.28, 55.52, 20.92. HRMS (ESI, *m/z*): calcd. for C₁₇H₁₇NNaO₄S [M+Na]⁺: 354.0770, found: 354.0763.

White solid, 28.4 mg, yield: 47%, m.p. 131 - 133 °C. ¹H NMR (300 MHz, CDCl₃) δ 9.85 (br, 1H), 8.31 (d, *J* = 8.5 Hz, 1H), 7.65 - 7.55 (m, 4H), 7.42 - 7.25 (m, 2H), 6.87 - 6.83 (m, 1H), 5.32 (s, 2H), 1.97 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.22, 166.77, 151.61, 147.44, 138.60, 138.04, 133.43, 131.83, 131.27, 128.50, 127.77, 119.90, 114.53, 68.02, 20.98. HRMS (ESI, *m/z*): calcd. for C₁₅H₁₅N₂O₃S [M+H]⁺: 303.0798, found: 303.0796.

White solid, 24.8 mg, yield: 55%, m.p. 98 – 100 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.64 (m, 2H), 7.49 – 7.35 (m, 2H), 6.43 (br, 1H), 6.08 (br, 1H), 5.43 (s, 2H), 2.12 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.22, 169.73, 136.60, 132.97, 132.02, 131.34, 129.02, 127.77, 67.94, 21.00. HRMS (ESI, *m/z*): calcd. for C₁₀H₁₁NaNO₃S [M+Na]⁺: 248.0352, found: 248.0342.

Yellow oil, 49.0 mg, yield: 83%. ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.34 – 7.21 (m, 2H), 6.30 (br, 1H), 5.33 (s, 2H), 3.35 (q, *J* = 6.6 Hz, 2H), 2.32 – 2.25 (m, 2H), 1.54 – 1.49 (m, 2H), 1.35 – 1.33 (m, 2H), 1.05 (t, *J* = 7.6 Hz, 3H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 172.67, 167.02, 137.23, 131.50, 130.62, 129.58, 127.43, 126.59, 66.81, 38.80, 30.50, 26.56, 19.16, 12.76, 7.84. HRMS (ESI, *m/z*): calcd. for C₁₅H₂₂NO₃S [M+H]⁺: 296.1315, found: 296.1311.

Yellow oil, 49.5 mg, yield: 80%. ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.34 – 7.20 (m, 2H), 6.23 (br, 1H), 5.33 (s, 2H), 3.39 – 3.32 (m, 2H), 2.26 – 2.21 (m, 2H), 1.58 – 1.53 (m, 4H), 1.39 – 1.30 (m, 2H), 0.91 – 0.83 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 172.88, 168.01, 138.22, 132.61, 131.53, 130.59, 128.45, 127.57, 67.73, 39.82, 36.10, 31.55, 20.20, 18.24, 13.79, 13.60. HRMS (ESI, *m/z*): calcd. for C₁₆H₂₄NO₃S [M+H]⁺: 310.1471, found: 310.1466.

Yellow oil, 48.5 mg, yield: 75%. ¹H NMR (300 MHz, CDCl₃) δ 7.51 – 7.45 (m, 2H), 7.34 – 7.20 (m, 2H), 6.22 (br, 1H), 5.34 (s, 2H), 3.40 – 3.33 (m, 2H), 1.55 – 1.48 (m, 2H), 1.38 – 1.31 (m, 2H), 1.11 (s, 9H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 177.67, 168.02, 138.02, 132.82, 131.42, 130.52, 128.43, 127.48, 67.87, 39.84, 38.85, 31.56, 26.98, 20.21, 13.80. HRMS (ESI, *m*/*z*): calcd. for C₁₇H₂₆NO₃S [M+H]⁺: 324.1628, found: 324.1627.

White solid, 64.3 mg, yield: 90%, m.p. 90 – 92 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.41 (m, 1H), 7.31 – 7.15 (m, 8H), 6.06 (br, 1H), 5.33 (s, 2H), 3.57 (s, 2H), 3.33 (q, *J* = 6.2 Hz, 2H), 1.54 – 1.45 (m, 2H), 1.36 – 1.27 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.74, 168.03, 138.51, 133.37, 132.14, 131.93, 130.53, 129.34, 128.66, 128.30, 127.68, 127.26, 68.34, 41.37, 39.82, 31.56, 20.20, 13.81. HRMS (ESI, *m/z*): calcd. for C₂₀H₂₄NO₃S [M+H]⁺: 358.1471, found: 358.1468.

White solid, 48.8 mg, yield: 71%, m.p. 96 – 97 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.97 – 7.94 (m, 2H), 7.59 – 7.49 (m, 3H), 7.40 – 7.27 (m, 4H), 6.17 (br, 1H), 5.60 (s, 2H), 3.34 – 3.27 (m, 2H), 1.49 – 1.44 (m, 2H), 1.34 – 1.26 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.98, 165.84, 138.51, 133.50, 132.39, 132.18, 130.71, 129.80, 129.46, 128.60, 128.54, 127.87, 68.89, 39.85, 31.51, 20.19, 13.76. HRMS (ESI, *m/z*): calcd. for C₁₉H₂₂NO₃S [M+H]⁺: 344.1315, found: 344.1308.

White solid, 45.0 mg, yield: 63%, m.p. 101 – 103 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.85 – 7.82 (m, 2H), 7.59 – 7.50 (m, 2H), 7.33 – 7.16 (m, 4H), 6.19 (br, 1H), 5.57 (s, 2H), 3.30 (q, *J* = 6.6 Hz, 2H), 2.34 (s, 3H), 1.49 – 1.44 (m, 2H), 1.31 – 1.29 (m, 2H), 0.85 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 167.95, 165.88, 144.34, 138.50, 132.42, 132.22, 130.70, 129.84, 129.26, 128.62, 127.84, 126.69, 68.74, 39.85, 31.51, 21.75, 20.20, 13.78. HRMS (ESI, *m/z*): calcd. for C₂₀H₂₄NO₃S [M+H]⁺: 358.1471, found: 358.1468.

White solid, 52.9 mg, yield: 70%, m.p. 193 – 194 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.75 (d, J = 7.7 Hz, 1H), 7.60 (d, J = 7.7 Hz, 1H), 7.50 – 7.48 (m, 1H), 7.39 – 7.19 (m, 5H), 6.12 (br, 1H), 5.61 (s, 2H), 3.34 (q, J = 6.6 Hz, 2H), 1.57 – 1.46 (m, 2H), 1.35 – 1.28 (m, 2H), 0.86 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.93, 163.72, 137.31, 133.02, 132.06, 131.44, 130.72, 130.21, 129.69, 128.07, 127.39, 126.71, 125.68, 68.16, 38.81, 30.49, 19.14, 12.73. HRMS (ESI, m/z): calcd. for C₁₉H₂₁ClNO₃S [M+H]⁺: 378.0925, found: 378.0920.

White solid, 65.2 mg, yield: 80%, m.p. 110 - 111 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.88 – 7.71 (m, 3H), 7.42 – 7.32 (m, 5H), 7.19 – 7.05 (m, 3H), 5.91 (br, 1H), 5.32 (s, 2H), 4.03 (s, 2H), 3.34 – 3.27 (m, 2H), 1.49 – 1.42 (m, 2H), 1.34 – 1.27 (m, 2H), 0.86 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.74, 168.02, 138.32, 133.81, 131.98, 131.69, 130.41, 129.93, 128.74, 128.24, 128.19, 128.17, 127.55, 126.52, 125.89, 125.53, 123.78, 68.30, 39.80, 39.23, 31.53, 20.18, 13.80. HRMS (ESI, *m/z*): calcd. for C₂₄H₂₆NO₃S [M+H]⁺:408.1628, found: 408.1629.

White solid, 55.6 mg, yield: 70%, m.p. 106 – 108 °C.¹H NMR (300 MHz, CDCl₃) δ 7.72 – 7.28 (m, 8H), 6.31 (br, 1H), 5.74 (s, 2H), 3.42 (q, *J* = 6.8 Hz, 2H), 2.57 (s, 3H), 1.60 – 1.52 (m, 2H), 1.42 – 1.35 (m, 2H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.05, 159.59, 154.56, 140.06, 138.99, 132.49, 131.96, 130.71, 128.89, 128.51, 128.30, 128.05, 127.21, 123.38, 121.30, 112.23, 69.21, 39.89, 31.54, 20.20, 13.76, 9.51. HRMS (ESI, *m/z*): calcd. for C₂₂H₂₄NO₄S [M+H]⁺: 398.1421, found: 398.1416.

White solid, 59.9 mg, yield: 78%, m.p. 107 – 108 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.54 – 7.46 (m, 3H), 7.36 – 7.24 (m, 2H), 6.87 (d, *J* = 4.1 Hz, 1H), 6.15 (br, 1H), 5.52 (s, 2H), 3.36 – 3.29 (m, 2H), 1.52 – 1.47 (m, 2H), 1.36 – 1.28 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 168.00, 160.31, 138.72, 138.34, 133.86, 132.33, 132.06, 130.95, 130.68, 128.44, 128.01, 127.54, 69.22, 39.86, 31.55, 20.21, 13.80. HRMS (ESI, *m/z*): calcd. for C₁₇H₁₉ClNO₃S₂ [M+H]⁺: 384.0489, found: 384.0481.

Yellow oil, 42.5 mg, yield: 72%. ¹H NMR (300 MHz, CDCl₃) δ 7.43 (d, *J* = 7.8 Hz, 1H), 7.31 (s, 1H), 7.08 – 7.05 (m, 1H), 6.29 (br, 1H), 5.31 (s, 2H), 3.39 – 3.32 (m, 2H), 2.31 (s, 3H), 2.02 (s, 3H), 1.55 – 1.50 (m, 2H), 1.38 – 1.31 (m, 2H), 0.88 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.23, 166.87, 139.99, 134.43, 131.58, 130.89, 127.77, 127.59, 67.16, 38.78, 30.54, 20.29, 19.99, 19.19, 12.76. HRMS (ESI, *m/z*): calcd. for C₁₅H₂₂NO₃S [M+H]⁺: 296.1315, found: 296.1311.

Yellow oil, 42.3 mg, yield: 67%. ¹H NMR (300 MHz, CDCl₃) δ 7.47 – 7.43 (m, 2H), 7.31 – 7.28 (m, 1H), 6.24 (br, 1H), 5.29 (s, 2H), 3.39 – 3.33 (m, 2H), 2.02 (s, 3H), 1.55 – 1.50 (m, 2H), 1.39 – 1.30 (m, 2H), 0.89 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.16, 166.60, 139.88, 134.11, 133.44, 130.70, 130.65, 128.66, 67.94, 39.93, 31.49, 21.00, 20.19, 13.79. HRMS (ESI, m/z): calcd. for C₁₄H₁₉ClNO₃S [M+H]⁺: 316.0769, found: 316.0761.

Yellow oil, 48.5 mg, yield: 78%. ¹H NMR (300 MHz, CDCl₃) δ 7.44 – 7.40 (m, 1H), 7.13 – 7.12 (m, 1H), 6.87 – 6.84 (m, 1H), 6.53 (br, 1H), 5.20 (s, 2H), 3.75 (s, 3H), 3.40 – 3.32 (m, 2H), 1.99 (s, 3H), 1.61 – 1.48 (m, 2H), 1.41 – 1.29 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.24, 167.69, 160.10, 141.45, 136.66, 120.89, 116.79, 114.25, 69.55, 55.55, 39.85, 31.49, 20.99, 20.22, 13.77. HRMS (ESI, *m/z*): calcd. for C₁₅H₂₁NO₄S [M+H]⁺: 312.1264, found: 312.1262.

Red solid, 36.6 mg, yield: 51%, m.p. 96 – 98 °C. ¹H NMR (300 MHz, CDCl₃) δ 7.74 – 7.72 (m, 1H), 7.47 – 7.41 (m, 2H), 6.22 (br, 1H), 5.40 (s, 2H), 3.51 – 3.35 (m, 2H), 2.12 (s, 3H), 1.64 – 1.54 (m, 2H), 1.48 – 1.35 (m, 2H), 0.96 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 170.12, 167.01, 136.71, 134.89, 133.74, 130.64, 129.88, 124.63, 67.43, 39.91, 31.51, 20.97, 20.19, 13.76. HRMS (ESI, *m/z*): calcd. for C₁₄H₁₈BrNO₃S [M+H]⁺: 360.0264, found: 360.0260.

White solid, 46.9 mg, yield: 83%, m.p. 173 – 174 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.49 – 8.47 (m, 1H), 7.74 – 7.72 (m, 1H), 7.08 – 7.04 (m, 1H), 6.15 (br, 1H), 5.81 (s, 2H), 3.38 – 3.34 (m, 2H), 2.00 (s, 3H), 1.54 – 1.53 (m, 2H), 1.36 – 1.34 (m, 2H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.72, 165.01, 152.96, 149.49, 135.29, 129.19,

119.04, 61.30, 38.92, 30.41, 20.04, 19.14, 12.73. HRMS (ESI, m/z): calcd. for $C_{13}H_{19}N_2O_3S$ [M+H]⁺: 283.1111, found: 283.1108.

Yellow oil, 29.5 mg, yield: 50%. ¹H NMR (300 MHz, CDCl₃) δ 7.58 – 7.55 (m, 1H), 7.48 – 7.45 (m, 1H), 7.32 – 7.29 (m, 2H), 6.55 (br, 1H), 6.16 (q, *J* = 6.5 Hz, 1H), 3.46 – 3.31 (m, 2H), 1.91 (s, 3H), 1.56 – 1.36 (m, 7H), 0.89 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.94, 167.99, 140.54, 135.67, 130.21, 129.11, 128.90, 128.56, 76.88, 39.79, 31.56, 21.08, 21.01, 20.24, 13.80. HRMS (ESI, *m/z*): calcd. for C₁₅H₂₂NO₃S [M+H]⁺: 296.1315, found: 296.1318.

Yellow oil, 29.7 mg, yield: 48%. ¹H NMR (300 MHz, CDCl₃) δ 7.59 – 7.54 (m, 1H), 7.50 – 7.46 (m, 1H), 7.33 – 7.26 (m, 2H), 6.55 (br, 1H), 6.01 (t, *J* = 6.5 Hz, 1H), 3.49 – 3.29 (m, 2H), 1.91 (s, 3H), 1.87 – 1.69 (m, 2H), 1.59 – 1.49 (m, 2H), 1.43 – 1.31 (m, 2H), 0.97 – 0.87 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 170.10, 168.02, 140.68, 135.80, 130.17, 129.13, 128.85, 128.58, 81.97, 39.79, 31.58, 28.14, 20.96, 20.25, 13.79, 10.25. HRMS (ESI, *m/z*): calcd. for C₁₆H₂₃NO₃S [M+H]⁺: 310.1471, found: 310.1465.

Yellow oil, 23.9 mg, yield: 37%. ¹H NMR (300 MHz, CDCl₃) δ 7.66 – 7.61 (m, 1H), 7.57 – 7.52 (m, 1H), 7.41 – 7.32 (m, 2H), 6.64 (br, 1H), 6.16 (t, *J* = 6.6 Hz, 1H), 3.56 – 3.37 (m, 2H), 1.97 (s, 3H), 1.85 – 1.78 (m, 2H), 1.64 – 1.57 (m, 2H), 1.51 – 1.38 (m, 4H), 1.00 – 0.90 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 170.08, 168.02, 140.70, 135.86, 130.15, 129.12, 128.88, 128.58, 80.43, 39.78, 36.80, 31.59, 20.95, 20.25, 19.08, 13.79, 13.53. HRMS (ESI, *m/z*): calcd. for C₁₇H₂₅NO₃S [M+H]⁺: 324.1628, found: 324.1623.

Yellow oil, 45.9 mg, yield: 65%. ¹H NMR (300 MHz, CDCl₃) δ 7.57 – 7.53 (m, 2H), 7.33 – 7.30 (m, 2H), 6.54 (br, 1H), 6.22 (s, 1H), 4.07 – 4.00 (m, 2H), 3.42 – 3.35 (m, 2H), 2.10 (s, 3H), 1.58 – 1.51 (m, 2H), 1.41 – 1.34 (m, 2H), 1.09 (t, *J* = 7.1 Hz, 3H), 0.90 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 169.68, 167.63, 166.09, 140.43, 135.02, 130.38, 129.30, 129.20, 127.82, 76.90, 62.56, 39.91, 31.49, 20.77, 20.25, 13.88, 13.80. HRMS (ESI, *m/z*): calcd. for C₁₇H₂₄NO₅S [M+H]⁺: 354.1370, found: 354.1370.

Yellow solid, 1.241 g, yield: 85%, m.p. 135 – 137 °C (known compound³). ¹H NMR (300 MHz, CDCl₃) δ 7.60 – 7.53 (m, 1H), 7.49 – 7.21 (m, 3H), 7.06 (br, 1H), 6.30 (br, 1H), 5.85 (br, 1H), 5.38 (s, 2H), 3.67 (q, *J* = 5.9 Hz, 2H), 2.57 (t, *J* = 5.8 Hz, 2H), 2.33 (t, *J* = 7.4 Hz, 2H), 1.64 (q, *J* = 7.4 Hz, 2H), 0.93 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 174.18, 173.10, 168.48, 137.56, 133.35, 130.83, 130.77, 127.97, 127.30, 67.51, 36.13, 35.84, 34.76, 18.26, 13.63.

III. References and notes:

(1) Y. Naro, M. Thomas, M. D. Stephens, C. M. Connelly and A. Deiters, *Bioorg. Med. Chem. Lett.*, 2015, **25**, 4793.

(2) G. Hallas and A. D. Towns, *Dyes Pigm.*, 1997, 35, 219.

(3) L. Miller Jenkins, E. Paine and L. Deshmukh, J. Am. Chem. Soc., 2019, 141, 8327.

IV. ¹H and ¹³C NMR Spectra

-5.32

^{190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

190 180 130 120 110 100

-5.28 4.55 ---0.00

-1.92

$$-\frac{8.19}{7.52}$$

 $-\frac{7.73}{7.52}$
 -5.29
 -5.29
 -3.72
 -3.72

-1.97

-2.12

-5.20

^{190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0}

