Iron-Catalyzed C-F Bond Silylation and Borylation of Aryl Fluorides

List of Contents

General Information and Materials	1
Optimization of Iron-Catalyzed Silylation of Aryl Fluorides	3
Optimization of Iron-Catalyzed Borylation of Aryl Fluorides	6
Mechanistic Studies	11
General Procedure for the Silylation and Borylation of Aryl Fluorides	14
Characterization Data for Products	15
References	32
Spectra of Products 1-52	33

General information: ¹H NMR and ¹³C NMR spectra were recorded on Agilent 400MR DD2 (400 MHz) or 600MR DD2 (600 MHz) spectrometer at ambient temperature. Chemical shifts (δ) are reported in ppm, and coupling constants (*J*) are in Hertz (Hz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, sept = septet. NMR yield was determined by ¹H NMR using mesitylene as an internal standard before working up the reaction.

Materials: All reagents that used were from commercial sources, unless otherwise specified. Fe(OAc)₂ (95%) was purchased from Sigma-Aldrich. *t*-BuONa (99%) was purchased from Adamas. Cyclohexane and DMF were distilled under reduced pressure from CaH₂. 1,4-dioxane, THF, MTBE, $(i-Pr)_2O$, Xylene and toluene were distilled from sodium and benzophenone immediately before used.

Optimization of Iron-Catalyzed Silylation of Aryl Fluorides (Table S1-S7):

F		Fe(OAc) ₂ (10 <i>t</i> -BuONa (2.5) mol%) 5 equiv)	SiEt ₃
	+ Et ₃ SiBp	in [Solvent], ²	I30 °C	
1a	2aa (3.5 e	equiv)		1
-	Entry	Solvent	Yield ^b	
	1	1,4-dioxane	15%	
	2	THF	18%	
	3	Cyclohexane	27%	
	4	Toluene	0%	
	5	DMF	0%	

Table S1. Screening of Solvents.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (3.5 equiv), Fe(OAc)₂ (10 mol%), *t*-BuONa (2.5 equiv), Solvent (1.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

	+ Et ₃ SiBpin	Fe(OAc [Base] Cyclohe	:)₂ (10 mol%)] (2.5 equiv) xane, 130 °C O	SiEt ₃
1a				. '
	Entry	Base	Yield ^b	_
	1	K_3PO_4	0%	
	2	K_2CO_3	0%	
	3	Cs_2CO_3	0%	
	4	t-BuOK	Trace	
	5	<i>t</i> -BuONa	27%	
	6	none	0%	_

Table S2. Screening of Bases.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (3.5 equiv), Fe(OAc)₂ (10 mol%), Base (2.5 equiv), Cyclohexane (1.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Table S3. Screening of Ligands.^a

F		Et SiBnin	Fe(OAc) ₂ <i>t</i> -BuONa ((10 mol%) (2.5 equiv)	SiEt ₃
1a	+	2aa (3.5 equiv)	[Ligand] Cyclohexa	(20 mol%) ne, 130 °C	1
_		Entry	Ligand	Yield ^b	

1	XantPhos	28%
2	PPh ₃	34%
3	SPhos	31%
4	P(m-tol) ₃	54%
5	X-Phos	27%
6	DPPE	43%
7	DPPH	36%
8	DPEPhos	34%
9	DPPF	42%
10	TMEDA	22%
11	Bathophenanth	12%
	roline	

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (3.5 equiv), Fe(OAc)₂ (10 mol%), *t*-BuONa (2.5 equiv), Cyclohexane (1.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

F		Fe(OA <i>t</i> -BuON	c) ₂ (10 mol%) Na (2.5 equiv)	SiEt ₃
0 1a	2aa (3.5 equiv)	P(m-To Cycloho	ol) ₃ (20 mol%) exane, 130 °C	1
	Entry	Equiv	Yield ^b	
	1	2.5	27%	
	2	3.0	46%	
	3	3.5	54%	
	4	4.0	64%	
	5	4.5	60%	
	6	5.0	62%	

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (X equiv), Fe(OAc)₂ (10 mol%), *t*-BuONa (2.5 equiv), Cyclohexane (1.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Table S5. Screening of the Concentration.^a

1	0.5	51%
2	0.8	72% (70%)
3	1.0	64%
4	1.2	58%
5	1.5	42%
6	2.0	28%

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (4.0 equiv), Fe(OAc)₂ (10 mol%), *t*-BuONa (2.5 equiv), Cyclohexane (X mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

F		[Fe] (10 r <i>t</i> -BuONa (2	nol%) .5 equiv)	SiEt ₃
	2aa (4.0 ed	P(m-Tol) ₃ (2 quiv) Cyclohexane	20 mol%) e, 130 °C	1
_	Entry	[Fe]	Yield ^b	
	1	Fe(acac) ₃	62%	
	2	FeCl ₂	0%	
	3	FeBr ₂	Trace	
	4	Ferric Stearate	51%	
	5	Fe(acac) ₃	45%	
	6	Fe(OTf) ₂	58%	
	7	Fe(OAc) ₂	72% (70%)	

Table S6. Screening of Iron Sources.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (4.0 equiv), [Fe] (10 mol%), *t*-BuONa (2.5 equiv), Cyclohexane (0.8 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Table S7. Screening of temperature.^a

F		Fe(OAc) ₂ <i>t</i> -BuONa ((10 mol%) 2.5 equiv)	SiEt ₃
-0	+ Et ₃ SiBpin 2aa (4.0 equ	P(m-Tol) ₃ Jiv) Cyclohexar	(20 mol%) ne, [Temp]	1
_	Entry	[Temp]	Yield ^b	
	1	120 °C	63%	
	2	125 °C	65%	
	3	130 °C	72%	
	4	135 °C	(75%)	

J 140°C 0870	5	140 °C	68%
--------------	---	--------	-----

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (4.0 equiv), Fe(OAc)₂ (10 mol%), *t*-BuONa (2.5 equiv), Cyclohexane (0.8 mL), 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Optimization of Iron-Catalyzed Borylation of Aryl Fluorides (Table S8-S13):

Table S8. Screening of Solvents.^a

^{*a*}Reaction conditions (unless otherwise specified): **15a** (0.2 mmol, 1.0 equiv), **2b** (3.0 equiv), FeCl₂·4H₂O (10 mol%), *t*-BuONa (3.5 equiv), Solvent (2 mL), 120 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

FeCl₂·4H₂O (10 mol %) IMes[·]HCl (20 mol %) [Base] (3.5 equiv) Dioxane (2.0 mL), 120 °C 15a 2b (3.0 equiv) 31 Yield^b Entry [Base] t-BuONa 9% 1 *t*-BuOMg 0% 2 KOMe Trace 3 Li₂CO₃ 4 0% 5 Na₃PO₄ 0% CsOAc 0% 6 KOAc 7 0% Cs_2CO_3 8 0% NaOAc 9 0%

Table S9. Screening of Bases.^a

10	CsF	0%
11	LiOAc	0%

^{*a*}Reaction conditions (unless otherwise specified): **15a** (0.2 mmol, 1.0 equiv), **2b** (3.0 equiv), FeCl₂·4H₂O (10 mol%), Base (3.5 equiv), Dioxane (2.0 mL), 120 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Table S10. Screening of Ligands and temperature.^a

F +	$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$	FeCl ₂ ·4H ₂ O (10 mol %) [Ligand] (20 mol %) <i>t</i> -BuONa (3.5 equiv) Dioxane (2.0 mL), [Temp]		
Entry	ligand	120 °C	130 °C	140 °C
1	TMEDA	12%	21%	9%
2	IMes·HCl	8%	11%	14%
3	SIMes·HCl	24%	37%	35%
4	IPr·HC1	9%	21%	24%

^{*a*}Reaction conditions (unless otherwise specified): **15a** (0.2 mmol, 1.0 equiv), **2b** (3.0 equiv), FeCl₂·4H₂O (10 mol%), *t*-BuONa (3.5 equiv), Dioxane (2.0 mL), T °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

15a	F + O B B B O B O B O B O B O B O B O B	[Fe] (10 mol %) SIMes ⁻ HCl (5 mol %) <i>t</i> -BuONa (3.5 equiv) Dioxane (3.0 mL), 130 °C		
_	Entry	[Fe]	Yield ^b	_
	1	FeI ₂	11%	
	2	Fe(OTf) ₂	6%	
	3	FeCl ₂ ·4H ₂ O	30%	
	4	Fe(acac) ₃	46%	
	5	Fe(OAc) ₂	22%	
	6	FeBr ₂	38%	

Table S11. Screening of Iron Sources.^a

^{*a*}Reaction conditions (unless otherwise specified): **15a** (0.3 mmol, 1.0 equiv), **2b** (3.0 equiv), *t*-BuONa (3.5 equiv), Dioxane (3.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Table S12. Screening of the Concentration.^a

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	ò
Entry Dioxane (mL) Yield ^b	
1 1.5 48%	
2 2.0 58%	
3 2.5 41%	
4 3.0 46%	

^{*a*}Reaction conditions (unless otherwise specified): **15a** (0.3 mmol, 1.0 equiv), **2b** (3.0 equiv), Fe(acac)₃ (10 mol %), *t*-BuONa (3.5 equiv), Dioxane (X mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

	,	Fe(acac) ₃ (10	0 mol %)	,
F 15a	+ +	D B-B D O O O O O O O O O O O O O O O O O O	(5 mol %) (equiv) mL), 130 °C	
	Entry	t-BuONa (equiv)	Yield ^b	_
	1	3.5	56%	
	2	4.0	(71%)	
	3	4.5	49%	
	4	5.0	26%	
	5	5.5	Trace	
	6	6.0	Trace	

Table S13. Screening of the Loading of Base.^a

^{*a*}Reaction conditions (unless otherwise specified): **15a** (0.3 mmol, 1.0 equiv), **2b** (3.0 equiv), Fe(acac)₃ (10 mol %), *t*-BuONa (X equiv), Dioxane (2.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Table S14. Screening of Ligands Using 28a as the Substrate.^a

	N L2	H N H L3	N 0 N L4	
Entry		Ligand	Y	<i>Tield^b</i>
1		TMEDA	,	75%
2		TMMDA		70%
3		TEEDA	76%	%(71%)
4		L3		55%
5		L2		76%
6		L4	79%	%(76%)

^{*a*}Reaction conditions (unless otherwise specified): **28a** (0.3 mmol, 1.0 equiv), **2b** (2.5 equiv), Fe(acac)₃ (10 mol %), *t*-BuONa (3.5 equiv), THF (2.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

	F		[Fe] (10 mo <i>t</i> -BuONa (2.5	l%) equiv)	SiEt ₃
<u>`</u> 0	+ 1a	2aa (4.0 equiv)	P(m-Tol) ₃ (20 Cyclohexane	9 mol%) 9, 135 °C	2
Entry	[cat.]		Base	Ligand	Yield ^b
1	Fe(OAc) ₂	1	t-BuONa	P(m-tol) ₃	73%(75%)
2	Fe(OAc) ₂ (99.99	%) t	- BuONa	P(m-tol) ₃	73%
3	Fe(OAc) ₂	t	- BuONa	-	24%
4	-	t	- BuONa	P(m-tol) ₃	3%
5	Fe(OAc) ₂		-	P(m-tol) ₃	-
6	$Cu(OAc)_2$ (5 mol	.%) t	t-BuONa	P(m-tol) ₃	8%
7	$Cu(OAc)_2(1 mol)$.%) t	- BuONa	P(m-tol) ₃	2%
8	$Pd(OAc)_2$ (5 mol	%) <i>t</i>	t-BuONa	P(m-tol) ₃	45%
9	$Ni(OAc)_2$ (5 mol	%) <i>t</i>	t-BuONa	P(m-tol) ₃	22%

Table S15. Control Experiments.^a

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (3.5 equiv), *t*-BuONa (2.5 equiv), Cyclohexane (0.8 mL), 135 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

15a	F + O O O O O O O O O O O O O O O O O O	[cat.] (10 mol %) - SIMes HCI (5 m - t-BuONa (4.0 ec Dioxane (2.0 mL),	ol %) quiv) 130 °C	
Entry	[cat.]	Base	Ligand	Yield ^b
1	Fe(acac) ₃	t-BuONa	SIMes HCl	(71%)
2	Fe(acac) ₃ (99.99%)	t- BuONa	SIMes HCl	70%
3	Fe(acac) ₃	t- BuONa	-	20%
4	-	<i>t</i> - BuONa	SIMes HCl	-
5	Fe(acac) ₃	-	SIMes HCl	-
6	Cu(OAc) ₂	t-BuONa	SIMes HCl	20%
7	Cu(OTf) ₂	<i>t</i> - BuONa	SIMes HCl	-
8	$Pd(OAc)_2$	t-BuONa	SIMes HCl	45%
9	Ni(OAc) ₂	t-BuONa	SIMes HCl	10%
10	CuBr ₂	t- BuONa	SIMes.HCl	-

^{*a*}Reaction conditions (unless otherwise specified): **15a** (0.3 mmol, 1.0 equiv), **2b** (3.0 equiv), *t*-BuONa (4.0 equiv), Dioxane (2.0 mL), 130 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Trace-metal analysis: Fe(OAc) ₂ (99.99%), Alfa Aesar				
Element	Molar Concentration			
Cu	<0.66 ppm			
Pd	<0.16 ppm			
Ni	<0.67 ppm			

Mechanistic Studies

 Table S17. Radical Inhibition Experiments of Iron-Catalyzed Silylation of 1a and

 Borylation of 15a.^a

F	+	Et ₃ SiBpin –	Fe(OAc) ₂ (10 <i>t</i> -BuONa (2.5 e	mol%) equiv)		SiEt ₃
0 ¢ 1a		2aa (4.0 equiv)	Cyclohexane,	135 °C	U	1
_	Entry	Additive	e (equiv)	Yield ^b		
	1	no	one	(75%)		
	2	TEMP	O (1.0)	22%		
	3	BHT	(1.0)	20%		

^aReaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (4.0 equiv), Fe(OAc)₂ (10 mol%), *t*-BuONa (2.5 equiv), Cyclohexane (0.8 mL), 135 °C, 12 h, under an argon atmosphere. ^bDetermined by ¹H NMR using trichloromethane as an internal standard.

		[cat.] (10 mo	ol %)	,
F		B-B B-B O D D SIMes·HCl (5 r t-BuONa (4.0 e D D D D D	mol %)	- B O C
15a	2b (3.0 equiv)), 130 °C	31
-	Entry	Additive (equiv)	Yield ^b	
	1	none	(71%)	
	2	TEMPO (1.0)	48%	
_	3	BHT (1.0)	41%	

^{*a*}Reaction conditions (unless otherwise specified): **1a** (0.2 mmol, 1.0 equiv), **2aa** (4.0 equiv), Fe(OAc)₂ (10 mol%), *t*-BuONa (2.5 equiv), Cyclohexane (0.8 mL), 135 °C, 12 h, under an argon atmosphere. ^{*b*}Determined by ¹H NMR using trichloromethane as an internal standard.

Drastically diminished yields were observed when one equivalent of radical scavenger TEMPO, or radical inhibitor BHT was added under the standard silylation and borylation reaction conditions, indicating that a radical pathway might be involved.

Competitive experiment.^{*a*}

A better yield (45%) could be obtained using electron-rich **1a** as a substrate. Thus, these results indicate that this iron-catalyzed silylation is unlikely to occur through the S_NAr mechanism.

Control Experiments

Some substrates with different electronic properties were chosen to conduct the control experiments. As shown, the desire product were only obtained in trace to 16% yield without iron. Therefore, these results suggest that this transformation is promoted by iron catalysis.

XPS Experiments

In order to gain further insight into the iron-catalyzed C-F bond activation reaction, the X-ray photoelectron spectroscopy (XPS) analysis was conducted bellow.

X-Ray Photoelectron Spectroscopy (XPS) Analysis of Aryl Fluoride

Procedure: A 25 mL flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Fe(OAc)_2$ (3.5 mg, 0.02 mmol, 0.1 equiv), $P(m-tol)_3$ (12 mg, 0.04 mmol, 0.2 equiv), *t*-BuONa (48.1 mg, 0.5 mmol, 2.5 equiv) in glove box. Aryl Fluoride **1a** (0.2 mmol), fresh distilled silylborane **2aa** (4.0 equiv), fresh distilled cyclohexane (0.8 mL) were then added under nitrogen atmosphere. The reaction mixture was allowed to stir at 135 °C in oil bath for 1 h via heating mantle. Then, the reaction was cooled to

room temperature and concentrated under N₂. The resulting mixture was analyzed by X-ray photoelectron spectroscopy (XPS).

Peak	Position (eV)	Area	FWHM (eV)	%GL
0	710.300	3362.000	2.250	20
1	712.000	3434.000	3.490	20
2	724.000	1681.000	2.250	20
3	726.300	1717.000	3.490	20
4	717.565	2727.513	5.689	20

X-Ray Photoelectron spectroscopy (XPS) analysis of the reaction mixture of Fe(OAc)₂, *t*-BuONa, 1a and Et₃SiBpin.

Conclusion: When we studied the X-ray photoelectron spectroscopy (XPS) analysis of the reaction mixture of Fe(OAc)₂, *t*-BuONa and Et₃SiBpin. The experiments showed that peak corresponding to Fe^{II} $2p_{3/2}$ was observed with the binding energy at 710.3 eV (compared with FeO).¹⁵ What's more, when the reaction mixture under standard reaction condition was analyzed by XPS, both Fe^{II} $2p_{3/2}$ and Fe^{III} $2p_{3/2}$ were found with the binding energy at 710.3 eV (compared with FeO) and 712.0 eV (compared with Fe

 $FePO_4$).¹⁶ Thus, these results demonstrated that Fe^{II} and Fe^{III} species might be involved in the catalytic cycle.

General Procedure for the Silylation and Borylation of Aryl Fluorides:

Procedure for the silylation of aryl fluorides: A 25 mL flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Fe(OAc)_2$ (3.5 mg, 0.02 mmol, 0.1 equiv), P(m-tol)₃ (12 mg, 0.04 mmol, 0.2 equiv), *t*-BuONa (48.1 mg, 0.5 mmol, 2.5 equiv) in glove box. Aryl Fluorides (0.2 mmol), fresh distilled silylborane **2aa** (4.0 equiv), fresh distilled cyclohexane (0.8 mL) were then added under nitrogen atmosphere. The reaction mixture was allowed to stir at 135 °C in oil bath for 12 h. The cooled solution was quenched with saturated NH₄Cl aqueous solution, then diluted with ethyl acetate and washed with brine. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford the corresponding compound.

Procedure for the borylation of aryl fluorides: A 25 mL flame-dried Schlenk tube equipped with a magnetic stir bar was charged with $Fe(acac)_3$ (10.6 mg, 0.03 mmol, 0.1 equiv), SIMes·HCl (5.3 mg, 0.015 mmol, 0.05 equiv), *t*-BuONa (115.4 mg, 1.2 mmol, 4.0 equiv) in glove box. Aryl Fluorides (0.3 mmol), Bis(pinacolato)diboron **2b** (228.5 mg, 3.0 equiv), fresh distilled dioxane (2.0 mL) were then added under nitrogen atmosphere. The reaction mixture was allowed to stir at 130 °C in oil bath for 12 h. The cooled solution was quenched with saturated NH₄Cl aqueous solution, then diluted with ethyl acetate and washed with brine. The organic phase was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel chromatography to afford the corresponding compound.

Other unsuccessful aryl fluorides:

Characterization Data for Products.

Triethyl(4-methoxyphenyl)silane (1). This compound is known³. The product **1** (33.3 mg, 75% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2 H), 6.93 (d, *J* = 8.0 Hz, 2 H), 3.82 (s, 3 H), 0.97 (t, *J* = 7.9 Hz, 9 H), 0.78 (q, *J* = 7.9 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 135.7, 128.3, 113.6, 55.1, 7.6, 3.6.

Benzo[d][1,3]dioxol-4-yltriethylsilane (2). This compound is unknown. The product **2** (33 mg, 70% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 6.86-6.81 (m, 3 H), 5.90 (s, 2 H), 0.97 (t, *J* = 7.6 Hz, 9 H), 0.82 (q, *J* = 7.6 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 152.5, 146.0, 127.3, 121.3, 116.9, 109.3, 100.0, 7.5, 3.4. FTMS (EI): Calculated for C₁₃H₂₀O2Si [M]⁺: 236.12271; Found: 236.12272.

triethyl(3-((triisopropylsilyl)oxy)phenyl)silane (3). This compound is unknown. The product **3** (44.4 mg, 61% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.21 (t, *J* = 7.6 Hz, 1 H), 7.05 (d, *J* = 7.2 Hz, 1 H), 7.02 (s, 1 H), 6.88 (m, 1 H), 1.33-1.19 (m, 3 H), 1.11 (d, *J* = 7.4 Hz, 18 H), 0.96 (t, *J* = 7.9 Hz, 9 H), 0.78 (q, *J* = 7.9 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 139.0, 128.9, 126.9, 125.6, 120.6, 18.1, 12.9, 7.5, 3.5. FTMS (EI): Calculated for C₁₃H₂₀O2Si (M-C₃H₇)⁺: 321.2070; Found: 321.2063.

(4-Cyclohexylphenyl)triethylsilane (4). This compound is known¹⁰. The product 4 (41.6 mg, 76% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 8.0 Hz, 2 H), 7.21 (d, *J* = 8.0 Hz, 2 H), 2.50 (m, 1 H), 1.95-1.81 (m, 4 H), 1.80-1.73 (m, 1 H), 1.50-1.35 (m, 5 H), 0.98 (t, *J* = 7.6 Hz, 9 H), 0.80 (q, *J* = 7.6 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 148.7, 134.4, 126.4, 44.6, 34.5, 27.1, 26.3, 7.6, 3.6.

SiEt₃

Triethyl(*m*-tolyl)silane (5). This compound is known². The product 5 (34.2 mg, 0.2 mmol, 83% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.34-7.29 (m, 2 H), 7.29-7.23 (m, 1 H), 7.22-7.15 (m, 1 H), 2.38 (s, 3 H), 0.99 (t, *J* = 7.8 Hz, 9 H), 0.80 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 136.9, 134.9, 131.2, 129.5, 127.6, 21.6, 7.4, 3.4.

SiEt₃

Triethyl(*p*-tolyl)silane (6). This compound is known³. The product 6 (29.3 mg, 0.2 mmol, 71% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.6 Hz, 2 H), 7.18 (d, *J* = 7.6 Hz, 2 H), 2.36 (s,

3 H), 0.96 (t, *J* = 7.9 Hz, 9 H), 0.78 (q, *J* = 7.9 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 134.4, 133.8, 128.7, 21.6, 7.6, 3.5.

(3,5-Dimethylphenyl)triethylsilane (7). This compound is known¹⁰. The product 7 (33.9 mg, 77% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.09 (s, 2 H), 7.00 (s, 1 H), 2.32 (s, 6 H), 0.97 (t, *J* = 7.8 Hz, 9 H), 0.78 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 137.0, 132.0, 130.7, 21.6, 7.6, 3.5.

3,4-Dimethyl-1-(triethylsilyl)benzene (8). This compound is known². The product **8** (28.6 mg, 65% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.22 (m, 2 H), 7.13 (d, *J* = 7.2 Hz, 1 H), 2.27 (s, 3 H), 2.26 (s, 3 H), 0.96 (t, *J* = 7.8 Hz, 9 H), 0.77 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 137.4, 135.9, 135.6, 134.4, 132.0, 129.2, 29.9, 19.9, 7.6, 3.5.

N, *N*-dimethyl-4-(triethylsilyl)aniline (9). This compound is known². The product 9 (30.5 mg, 65% yield) as a yellow oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.4 Hz, 2 H), 6.75 (d, *J* = 8.4 Hz, 2 H), 2.97 (s, 6 H), 0.97 (t, *J* = 7.8 Hz, 9 H), 0.76 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 150.9, 135.4, 122.4, 112.0, 40.3, 7.7, 3.7.

4-(4-(triethylsilyl)phenyl)morpholine (10). This compound is known⁷. The product **10** (44.3 mg, 80% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.41 (d, *J* = 7.4 Hz, 2 H) 6.91 (d, *J* = 7.4 Hz, 2 H), 4.03-3.62 (m, 4 H), 3.37-2.91 (m, 4 H), 0.97 (t, *J* = 7.8 Hz, 9 H), 0.77 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 151.6, 135.5, 127.0, 114.8, 67.1, 48.8, 7.6, 3.7.

N,N-dimethyl-1-(4-(triethylsilyl)phenyl)methanamine (11). The product **11** (38.3 mg, 77% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.46 (d, J = 7.6 Hz, 2 H) 7.32 (d, J = 7.6 Hz, 2 H), 3.55 (s, 2 H), 2.34 (s, 6 H), 0.96 (t, J = 7.8 Hz, 9 H), 0.87-0.74 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 136.4, 134.4, 128.7, 64.3, 45.3, 7.5, 3.5.

2-(4-(triethylsilyl)phenyl)ethan-1-ol (12). This compound is unknown. The product **12** (16.5 mg, 35% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 7.6 Hz, 2 H), δ 7.22 (d, *J* = 7.6 Hz, 2 H), 3.88 (t, *J* = 6.8 Hz, 2 H), 2.87 (t, *J* = 6.8 Hz, 2 H), 0.96 (t, *J* = 7.8 Hz, 9 H), 0.78 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 135.4, 134.7, 128.6, 63.7, 39.3, 7.6, 3.5. FTMS (EI): Calculated for C₁₂H₁₉OSi (M-C₂H₅)⁺: 207.11997; Found: 207.11959.

triethyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)silane (13). This compound is known¹. The product 13 (41.3 mg, 65% yield) as a yellow solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 7.6 Hz, 2 H), 7.50 (d, *J* = 7.6 Hz, 2 H), 1.34 (s, 12 H), 0.95 (t, *J* = 7.6 Hz, 9 H), 0.79 (q, *J* = 7.6 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 133.9, 133.7, 83.9, 25.0, 7.5, 3.4.

TMS SIEt₃

triethyl(4-(trimethylsilyl)phenyl)silane (14). This compound is known¹¹. The product **14** (38 mg, 72% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.53-7.48 (m, 4 H), 0.98 (t, *J* = 7.8 Hz, 9 H), 0.80 (q, *J* = 7.8 Hz, 6 H), 0.28 (s, 9 H). ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 138.1, 133.6, 132.7, 7.6, 3.5, 1.0.

[1,1'-biphenyl]-4-yltriethylsilane (15). This compound is known². The product 15 (45.6 mg, 85% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.64-7.57 (m, 6 H), 7.45 (t, *J* = 7.6 Hz, 2 H), 7.36 (t, *J* = 7.2 Hz, 1 H), 1.02 (t, *J* = 7.8 Hz, 9 H), 0.84 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 141.5, 141.3, 136.3, 134.8, 128.9, 127.4, 127.3, 126.5, 7.6, 3.5.

Triethyl(4'-methoxy-[1,1'-biphenyl]-4-yl)silane (16). This compound is known⁵. The product **16** (57.8 mg, 97% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.59-7.51 (m, 6 H), 7.03 – 6.92 (m, 2 H), 3.86 (s, 3 H), 1.00 (t, *J* = 7.8 Hz, 9 H), 0.82 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 141.1, 135.6, 134.8, 133.8, 128.3, 126.1, 114.3, 55.5, 7.6, 3.5.

Triethyl(4'-phenoxy-[1,1'-biphenyl]-4-yl)silane (17). This compound is known⁷. The

product **17** (39.6 mg, 55% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.58 (m, 6 H), 7.38 (m, 2 H), 7.14 (m, 1 H), 7.11-7.08 (m, 4 H), 1.02 (t, *J* = 7.8 Hz, 9 H), 0.85 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 157.0, 140.8, 136.3, 136.1, 134.9, 129.9, 128.5, 126.3, 123.5, 119.2, 119.1, 7.6, 3.5.

(4'-(Tert-butyl)-[1,1'-biphenyl]-4-yl)triethylsilane (18). This compound is known⁴. The product 18 (59.6 mg, 92% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.56 (m, 6 H), 7.49-7.46 (m, 2 H), 1.39 (s, 9 H), 1.02 (t, *J* = 7.8 Hz, 9 H), 0.85 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 150.4, 141.4, 138.4, 136.0, 134.8, 126.9, 126.4, 125.8, 34.7, 31.5, 7.6, 3.6.

Triethyl(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)silane (19). This compound is known⁷. The product **19** (28.2 mg, 42% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.73-7.68 (m, 4 H), 7.62-7.57 (m, 4 H), 1.00 (t, *J* = 7.6 Hz, 9 H), 0.83 (q, *J* = 7.6 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 144.8, 138.9 (q, *J*_{CF} = 228.0 Hz), 135.0, 129.5 (q, *J*_{CF} = 32.0 Hz), 127.5, 126.5, 125.8 (q, *J*_{CF} = 4.0 Hz), 123.1, 7.6, 3.5.

[1,1':4',1''-terphenyl]-4-yltriethylsilane (20). This compound is unknown. The product 20 (42.7 mg, 62% yield) as a white solid was purified with silica gel

chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.69 (s, 4 H), 7.67-7.61 (m, 4 H), 7.59-7.55 (m, 2 H), 7.47-7.42 (m, 2 H), 7.40-7.36 (m, 1 H), 1.00 (t, *J* = 7.8 Hz, 9 H), 0.83 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 150.1, 141.0, 140.8, 140.2, 140.2, 136.5, 134.9, 129.0, 127.6, 127.5, 127.2, 126.4, 7.6, 3.5. FTMS (EI): Calculated for C₂₄H₂₈Si (M)⁺: 344.19548; Found: 344.19459.

4-(4'-(triethylsilyl)-[1,1'-biphenyl]-4-yl)morpholine (21). This compound is known⁵. The product **21** (42.4 mg, 60% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.60-7.50 (m, 6 H), 6.99 (d, *J* = 8.4 Hz, 2 H), 3.93-3.84 (m, 4 H), 3.27-3.18 (m, 4 H), 1.01 (t, *J* = 7.8 Hz, 9 H), 0.83 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 141.1, 135.4, 134.8, 132.7, 127.9, 125.9, 115.8, 67.0, 49.2, 7.6, 3.5.

Triethyl(4-(naphthalen-1-yl)phenyl)silane (22). This compound is known¹⁰. The product **22** (40.7 mg, 64% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.4 Hz, 1 H), 7.93 (d, J = 8.4 Hz, 1 H), 7.88 (d, J = 8.4 Hz, 1 H), 7.64-7.62 (m, 2 H), 7.57-7.44 (m, 6 H), 1.07 (t, J = 7.8 Hz, 9 H), 0.89 (q, J = 7.8 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 141.1, 140.4, 136.3, 134.3, 133.9, 131.7, 130.2, 129.5, 128.4, 127.7, 127.1, 126.3, 126.2, 126.1, 125.9, 125.5, 7.7, 3.6.

Triethyl(4-(naphthalen-2-yl)phenyl)silane (23). This compound is known⁶. The

product **23** (38.2 mg, 60% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.08 (s, 1 H), 7.95-7.87 (m, 3 H), 7.80-7.76 (m, 1 H), 7.76-7.70 (m, 2 H), 7.66-7.60 (m, 2 H), 7.55-7.45 (m, 2 H), 1.03 (t, *J* = 8.0 Hz, 9 H), 0.86 (q, *J* = 8.0 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 138.6, 136.5, 134.9, 133.8, 132.8, 128.5, 128.4, 127.8, 126.8, 126.4, 126.1, 125.9, 125.7, 7.6, 3.6.

1-isopropyl-3-(4-(triethylsilyl)phenyl)-1H-indole (24). This compound is unknown. The product **24** (50 mg, 72% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (d, *J* = 8.0 Hz, 1 H), 7.68 (d, *J* = 7.6 Hz, 2 H), 7.58 (d, *J* = 7.6 Hz, 2 H), 7.44 (d, *J* = 6.0 Hz, 2 H), 7.28 (t, *J* = 7.8 Hz, 1 H), 7.20 (t, *J* = 7.4 Hz, 1 H), 4.73 (p, *J* = 6.8 Hz, 1 H), 1.59 (d, J = 6.8 Hz, 6 H), 1.03 (t, *J* = 7.8 Hz, 9 H), 0.82-0.88 (m, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 136.5, 136.5, 134.8, 134.2, 126.7, 126.3, 121.8, 121.8, 120.3, 120.0, 117.0, 109.9, 47.2, 25.2, 23.0, 7.6, 3.6. FTMS (EI): Calculated for C₂₃H₃₁NSi (M)⁺: 349.22203; Found: 349.22165.

(4-(benzo[b]thiophen-2-yl)phenyl)triethylsilane (25). This compound is unknown. The product 25 (53 mg, 81% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 8.0 Hz,1 H), 7.79 (d, *J* = 7.6 Hz, 1 H), 7.72 (d, *J* = 7.6 Hz, 2 H), 7.59 (d, *J* = 4.8 Hz, 2 H), 7.56 (s, 1 H), 7.35 (m, 2 H), 1.01 (t, *J* = 7.8 Hz, 9 H), 0.84 (q, *J* = 7.9 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 144.5, 140.8, 139.6, 138.0, 134.9, 134.6, 125.7, 124.6, 124.4, 123.7, 122.4, 119.5, 7.6, 3.4. FTMS (EI): Calculated for C₂₀H₂₄SSi (M)⁺: 324.13625; Found: 324.13630. SiEt₃

1-(4-(triethylsilyl)phenyl)-1H-pyrrole (26). This compound is known⁵. The product **26** (36 mg, 71% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 8.4 Hz, 2 H), 7.38 (d, *J* = 8.4 Hz, 2 H), 7.12 (s, 2 H), 6.35 (s, 2 H), 1.00(t, *J* = 7.8 Hz, 9 H), 0.83 (q, *J* = 7.6 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 141.2, 135.6, 134.6, 119.8, 119.3, 110.5, 7.5, 3.5.

SiEt₃

triethyl(naphthalen-2-yl)silane (27). This compound is known¹⁰. The product **27** (32 mg, 66% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.00 (s, 1 H), 7.90-7.76 (m, 3 H), 7.67-7.57 (m, 1 H), 7.50 (m, 2 H), 1.03 (t, *J* = 7.6 Hz, 9 H), 0.90 (q, *J* = 7.7 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃): δ 135.1, 134.9, 133.8, 133.1, 130.7, 128.1, 127.8, 126.9, 126.3, 125.9, 7.6, 3.5.

Triethyl(naphthalen-1-yl)silane (28). This compound is known¹⁰. The product **28** (34 mg, 70% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.16-8.13 (m, 1 H), 7.90-7.88 (m, 2 H), 7.69 (d, *J* = 6.8 Hz, 1 H), 7.55-7.47 (m, 3 H), 1.10-0.97 (m, 15 H). ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 135.3, 134.6, 133.5, 129.7, 129.2, 128.0, 125.7, 125.4, 125.2, 7.8, 4.6.

2-methoxy-5-(triethylsilyl)pyridine (29). This compound is known⁷. The product **29** (25.9 mg, 58% yield) as a yellow oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.22 (s, 1 H), 7.63 (d, *J* = 8.4 Hz, 1 H), 6.74 (d, *J* = 8.4 Hz, 1 H), 3.94 (s, 3 H), 0.96 (t, *J* = 7.8 Hz, 9 H), 0.77 (q, *J* = 7.8 Hz, 6 H). ¹³C NMR (100

4-(triethylsilyl)isoquinoline (30). This compound is unknown. The product **30** (25 mg, 51% yield) as a yellow oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 9.24 (s, 1 H), 8.57 (s, 1 H), 8.03 (d, *J* = 8.4 Hz, 1 H), 7.97 (d, *J* = 8.0 Hz, 1 H), 7.70 (t, *J* = 7.6 Hz, 1 H), 7.60 (m, *J* = 7.4 Hz, 1 H), 1.07-0.86 (m, 15 H). ¹³C NMR (100 MHz, CDCl₃) δ 154.1, 149.7, 140.0, 130.3, 129.0, 128.3, 126.8, 126.8, 7.7, 4.3. FTMS (EI): Calculated for C₁₅H₂₁NSi (M)⁺: 243.14378; Found: 243.14381.

2-([1,1'-Biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (31).

This compound is known⁸. The product **31** (59.6 mg, 0.3 mmol, 71% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.94 (d, *J* = 7.2 Hz, 2 H), 7.66 (d, *J* = 7.2 Hz, 4 H), 7.47 (t, *J* = 7.2 Hz, 2 H), 7.39 (t, *J* = 7.2 Hz, 1 H), 1.34 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 141.1, 135.4, 128.9, 127.7, 127.3, 126.6, 83.9, 25.0.

4-Methyl-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl (32). This compound is known¹². The product **32** (54.7 mg, 0.3 mmol, 62% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.91 (d, *J* = 7.8 Hz, 2 H), 7.62 (d, *J* = 7.8 Hz, 2 H), 7.54 (d, *J* = 7.8 Hz, 2 H), 7.27 (d, *J* = 7.8 Hz, 2 H), 2.41 (s, 3 H), 1.38 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 144.0, 138.2, 137.5, 135.4, 129.6, 127.2, 126.4, 83.9, 25.0, 21.2.

2-(4'-(Tert-Butyl)-[1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane

(33). This compound is known⁸. The product 33 (55.4 mg, 0.3 mmol, 55% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, J = 7.6 Hz, 2 H), 7.61 (d, J = 8.0 Hz, 2 H), 7.56 (d, J = 8.4 Hz, 2 H), 7.46 (d, J = 8.0 Hz, 2 H), 1.37 (s, 21 H). ¹³C NMR (100 MHz, CDCl₃) δ 150.8, 143.9, 138.2, 135.4, 127.0, 126.4, 125.9, 83.9, 34.7, 31.5, 25.0.

2-(4'-Methoxy-[1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (34). This compound is known⁹. The product **34** (56.7 mg, 0.3 mmol, 61% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J* = 8.0 Hz, 2 H), 7.72-7.50 (m, 4 H), 6.98 (d, *J* = 8.8 Hz, 2 H), 3.85 (s, 3 H), 1.37 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ 159.5, 143.6, 135.4, 133.6, 128.4, 126.1, 114.4, 83.9, 55.5, 25.0.

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2',4',6'-trimethylbiphenyl (35). This compound is known¹². The product **35** (43.5 mg, 0.3 mmol, 45% yield) as a colorless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.88 (d, J = 7.6 Hz, 2 H), 7.17 (d, J = 7.6 Hz, 2 H), 6.95 (s, 2 H), 2.34 (s, 3 H), 2.00 (s, 6 H), 1.39 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 144.4, 139.0, 136.7, 135.8, 135.0, 128.9, 128.2, 83.9, 25.0, 21.1, 20.8.

4-Phenoxy-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl (36). This compound is known¹². The product **36** (58 mg, 0.3 mmol, 52% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.87 (d, *J*= 7.6 Hz, 2 H), 7.59 (d, *J* = 8.4 Hz, 4 H), 7.37 (t, *J* = 7.8 Hz, 2 H), 7.14 (t, *J* = 7.4 Hz, 1 H), 7.08 (t, *J* = 7.6 Hz, 4 H), 1.37 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 157.2, 143.3, 136.1, 135.4,135.4, 129.9, 128.7, 126.3, 123.6, 119.2, 84.0, 25.0.

3,4-Methylenedioxy-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl (37).

This compound is known¹². The product **37** (59.3 mg, 0.3 mmol, 61% yield) as a white solid was purified with silica gel chromatography. ¹H NMR (CDCl₃) δ 7.86 (d, *J* = 7.6 Hz, 2 H), 7.54 (d, *J* = 8.0 Hz, 2 H), 7.10-7.08 (m, 2 H), 6.88 (m, 1 H), 6.00 (s, 2 H), 1.37 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 148.3, 147.4, 143.7, 135.4, 126.3, 120.9, 108.7, 107.8, 101.3, 83.9, 25.0.

1-Isopropyl-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)indole (38). This compound is known¹². The product **38** (49.8 mg, 0.3 mmol, 46% yield) as a pale yellow oil was purified with silica gel chromatography. ¹H NMR (CDCl₃) δ 7.99 (d, *J* = 8.0 Hz, 1 H), 7.90 (d, *J* = 8.0 Hz, 2 H), 7.71 (d, *J* = 8.0 Hz, 2 H), 7.46 (s, 1 H), 7.44 (d, *J* = 8.4 Hz, 1 H), 7.28 (d, *J* = 7.5 Hz, 1 H), 7.20 (d, *J* = 7.5 Hz, 1 H), 4.73 (m, 1 H), 1.59 (d, *J* = 6.8 Hz, 6 H), 1.39 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 136.6, 135.4, 126.5, 126.2, 122.1, 121.9, 120.2, 116.8, 109.9, 83.8, 47.3, 25.0, 23.0.

N-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrole (39).

This compound is known¹². The product **39** (46.8 mg, 0.3 mmol, 58% yield) as a colorless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 8.0 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2 H), 7.15-7.14 (m, 2 H), 6.36-6.35 (m, 2 H), 1.36 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.9, 136.4, 119.4, 119.2, 110.9, 84.0, 25.0.

1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-pyrazole (40). This compound is known¹². The product **40** (44.6 mg, 0.3 mmol, 55% yield) as a colorless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (m, 1 H), 7.88 (d, *J* = 8.1 Hz, 2 H), 7.75-7.70 (m, 2 H), 7.74 (s, 1 H), 6.48 (m, 1 H), 1.36 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.3, 141.5, 136.3, 126.9, 118.1, 108.0, 84.1, 25.0.

1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-Indole (41). This compound is unknown. The product **41** (55.5 mg, 0.3 mmol, 58% yield) as a colorless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.98 (d, J = 8.0 Hz, 2 H), 7.70 (d, J = 7.6 Hz, 1 H), 7.63 (d, J = 8.4 Hz, 1 H), 7.54 (d, J = 8.4 Hz, 2 H), 7.38 (d, J = 3.2 Hz, 1 H), 7.17-7.27 (m, 2 H), 6.71 (d, J = 2.8 Hz, 1 H), 1.39 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 142.4, 136.4, 135.7, 129.7, 128.3, 127.8, 124.7, 123.3, 122.6, 121.3, 120.7, 110.8, 104.2, 84.1, 77.5, 77.2, 76.8, 25.0. FTMS (EI): Calculated for C₂₀H₁₀BO₂ (M)⁺: 319.17381; Found: 319.17336.

Bpin

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalene (42). This compound is known⁸. The product **42** (48.8 mg, 0.3 mmol, 64% yield) as a brown solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.37 (s, 1 H), 7.80-7.91 (m, 4 H), 7.44-7.54 (m, 2 H), 1.39 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 135.2, 133.0, 130.5, 128.8, 127.8, 127.1, 125.9, 84.0, 25.1.

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalene (43). This compound is known⁸. The product **43** (57.9 mg, 0.3 mmol, 76% yield) as a colorless solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.76 (m, 1 H), 8.08 (m, 1 H), 7.93 (m, 1 H), 7.83 (m, 1 H), 7.50-7.56 (m, 1 H), 7.43-7.50 (m, 2 H), 1.43 (s, 12 H); ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 135.8, 133.3, 131.7, 128.6, 128.5, 126.5, 125.6, 125.1, 83.8, 25.1.

1-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalen-1-yl)ethan-1-one

(44). This compound is known¹³. The product 44 (26.6 mg, 0.3 mmol, 30% yield) as a colorless solid was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 8.79 (m, 1 H), 8.56 (m, 1 H), 8.07 (d, *J* = 7.2 Hz, 1 H), 7.81 (d, *J* = 7.2 Hz, 1 H), 7.57 (m, 2 H), 2.74 (s, 3 H) 1.44 (s, 12 H).

4,4,5,5-Tetramethyl-2-(4-phenoxyphenyl)-1,3,2-dioxaborolane (45). This

compound is known⁸. The product **45** (45.3 mg, 0.3 mmol, 51% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, J = 8.4 Hz, 2 H), 7.35 (t, J = 8.4 Hz, 2 H), 7.13 (t, J = 7.4 Hz, 1 H), 7.03 (d, J = 8.4 Hz, 2 H), 6.99 (d, J = 8.4 Hz, 2 H), 1.35 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 156.7, 136.8, 129.9, 123.8, 119.6, 117.8, 83.9, 25.0.

2-(4-(benzyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (46). This compound is known¹⁴. The product **46** (60.5 mg, 0.3 mmol, 65% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 8.5 Hz, 2 H), 7.45-7.29 (m, 5 H), 6.98 (d, J = 8.5 Hz, 2 H), 5.09 (s, 2 H), 1.33 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ 161.5, 137.0, 136.7, 128.7, 128.1, 127.6, 114.4, 83.7, 69.9, 25.0.

MeO Bpin MeO

2-(3,4-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (47). This compound is known⁹. The product 47 (40.8 mg, 0.3 mmol, 51% yield) was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, *J* = 7.6 Hz, 1 H), 7.29 (s, 1 H), 6.88 (d, *J* = 7.6 Hz, 1 H), 3.92 (s, 3 H), 3.90 (s, 3 H), 1.34 (s, 12 H). ¹³C NMR (100 MHz, CDCl₃) δ 151.8, 148.5, 128.7, 116.7, 110.6, 83.8, 56.0, 55.9, 25.0.

Et0 0 Bpin

2-(4-(ethoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (48). The product 48 (50.9 mg, 0.3 mmol, 61% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.5 Hz, 2 H), 7.03 (d, *J* = 8.5 Hz, 2 H), 5.25 (s, 2 H), 3.72 (q, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 2 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 12 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 12 H), 1.33 (s, 12 H), 1.21 (t, *J* = 7.1 Hz, 12 H), 1.21 (t, *J* = 7.1 Hz, 12 H), 1.33 (s, 1

Hz, 3 H). ¹³C NMR (100 MHz, CDCl₃) δ 160.1, 136.6, 115.5, 92.9, 83.7, 64.4, 25.0, 15.2.

2-(4-ethylpiperazin-1-yl)-4-(4-(triethylsilyl)phenyl)-5,6,7,8,9,10-

hexahydrocycloocta[b]pyridine (49). This compound is known⁵. The product **49** (57.4 mg, 0.2 mmol, 62% yield) was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.50 (d, *J* = 7.6 Hz, 2 H), 7.23 (d, *J* = 7.6 Hz, 2 H), 6.34 (s, 1 H), 3.55-3.51 (m, 4 H), 2.91-2.87 (m, 2 H), 2.62-2.58 (m, 2 H), 2.57-2.54 (m, 4 H), 2.46 (q, *J* = 7.2 Hz, 2 H), 1.82-1.76 (m, 2 H), 1.46-1.39 (m, 4 H), 1.38-1.34 (m, 2 H), 1.13 (t, *J* = 7.2 Hz, 3 H), 0.99 (t, *J* = 8.0 Hz, 9 H), 0.81 (q, *J* = 8.0 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ159.9, 157.4, 151.6, 141.9, 136.3, 133.9, 127.9, 123.1, 106.1, 52.9, 52.6, 45.7, 35.6, 31.8, 30.8, 26.7, 26.6, 26.0, 12.1, 7.6, 3.5.

3-((benzo[1,3]dioxol-5-yloxy)methyl)-1-methyl-4-(4-

(triethylsilyl)phenyl)piperidine (50). The product 50 (39.5 mg, 0.2 mmol, 45% yield) was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.40 (d, *J* = 7.6 Hz, 2 H), 7.18 (d, *J* = 7.6 Hz, 2 H), 6.61 (d, *J* = 8.4 Hz, 1 H), 6.34 (s, 1 H), 6.12 (d, *J* = 8.4 Hz, 1 H), 5.87 (s, 2 H), 3.61-3.57 (m, 1 H), 3.48-3.44 (m, 1 H), 3.27-2.24 (m, 2 H), 3.03-3.00 (m, 2 H), 2.39 (s, 3 H), 0.95 (t, *J* = 7.6 Hz, 9 H), 0.77 (q, *J* = 7.6 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 154.5, 148.2, 144.3, 141.6, 135.6, 134.7, 127.0, 107.9, 105.7, 101.2, 98.1, 69.8, 59.7, 56.3, 46.5, 44.3, 41.7, 34.0, 7.6, 3.5. FTMS (EI): Calculated for C26H37NO3Si (M)⁺: 439.25427; Found: 439.25268.

Triethyl(2-phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane

(52). The product **52** (51.8 mg, 67% yield) as a colourless oil was purified with silica gel chromatography. ¹H NMR (400 MHz, CDCl₃) δ 7.32 -7.27 (m, 2 H), δ 7.27 - 7.23 (m, 2 H), δ 7.20 - 7.16 (m, 1 H), 5.44 (t, *J* = 6.9 Hz, 1 H), 2.25 (q, *J* = 7.4 Hz, 2 H), 1.99 (s, 2 H), 1.25 (s, 12 H), 0.93 (t, *J* = 7.4 Hz, 2 H), 0.82 (t, *J* = 7.9 Hz, 9 H), 0.36 (q, *J* = 7.9 Hz, 6 H). ¹³C NMR (100 MHz, CDCl₃) δ 145.4, 137.3, 128.5, 128.0, 126.8, 126.4, 83.1, 25.0, 23.8, 16.2, 7.4, 3.9.

Reference

- 1. C. Zarate, R. Martin, J. Am. Chem. Soc. 2014, 136, 2236-2239.
- 2. C. Zarate, M. Nakajima, R. Martin, J. Am. Chem. Soc. 2017, 139, 1191-1197.
- 3. X. Wang, Z. Wang, Y. Nishihara, Chem. Commun. 2019, 55, 10507-10510.
- 4. L. Guo, A. Chatupheeraphat, M. Rueping, *Angew. Chem. Int. Ed.* **2016**, *55*, 11810-11813.
- 5. X. Liu, C. Zarate, R. Martin, Angew. Chem. Int. Ed. 2019, 58, 2064-2068.
- 6. X. Pu, J. Hu, Y. Zhao, Z. Shi, ACS Catal. 2016, 6, 6692-6698.
- 7. J. Jia, X. Zeng, Z. Liu, L. Zhao, C.-Y. He, X.-F. Li, Z. Feng, *Org. Lett.* **2020**, *22*, 2816-2821.
- X. Zeng, Y. Zhang, Z. Liu, S. Geng, Y. He, Z. Feng, Org. Lett. 2020, 22, 2950-2955
 S. Geng, J. Zhang, S. Chen, Z. Liu, X. Zeng, Y. He, Z. Feng, Org. Lett. 2020, 22, 5582-5588.

10. J. Zhang, Y. Zhang, S. Geng, S. Chen, Z. Liu, X. Zeng, Y. He, Z. Feng, *Org. Lett.* **2020**, *22*, 2669-2674.

11. M. Tobisu, Y. Kita, Y. Ano, N. Chatani, J. Am. Chem. Soc. 2008, 130, 15982-15989
12. T. Niwa, H. Ochiai, Y. Watanabe, and T. Hosoya, J. Am. Chem. Soc. 2015, 137, 14313-14318.

13. W. Zheng, Wei, X. Huang, S, Philip E, C. Gregory D. *Preparation of substituted pyrazolopyrimidines useful for inhibiting BMP*, United State Patent, WO 2016011019.

14. W. Liu, X. Yang, Y. Gao, C. Li, J. Am. Chem. Soc. 2017, 139, 8621-8627

15. G. C. Allen, M. T. Curtis, A. J. Hooper, P. M. Tucker, *J. Chem. Soc. Dalton Trans.* 1974, 1525-1530.

16. Y. Wang, Q. Yuan, Q. Zhang, and W. Deng, *J. Phys. Chem. C* 2007, *111*, 2044-2053.

Benzo[d][1,3]dioxol-4-yltriethylsilane (2)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 fl (ppm)

0 -10

Triethyl(3-((triisopropylsilyl)oxy)phenyl)silane (3)

(4-Cyclohexylphenyl)triethylsilane (4)

Triethyl(*m*-tolyl)silane (5)

7.315 7.288 7.269 7.260 7.251 7.198 7.180 2.380

1.010 0.991 0.971 0.838 0.838 0.838 0.838 0.838 0.838 0.799

Triethyl(*p*-tolyl)silane (6)

3,4-Dimethyl-1-(triethylsilyl)benzene (8)

Compound 8 ¹H NMR (400 MHz, CDCl₃)

N, N-dimethyl-4-(triethylsilyl)aniline (9)

N,N-dimethyl-1-(4-(triethylsilyl)phenyl)methanamine (11)

Compound 11 ¹H NMR (400 MHz, CDCl₃)

2-(4-(Triethylsilyl)phenyl)ethan-1-ol (12)

Triethyl(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)silane (13)

Triethyl(4-(trimethylsilyl)phenyl)silane (14)

[1,1'-Biphenyl]-4-yltriethylsilane (15)

Triethyl(4'-methoxy-[1,1'-biphenyl]-4-yl)silane (16)

Compound 16 ¹H NMR (400 MHz, CDCl₃)

Triethyl(4'-phenoxy-[1,1'-biphenyl]-4-yl)silane (17)

(4'-(Tert-butyl)-[1,1'-biphenyl]-4-yl)triethylsilane (18)

53

20 10 0 -10

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 f1 (ppm)

Triethyl(4'-(trifluoromethyl)-[1,1'-biphenyl]-4-yl)silane (19)

[1,1':4',1''-Terphenyl]-4-yltriethylsilane (20)

7,689 7,662 7,646 7,642 7,642 7,627 7,597 7,597 7,597 7,597 7,485 7,485 7,485 7,485 7,485 7,382 7,382 7,365 7,365 7,365

Compound 20 ¹H NMR (400 MHz, CDCl₃)

4-(4'-(Triethylsilyl)-[1,1'-biphenyl]-4-yl)morpholine (21)

Triethyl(4-(naphthalen-1-yl)phenyl)silane (22)

Triethyl(4-(naphthalen-2-yl)phenyl)silane (23)

1-Isopropyl-3-(4-(triethylsilyl)phenyl)-1H-indole (24)

(4-(Benzo[b]thiophen-2-yl)phenyl)triethylsilane (25)

SiEt₃

Compound 25 ¹H NMR (400 MHz, CDCl₃)

1.032 1.012 0.993 0.872 0.853 0.833 0.813

1-(4-(Triethylsilyl)phenyl)-1H-pyrrole (26)

Triethyl(naphthalen-2-yl)silane (27)

Triethyl(naphthalen-1-yl)silane (28)

2-Methoxy-5-(triethylsilyl)pyridine (29)

2-([1,1'-Biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (31)

4-Methyl-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl (32)

Bpin	7.914 7.620 7.6216 7.549 7.536 7.254	- 2.414	— 1.384
D pm		7	•

Compound 32 ¹H NMR (400 MHz, CDCl₃)

2-(4'-(Tert-Butyl)-[1,1'-biphenyl]-4-yl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (33)

4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-2',4',6'-trimethylbiphenyl (35).

4-Phenoxy-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl (36)

3,4-Methylenedioxy-4'-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)biphenyl (37)

Compound 37 ¹H NMR (400 MHz, CDCl₃)

1-Isopropyl-3-(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)indole (38)

N-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)pyrrole (39)

1-(4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-pyrazole (40)

1-(4-(4,4,5,5- Tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl)-1H-Indole (41)

2-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalene (42)

1-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)naphthalene (43)

Bpin

82

Compound 43

1-[4-(4,4,5,5-Tetramethyl-1,3,2-dioxaborolan-2-yl)-1-naphthalenyl]ethanone (44)

4,4,5,5-Tetramethyl-2-(4-phenoxyphenyl)-1,3,2-dioxaborolane (45)

2-(4-(benzyloxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (46)

2-(3,4-Dimethoxyphenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (47)

2-(4-(ethoxymethoxy)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (48)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)

2-(4-ethylpiperazin-1-yl)-4-(4-(triethylsilyl)phenyl)-5,6,7,8,9,10-

hexahydrocycloocta[b]pyridine (49).

7,409 7,7409 7,7409 6,539 6,539 6,1100 6,1100 6,1100 6,1100 6,1100 6,110

Compound 50 ¹H NMR (400 MHz, CDCl₃)

Triethyl(2-phenyl-5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pentyl)silane (52).

¹C NMR (100 MHz, CDCl₃)

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 fl (ppm)