Supporting Information

Visible-Light-Driven photocyclization reaction: Photocatalyst-free mediated intramolecular N-N coupling for synthesis of 2H-indazole-3-carboxamides from aryl azides

Jinni Liu, Na Liu, Qingqing Yang and Long Wang*

College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic

Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang,

Hubei 443002, China.

Email: longwwwang@163.com, Tel./fax: +86 0717 6397505

Table of contents

1. General Information	
 Details of experimental procedures. Typical procedure for the synthesis of 1a1-1b2. 	
3. Characterization Datas of 2aa-2bb	S4-S9
4. Copies of ¹ H and ¹³ C NMR spectras of compounds 2aa-2bb	S10-S38

1. General Information

Reactions were monitored by analytical thin-layer chromatography (TLC) on Silica gel plates (GF254). The TLC plates were isualized by shortwave (254 nm) or longwave (365 nm) UV light. Column chromatography was carried out using silica gel (200-300 mesh) to purify the products. ¹H NMR (400 MHz) and ¹³C NMR (101 MHz) spectra were recorded in CDCl₃ or DMSO-d6 on Bruker AVANCE III 400 MHz spectrometers using TMS as the internal standard (CDCl₃ δ_H = 7.26 ppm, downfield from TMS, δ_C = 77.16 ppm). Chemical shifts are given in ppm downfield from tetramethylsilane (TMS) as an internal reference, and coupling constants (J-values) are in Hertz (Hz). ¹H NMR assignment abbreviations are the following; singlet (s), doublet (d), triplet (t), quartet (q), broad singlet (bs), doublet of doublets (dd), triplet of doublets (td), doublet of a triplets (dt) and multiplet (m). The high-resolution mass spectra (HRMS) were recorded in waters G2-Xs qtof mass spectrometer. Melting points were purchased from commercial sources and used without further purification. All the reactions were carried out with the irradiation of visible light under air atmosphere.

2. Details of experimental procedures

2.1. Typical procedure for the synthesis of 1a1-1b2.

Procedure for starting materials S1a (S1a-1 as an example): A round bottom flask equipped with a stir bar was charged with the 2-nitrobenzaldehyde (30 mmol, 1.0 equiv) and NaN₃ (60 mmol, 2.0 equiv) in HMPA (2.5 equiv). The flask was not sealed and the reactants in contact with air. The mixture was stirred at 60 °C for 24 h. When the reaction was complete, the reaction solution was cooled to room temperature and poured into deionised water (0 °C) with constant stirring. Subsequently, gradual precipitation of a yellowish solid was observed. After all the solids were precipitated, o-azidobenzaldehyde was obtained by simple washing, filtration and drying.

Procedure for starting materials 1a1-1b2: In a round bottom flask, a mixture of substituted for azidobenzaldehyde (3.0 mmol, 1 equiv) was dissolved in 3 mL of MeOH and the amine (3.0 mmol, 1 equiv) was added sequentially, 3 mL of MeOH was added after 5 minutes. Finally, isonitrile (3.0 mmol, 1 equiv) was added and stirred at room temperature for 12-24 h. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether–ethyl acetate = 10:1-3:1, v/v) to afford products **1a1-1b2** as solids.

2.1. Typical procedure for the synthesis of 2aa-2bb.

Procedure for 2H-indazole-3-carboxamides 2aa-2bb: In a Schlenk tube, starting materials **1a1-1b2** (1.0 mmol) and 5 mL of CH₃CN was placed with the irradiation of 6 W blue LEDs while stirring at room temperature under air atmosphere for 24 h. The mixture was quenched by NaCl S3

saturated solution after completion and then extracted with ethyl acetate (3×10 mL). The combined ethyl acetate layer was then dried over anhydrous NaSO₄ and concentrated in a vacuum. The residue obtained after evaporation of the solvent was purified by column chromatography on silica gel (petroleum ether-ethyl acetate = 5:1-3:1, v/v) to afford products **2aa-2bb** as solids.

3. Characterization Data of 2aa-2bb

Methyl (2-phenyl-2H-indazole-3-carbonyl)glycinate

White solid, 278 mg, 90%, mp 144-145 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.00 (d, J = 8.4 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.61 – 7.52 (m, 5H), 7.40 (t, J = 7.1 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 6.55 (s, 1H), 4.21 (d, J = 5.1 Hz, 2H), 3.78 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 169.93, 159.54, 148.39, 140.06, 129.46, 129.14, 128.02, 127.11, 125.83, 124.90, 122.47, 119.86, 118.50, 52.52, 41.41. HRMS (ESI-TOF) m/z [M+H]⁺ calcd

for C₁₇H₁₆N₃O₃ 310.1192; found 310.1193.

Methyl (2-(3-bromophenyl)-2H-indazole-3-carbonyl)glycinate

White solid, 348 mg, 90%, mp 146-147 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.94 (d, *J* = 8.6 Hz, 1H), 7.82 (d, *J* = 9.1 Hz, 2H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.55 (d, *J* = 8.0 Hz, 1H), 7.43 – 7.35 (m, 2H), 7.31 (t, *J* = 7.6 Hz, 1H), 6.65 (s, 1H), 4.26 (d, *J* = 5.3 Hz, 2H), 3.82 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 170.06, 159.38, 148.51, 141.22, 132.36, 130.12, 128.95, 128.11, 127.44, 125.16, 124.59, 122.45, 122.04, 119.45, 118.60, 52.67,

41.48. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{17}H_{15}BrN_3O_3$ 388.0297; found 388.0300.

Methyl (2-(p-tolyl)-2H-indazole-3-carbonyl)glycinate

White solid, 281 mg, 87%, mp 185-186 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.99 (d, J = 8.5 Hz, 1H), 7.81 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H), 7.34 – 7.27 (m, 3H), 6.53 (s, 1H), 4.20 (d, J = 5.3 Hz, 2H), 3.77 (s, 3H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 169.93, 159.64, 148.31, 139.62, 137.61, 129.72, 127.95,

126.96, 125.61, 124.72, 122.39, 119.87, 118.47, 52.44, 41.49, 21.38. HRMS (ESI-TOF) m/z $\rm [M+H]^+$ calcd for $\rm C_{18}H_{17}N_3O_3$ 324.1348; found 324.1351.

Methyl (2-(4-methoxyphenyl)-2H-indazole-3-carbonyl)glycinate

Yellow solid, 288 mg, 85%, mp 153-154 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 8.02 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.53 (d, J = 8.9 Hz, 2H), 7.40 (t, J = 7.7 Hz, 1H), 7.30 (t, J = 7.8 Hz, 1H), 7.03 (d, J = 8.9 Hz, 2H), 6.49 (s, 1H), 4.22 (d, J = 5.3 Hz, 2H), 3.88 (s, 3H), 3.79 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 169.95, 160.20, 159.41, 148.18, 133.00, 127.86, 127.12, 126.98, 124.78,

122.51, 120.00, 118.41, 114.32, 55.50, 52.33, 41.46. HRMS (ESI-TOF) m/z $\rm [M+H]^+$ calcd for $\rm C_{18}H_{18}N_3O_4$ 340.1297; found 340.1301.

Methyl (2-(4-chlorophenyl)-2H-indazole-3-carbonyl)glycinate

White solid, 312 mg, 91%, mp 178-179 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (d, J = 8.5 Hz, 1H), 7.82 (d, J = 8.7 Hz, 1H), 7.57 – 7.47 (m, 4H), 7.40 (t, J = 6.9 Hz, 1H), 7.30 (t, J = 8.0 Hz, 1H), 6.66 (s, 1H), 4.24 (d, J = 5.3 Hz, 2H), 3.81 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 169.97, 159.51, 148.45, 138.62, 135.24, 129.18, 127.98, 127.28, 126.96,

125.14, 122.04, 119.39, 118.62, 52.63, 41.41. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{17}H_{15}CIN_3O_3$ 344.0802; found 344.0804.

N-(tert-butyl)-2-phenyl-2H-indazole-3-carboxamide

White solid, 281 mg, 96%, mp 147-148 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.64 – 7.51 (m, 5H), 7.38 (t, J = 6.7Hz, 1H), 7.28 – 7.24 (m, 1H), 5.58 (s, 1H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.86, 148.39, 140.04, 130.09, 129.44, 129.23, 127.07, 125.74, 124.22, 122.32, 120.19, 118.21, 52.18, 28.64. Known compound.¹

N-(tert-butyl)-2-(p-tolyl)-2H-indazole-3-carboxamide

White solid, 295 mg, 96%, mp 131-132 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (d, J = 8.5 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H), 7.47 (d, J = 8.3 Hz, 2H), 7.38 – 7.32 (m, 3H), 7.25 – 7.21 (m, 1H), 5.62 (s, 1H), 2.45 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.92, 148.33, 139.48, 137.68, 129.95, 129.76, 126.80, 125.46, 124.14, 122.57, 120.07, 118.29, 52.07, 28.57, 21.13. Known compound.¹

N-(tert-butyl)-2-(m-tolyl)-2H-indazole-3-carboxamide

White solid, 295 mg, 96%, mp 128-129 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.95 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.45 – 7.32 (m, 5H), 7.24 (d, J = 7.7 Hz, 1H), 5.55 (s, 1H), 2.45 (s, 3H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.96, 148.33, 139.91, 139.52, 130.18, 130.04, 129.07, 127.04, 126.28, 124.15, 122.84, 122.40, 120.28, 118.15, 52.13, 28.63, 21.23. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for

C₁₇H₁₅BrN₃O₃ 308.1763; found 308.1767.

N-(tert-butyl)-2-(4-methoxyphenyl)-2H-indazole-3-carboxamide

White solid, 307 mg, 95%, mp 113-114 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.93 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.51 (d, J = 8.9 Hz, 2H), 7.38 – 7.34 (m, 1H), 7.25 – 7.22 (m, 1H), 7.04 (d, J = 8.9 Hz, 2H), 5.61 (s, 1H), 3.88 (s, 3H), 1.36 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 160.28, 158.91, 148.20, 133.05, 129.94, 126.96, 126.88, 124.07, 122.27, 120.23, 118.10, 114.33, 55.62, 52.10, 28.70.

Known compound.1

N-(tert-butyl)-2-(2-methoxyphenyl)-2H-indazole-3-carboxamide

White solid, 307 mg, 95%, mp 112-113 °C, ¹H NMR (400 MHz, CDCl₃,) δ (ppm) 7.96 (d, J = 8.5 Hz, 1H), 7.79 (d, J = 8.7 Hz, 1H), 7.55 – 7.49 (m, 2H), 7.38 – 7.34 (m, 1H), 7.27 – 7.23 (m, 1H), 7.15 (t, J = 7.1 Hz, 1H), 7.07 (d, J = 8.3 Hz, 1H), 5.73 (s, 1H), 3.78 (s, 3H), 1.32 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.87, 153.56, 148.35, 131.58, 131.10, 129.43, 128.10, 126.74, 123.98, 121.51, 121.10, 120.33, 118.24, 111.67, 55.71, 51.71, 28.68.

HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{19}H_{22}N_3O_2$ 324.1712; found 324.1715.

N-(tert-butyl)-2-(4-chlorophenyl)-2H-indazole-3-carboxamide

White solid, 314 mg, 96%, mp 161-162 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, *J* = 9.4 Hz, 2H), 7.56 – 7.47 (m, 4H), 7.39 – 7.35 (m, 1H), 7.26 – 7.22 (m, 1H), 5.82 (s, 1H), 1.44 (s, 9H); ¹³C NMR (101 MHz,

CDCl₃) δ (ppm) 158.85, 148.42, 138.68, 135.08, 130.00, 129.20, 127.18, 126.63, 124.43, 121.70, 119.49, 118.41, 52.39, 28.76. Known compound.¹

N-(tert-butyl)-2-(2-chlorophenyl)-2H-indazole-3-carboxamide

White solid, 307 mg, 94%, mp 145-146 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89 (d, *J* = 8.5 Hz, 1H), 7.82 (d, *J* = 8.8 Hz, 1H), 7.59 – 7.55 (m, 2H,), 7.50 – 7.47 (m, 2H), 7.42 – 7.38 (m, 2H), 7.31 – 7.28 (m, 1H), 5.76 (s, 1H), 1.39 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.44, 148.54, 138.57, 131.36, 131.04, 130.79, 129.99, 128.87, 127.65, 127.09, 124.57, 120.61, 119.78, 118.66, 52.05, 28.57. Known compound.¹

N-(tert-butyl)-2-(3-chlorophenyl)-2H-indazole-3-carboxamide

White solid, 311 mg, 95%, mp 167-168 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.79 – 7.76 (m, 2H), 7.63 (s, 1H), 7.53 – 7.44 (m, 3H), 7.37 (t, *J* = 6.5 Hz, 1H), 7.23 (t, *J* = 8.0 Hz, 1H), 5.83 (s, 1H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.87, 148.43, 140.97, 134.72, 130.13, 130.01, 129.20, 127.30, 125.68, 124.43, 123.48, 121.77, 119.60, 118.34, 52.45, 28.69. Known compound.¹

N-(tert-butyl)-2-(3-bromophenyl)-2H-indazole-3-carboxamide

White solid, 349 mg, 94%, mp 172-173 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (t, *J* = 7.7 Hz, 3H), 7.62 – 7.56 (m, 2H), 7.41 – 7.35 (m, 2H), 7.24 (t, *J* = 6.6 Hz, 1H), 5.80 (s, 1H), 1.44 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.83, 148.49, 141.13, 132.13, 130.26, 130.20, 128.56, 127.32, 124.46, 124.00, 122.45, 121.85, 119.64, 118.38, 52.47, 28.75. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₈H₁₈BrN₃O 372.0712; found 372.0713.

N-(tert-butyl)-2-(4-fluorophenyl)-2H-indazole-3-carboxamide

White solid, 289 mg, 93%, mp 157-158 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (dd, J = 14.9, 8.6 Hz, 2H), 7.60 – 7.57 (m, 2H), 7.38 (t, J = 7.7 Hz, 1H), 7.28 – 7.20 (m, 3H), 5.77 (s, 1H), 1.42 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 164.04, 161.49, 158.99, 148.25, 127.40, 127.13, 124.38, 121.67, 119.73, 118.34, 116.18, 115.95, 52.45, 28.74. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -111.40 (s, 1F). Known compound.¹

N-(tert-butyl)-6-methoxy-2-phenyl-2H-indazole-3-carboxamide

White solid, 275 mg, 85%, mp 152-153 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.79 (d, J = 9.2 Hz, 1H), 7.62 – 7.48 (m, 5H), 6.99 (d, J = 1.9 Hz, 1H), 6.93 (dd, J = 9.2, 2.2 Hz, 1H), 5.52 (s, 1H), 3.88 (s, 3H), 1.34 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 159.32, 158.84, 149.46, 139.95, 130.13, 129.20, 125.63, 121.10, 119.38, 118.27, 94.65, 55.26, 52.14, 28.58. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₂₂N₃O₃

324.1712; found 324.1716.

N-(tert-butyl)-2-propyl-2H-indazole-3-carboxamide

White solid, 186 mg, 72%, mp 102-103 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.77 (d, J = 8.7 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 7.23 (t, J = 8.1 Hz, 1H), 6.03 (s, 1H), 4.78 (t, J = 7.2 Hz, 2H), 2.06 – 1.96 (m, 2H), 1.55 (s, 9H), 0.96 (t, J = 7.4 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 159.61, 147.06, 128.41, 125.80, 123.79, 119.99, 118.48, 118.44, 54.19,

52.24, 29.01, 24.38, 11.15. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{15}H_{22}N_3O$ 260.1763; found 260.1770.

N-(tert-butyl)-2-cyclohexyl-2H-indazole-3-carboxamide

White solid, 263 mg, 88%, mp 124-125 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.80 (d, J = 8.7 Hz, 1H), 7.64 (d, J = 8.4 Hz, 1H), 7.32 (t, J = 7.6 Hz, 1H), 7.21 (t, J = 8.2 Hz, 1H), 6.03 (s, 1H), 5.34 – 5.23 (m, 1H), 2.16 – 2.07 (m, 4H), 1.92 (d, J = 13.2 Hz, 2H), 1.79 – 1.72 (m, 1H), 1.55 (s, 10H), 1.43 – 1.25 (m, 2H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 159.73, 147.00, 128.12, 125.60, 123.61, 119.95, 118.56, 118.47, 60.57, 52.25, 33.55, 29.07, 25.60,

25.31. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{18}H_{26}N_3O$ 300.2076; found 300.2074.

2-benzyl-N-(tert-butyl)-2H-indazole-3-carboxamide

White solid, 233 mg, 76%, mp 109-110 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.78 (d, *J* = 8.7 Hz, 1H), 7.63 (d, *J* = 8.5 Hz, 1H), 7.40 – 7.26 (m, 5H), 7.22 (t, *J* = 7.6 Hz, 2H), 6.02 (s, 2H), 5.91 (s, 1H), 1.48 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 159.60, 147.26, 136.62, 128.51, 128.19, 127.91, 126.10, 126.02, 123.92, 120.35, 118.64, 118.57, 55.83, 52.24, 28.89. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₂₂N₃O 308.1763; found 308.1768.

N-(tert-butyl)-2-(thiophen-2-ylmethyl)-2H-indazole-3-carboxamide

White solid, 213 mg, 68%, mp 133-134 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.79 (d, J = 8.7 Hz, 1H), 7.61 (d, J = 8.5 Hz, 1H), 7.31 (t, J = 7.6 Hz, 1H), 7.25 – 7.18 (m, 3H), 6.92 (dd, J = 5.0, 3.6 Hz, 1H), 6.23 (s, 2H), 6.00 (s, 1H), 1.55 (s, 9H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 159.58, 147.31, 138.31, 127.82, 127.73, 126.66, 126.32, 126.11, 124.14, 120.24, 118.78, 118.52, 52.31, 50.34, 29.00. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for

 $C_{17}H_{20}N_{3}O$ 314.1327; found 314.1333.

N-cyclohexyl-2-(p-tolyl)-2H-indazole-3-carboxamide

White solid, 283 mg, 85%, mp 215-216 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.6 Hz, 1H), 7.46 (d, J = 7.9 Hz, 2H), 7.38 – 7.31 (m, 3H), 7.25 – 7.22 (m, 1H), 5.71 (s, 1H), 3.95 (s, 1H), 2.45 (s, 3H), 1.91 (d, J = 10.2 Hz, 2H), 1.70 – 1.60 (m, 3H), 1.37 (d, J = 10.6 Hz, 2H), 1.15 – 1.09 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.67, 148.31, 139.64, 137.60, 129.76, 129.25, 126.91, 125.54,

124.20, 122.42, 120.21, 118.20, 48.39, 32.74, 25.36, 24.47, 21.23. Known compound.¹

2-(4-chlorophenyl)-N-cyclohexyl-2H-indazole-3-carboxamide

White solid, 293 mg, 83%, mp 248-249 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.79 (d, J = 8.7 Hz, 2H), 7.55 – 7.47 (m, 4H), 7.38 (t, J = 7.0 Hz, 1H), 5.91 (d, J = 7.0 Hz, 1H), 3.97 (s, 1H), 2.00 (d, J = 9.7 Hz, 2H), 1.73 – 1.65 (m, 4H), 1.45 – 1.36 (m, 2H), 1.25 – 1.20 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.59, 148.45, 138.67, 135.15, 129.28, 129.18, 127.21, 126.79, 124.57, 121.81, 119.48, 118.48, 48.75, 32.96, 25.36, 24.66.

Known compound.¹

N-cyclohexyl-2-(4-methoxyphenyl)-2H-indazole-3-carboxamide

White solid, 318 mg, 91%, mp 189-190 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.92 (d, J = 7.8 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.51 (d, J =7.6 Hz, 2H), 7.37 (t, J = 5.9 Hz, 1H), 7.25 (d, J = 8.1 Hz, 1H), 7.02 (d, J =7.7 Hz, 2H), 5.72 (s, 1H), 3.88 (s, 4H), 1.92 (d, J = 8.5 Hz, 2H), 1.70 – 1.62 (m, 3H), 1.37 (d, J = 10.9 Hz, 2H), 1.15 – 1.10 (m, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 160.30, 158.66, 148.24, 133.04, 129.22,

127.03, 126.90, 124.19, 122.40, 120.23, 118.14, 114.33, 55.62, 48.40, 32.80, 25.36, 24.51. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{21}H_{24}N_3O_2$ 350.1869; found 350.1870.

N-butyl-2-(p-tolyl)-2H-indazole-3-carboxamide

White solid, 246 mg, 80%, mp 163-164 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.91 (d, J = 8.5 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.44 (d, J = 8.3 Hz, 2H), 7.36 (t, J = 6.9 Hz, 1H), 7.31 (d, J = 8.1 Hz, 2H), 7.23 (t, J = 8.1 Hz, 1H), 5.87 (s, 1H), 3.37 (q, J = 6.9, 2H), 2.44 (s, 3H), 1.50 – 1.42 (m, 2H), 1.30 – 1.21 (m, 2H), 0.90 (t, J = 7.3 Hz, 3H); ¹³C NMR (101 MHz,

CDCl₃) δ (ppm) 159.96, 148.22, 139.64, 137.54, 129.77, 129.10, 126.93, 125.47, 124.23, 122.39, 120.16, 118.15, 39.41, 31.36, 21.23, 19.97, 13.65. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for C₁₉H₂₂N₃O 308.1763; found 308.1766.

2-(3-bromophenyl)-N-butyl-2H-indazole-3-carboxamide

Yellow solid, 315 mg, 85%, mp 175-176 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.81 – 7.77 (m, 3H), 7.62 (d, *J* = 8.0 Hz, 1H), 7.53 (d, *J* = 9.0 Hz, 1H), 7.40 – 7.35 (m, 2H), 7.27 – 7.25 (m, 1H), 6.04 (s, 1H), 3.44 (q, *J* = 6.9 Hz, 2H), 1.60 – 1.53 (m, 2H), 1.41 – 1.31 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 159.46, 148.50, 141.08, 132.25,

130.18, 129.31, 128.71, 127.34, 124.67, 124.23, 122.43, 121.87, 119.57, 118.44, 39.71, 31.53, 19.95, 13.70. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{18}H_{19}N_3O$ 372.0712; found 372.0715.

2-phenyl-N-(tosylmethyl)-2H-indazole-3-carboxamide

White solid, 320 mg, 79%, mp 193-194 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.89 – 7.83 (m, 2H), 7.76 (d, *J* = 8.3 Hz, 2H), 7.50 – 7.41 (m, 6H), 7.36 – 7.29 (m, 3H), 6.79 (t, *J* = 6.6 Hz, 1H), 4.85 (d, *J* = 6.8 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.21, 148.36, 145.51, 139.83, 133.86, 130.08, 129.60, 129.15, 128.69, 127.26, 126.75, 125.73, 125.47, 122.42, 119.35, 118.80,

60.09, 21.73. HRMS (ESI-TOF) m/z [M+H]⁺ calcd for $C_{22}H_{20}N_3O_3S$ 406.1225; found 406.1226.

2-(4-chlorophenyl)-N-(tosylmethyl)-2H-indazole-3-carboxamide

White solid, 334 mg, 76%, mp 217-218 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.86 (t, J = 8.8 Hz, 2H), 7.78 (d, J = 8.1 Hz, 2H), 7.45 – 7.35 (m, 6H), 7.29 (d, J = 8.9 Hz, 2H), 6.94 (t, J = 6.2 Hz, 1H), 4.90 (d, J = 6.7 Hz, 2H), 2.44 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 158.29, 148.43, 145.68, 138.35, 135.35, 133.88, 130.14, 129.11, 128.67, 127.44, 126.90, 125.80, 121.99, 118.96,

118.89, 60.07, 21.75. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{22}H_{19}N_3O_3SC1$ 440.0836; found 440.0840.

methyl (2-(4-methoxyphenyl)-2H-indazole-3-carbonyl)glycinate

White solid, 305 mg, 70%, mp 192-193 °C, ¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.88 – 7.81 (m, 2H), 7.75 (d, J = 8.2 Hz, 2H), 7.42 – 7.28 (m, 6H), 6.97 (d, J = 8.9 Hz, 2H), 6.78 (t, J = 6.6 Hz, 1H), 4.84 (d, J = 6.8 Hz, 2H), 3.87 (s, 3H), 2.41 (s, 3H); ¹³C NMR (CDCl₃, 101 MHz) δ (ppm) 160.35, 158.34, 148.16, 145.51, 133.91, 132.64, 130.05, 128.68, 127.10, 126.96, 126.69, 125.26, 122.50, 119.52,

118.62, 114.31, 60.09, 55.58, 21.69. HRMS (ESI-TOF) m/z $[M+H]^+$ calcd for $C_{23}H_{21}N_3O_4S$ 436.1331; found 436.1334.

1 M. Chen, Studies on the phosphoric acid catalyzed Ugi-type reaction and its application in heterocyclic synthesis [D], *Central China Normal University.*, 2015. (in Chinese)

4. Copies of ¹H and ¹³C NMR spectras of compounds 2aa-2bb ¹H NMR (400 MHz, CDCl₃) spectra of product 2aa.

¹H NMR (400 MHz, CDCl₃) spectra of product 2ab.

)0 -1

¹H NMR (400 MHz, CDCl₃) spectra of product 2ac.

)0 -1

¹H NMR (400 MHz, CDCl₃) spectra of product 2ad.

)0 -1

¹H NMR (400 MHz, CDCl₃) spectra of product 2ae.

-1

¹H NMR (400 MHz, CDCl₃) spectra of product 2af.

)0 -1

¹H NMR (400 MHz, CDCl₃) spectra of product 2ag.

-1

¹H NMR (400 MHz, CDCl₃) spectra of product 2ah.

¹H NMR (400 MHz, CDCl₃) spectra of product 2ai.

¹H NMR (400 MHz, CDCl₃) spectra of product 2aj.

¹H NMR (400 MHz, CDCl₃) spectra of product 2ak.

)0 -1

¹H NMR (400 MHz, CDCl₃) spectra of product 2al.

¹H NMR (400 MHz, CDCl₃) spectra of product 2am.

¹H NMR (400 MHz, CDCl₃) spectra of product 2an.

¹H NMR (400 MHz, CDCl₃) spectra of product 2ao.

)0 -1

¹⁹F NMR (101 MHz, CDCl₃) spectra of product 2ao.

¹³C NMR (101 MHz, CDCl₃) spectra of product 2ap.

¹³C NMR (101 MHz, CDCl₃) spectra of product 2aq.

S27

¹³C NMR (101 MHz, CDCl₃) spectra of product 2ar.

¹³C NMR (101 MHz, CDCl₃) spectra of product 2as.

S29

¹³C NMR (101 MHz, CDCl₃) spectra of product 2at.

S30

¹³C NMR (101 MHz, CDCl₃) spectra of product 2au.

¹³C NMR (101 MHz, CDCl₃) spectra of product 2av.

¹³C NMR (101 MHz, CDCl₃) spectra of product 2aw.

S33

¹³C NMR (101 MHz, CDCl₃) spectra of product 2ay.

¹³C NMR (101 MHz, CDCl₃) spectra of product 2az.

S36

¹³C NMR (101 MHz, CDCl₃) spectra of product 2ba.

¹³C NMR (101 MHz, CDCl₃) spectra of product 2bb.

