Supporting Information

Copper-catalyzed redox neutral ketoalkylation of Csp²-H bonds via

C-C bond cleavage

He Chen, Li-Na Guo, Qing-Xin Sun, Lei Chen, Jing-Qi Tao and Pin Gao*

Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an 710049, China. Email: gaopin@xjtu.edu.cn

Table of Contents

General Information	S3
Starting Materials	S4
General Procedure for the Reaction of Quinoxaline-2(1H)-one 1a with Cyclopentyl	S6
Silyl Peroxide 2a	
Optimization of Reaction Conditions of Quinoxaline-2(1 <i>H</i>)-one 1a with Cyclopentyl	S7
Silyl Peroxide 2a	
Representative Procedure for the Reaction of Quinoxaline-2(1H)-ones 1 with	S13
Cycloalkyl Silyl Peroxides 2	
General Procedure for the Reaction of Naphthoquinone 5d with Cyclopentyl Silyl	S14
Peroxide 2a	
Optimization of the Reaction of Quinones 5 with Cyclopentyl Silyl Peroxide 2a	S15
Representative Procedure for the Reaction of Quinones 5 with Cycloalkyl Silyl	S16
Peroxides 2	
Larger Scale Reaction of Quinoxaline-2(1 <i>H</i>)-one 1a with Cyclopentyl Silyl Peroxide	S17
2a	
Investigation of the Reaction Mechanism	S18
Characterization of Products 3, 4 and 6 - 8	S19
References	S35
¹ H NMR and ¹³ C NMR Spectra of the Products 3 , 4 and 6 - 8	S36

General Information

All catalytic reactions were conducted in oven-dried Schlenk-tube under an atmosphere of nitrogen. Reactions were monitored by thin layer chromatography (aluminum backed plates pre-coated (0.25 mm) with Merck Silica Gel 60F-254.) and visualized using UV light. Column chromatography purifications were carried out using 200-300 mesh silica gel. ¹H NMR and ¹³C NMR spectra were recorded on Bruker Advance III-400 and Bruker Advance III-600 in solvents as indicated. Chemical shift are reported in ppm from TMS with the solvent resonance as internal standard (CDCl₃: ¹H NMR: $\delta = 7.26$; ¹³C NMR: $\delta = 77.0$). Coupling constants are reported in Hz with multiplicities denoted as s (singlet), d (doublet), t (triplet), q (quartet) and m (multiplet). FT-IR spectra were recorded on a Bruker V 70 spectrometer and only major peaks are reported in cm⁻¹. HRMS were obtained on WATERS I-Class VION IMS QTof. The melting points were measured using open glass capillaries in a SGW® X-4A apparatus. Unless otherwise stated, all reagents were purchased from commercial sources and used without further purification.

Starting Materials

All of the quinoxalin-2(1H)-ones **1** were synthesized according to the literature.¹ All of cycloalkyl silyl peroxides **2** were prepared according to the literature.² All of the NMR spectra of known compounds were in full accordance with the data in the literatures.

1. General Procedure for the Synthesis of 2a–2i, 2k, 2l, 2n, 2p: a Typical Procedure for the Synthesis of Alkylsilyl Peroxide 2a

To a solution of H_2O_2 (10 mL, 88.5 mmol, 30 wt% in H_2O) and conc. H_2SO_4 (0.25 mL, 4.8 mmol) was added a solution of 1-phenylcyclopentan-1-ol **2a'** (1.62 g, 10 mmol) in dichloromethane (2.0 mL) at 0 °C. The reaction mixture was stirred vigorously for 18 h at room temperature. After the reaction completed, the mixture was quenched with water and extracted with dichloromethane (3×10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate 15:1) affords corresponding alkyl hydroperoxide **2a''** as colorless oil.

An oven-dried 10 mL reaction tube equipped with a magnetic stir bar was charged with 1,4-diazabicyclo[2.2.2]octane (0.8 g, 7.2 mmol, 1.2 equiv). Then, the tube was evacuated and backfilled with nitrogen (three times). A solution of alkyl hydroperoxide **2a''** (1.07 g, 6 mmol) in 3 mL of dichloromethane at 0 °C was injected into the tube. Chlorotrimethylsilane (0.9 mL, 7.2 mmol, 1.2 equiv.) was added slowly under nitrogen atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched with H₂O and the organic materials were extracted with dichloromethane (3×10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate 20:1) affords corresponding alkylsilyl peroxide **2a** as colorless oil.

2. General Procedure for the Synthesis of 2j, 2o, 2q-2u: a Typical Procedure for the Synthesis of Alkylsilyl Peroxide 2u

To a solution of H_2O_2 (10 mL, 88.5 mmol, 30 wt% in H_2O) and conc. H_2SO_4 (0.25 mL, 4.8 mmol) was added a solution of 1-phenylcyclododecan-1-ol **2u'** (2.60 g, 10

mmol) in tetrahydrofuran (2.0 mL) at 0 °C. The reaction mixture was stirred vigorously for 12 h at 60 °C. After the reaction completed, the mixture was quenched with water and extracted with ethyl acetate (3×10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate 15:1) affords corresponding alkyl hydroperoxide **2u''** as colorless oil.

An oven-dried 10 mL reaction tube equipped with a magnetic stir bar was charged with 1,4-diazabicyclo[2.2.2]octane (1.08 g, 9.6 mmol, 1.2 equiv). Then, the tube was evacuated and backfilled with nitrogen (three times). A solution of alkyl hydroperoxide **2u''** (2.21 g, 8 mmol) in 4 mL of dichloromethane at 0 °C was injected into the tube. Chlorotrimethylsilane (1.2 mL, 9.6 mmol, 1.2 equiv.) was added slowly under nitrogen atmosphere at 0 °C. The reaction mixture was stirred at room temperature for 5 h. The reaction was quenched with H₂O and the organic materials were extracted with dichloromethane (3×10 mL). The combined organic phase was washed with brine (10 mL), dried over Na₂SO₄ and concentrated in vacuo. Purification of the crude product by flash chromatography on silica gel (petroleum ether/ethyl acetate 20:1) affords corresponding alkylsilyl peroxide **2u** as colorless oil.

General Procedure for the Reaction of Quinoxaline-2(1H)-one 1a with

Cyclopentyl Silyl Peroxide 2a

An oven-dried 10 mL Schlenk-tube equipped with a magnetic stir bar was charged with quinoxalin-2(1*H*)-one **1a** (0.2 mmol, 1.0 equiv.), catalyst and base. Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of cyclopentyl silyl peroxide **2a** (0.3 mmol, 1.5 equiv.) in solvent (2 mL) were injected into the tube by syringe under nitrogen atmosphere. The tube was then sealed and the mixture was stirred at specified temperature for 12 h. After that, the resulting mixture was diluted with EtOAc. And the organic phase was washed with H₂O (3 x 10 mL) and brine (10 mL) the dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (gradient eluent of petroleum ether/EtOAc = 5:1) to give the desired product **3a** as a yellow liquid. The results are summarized as following.

Table S1. Optimization of the Reaction of Quinoxaline-2(1H)-one 1a

with Cyclopentyl Silyl Peroxide 2a

Temperature^a

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 5 mol % of CuI, DMAP (0.2 mmol, 1.0 equiv.), MeCN (2.0 mL), temperature, for 12 h, under N₂. ^{*b*}Yields of isolated product. ^{*c*}Without catalyst and base.

The ratio of 1a:2a^a

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **1a** : **2a** = 1 : x, 5 mol % of CuI, DMAP (0.2 mmol, 1.0 equiv.), MeCN (2.0 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

The amount of the DMAP^a

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 5 mol % of CuI, DMAP (x equiv.), MeCN (2.0 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

Solvent^a

Entry Solvent		Yield (%) ^{b}
1	CH ₃ OH	61
2	DMSO	73
3	DMF	74
4	DMAc	59
5	NMP	57
6	MeCN	70
7 8 9 10	CH ₃ NO ₂	67
	THF	54
	1,4-Dioxane	63
	DME	55
11	EtOAc	trace
12	DCE	67
13	PhCF ₃	70
14	Toluene	66
15	Cyclohexane	36

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 5 mol % of CuI, DMAP (1.0 equiv.), solvent (2.0 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

Base^a

Entry	Base	Yield (%) ^{b}
1	None	Trace
2	DMAP	78
3	DABCO	10
$\begin{array}{ccc} 4 & K_2C \\ 5 & Cs_2C \\ 6 & 4-cyanop \\ 7 & 4-methyl \end{array}$	K_2CO_3	49
	Cs_2CO_3	64
	4-cyanopyridine	46
	4-methylpyridine	57
8 4-methoxypyridine9 4-pyrrolidinopyridine		61
		83
10	4-phenylpyridine	59

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 5 mol % of CuI, base (1.0 equiv.), DMF (2.0 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

Catalyst

Entry	Catalyst	Yield $(\%)^b$
1	1 CuI	
2	CuBr	70
3	CuCl	81
4	CuSCN	75
5	CuBr ₂	80
6	$Cu(acac)_2$	82
7	$Cu(OAc)_2$	63
8	Cu(OTf) ₂	81
9	CuOTf	86
10	CuO	37
11	Cu	71
12	$CuSO_4 \cdot 5H_2O$	75
13	Fe(OTf) ₂	57
14	Fe(OTf) ₃	63

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 4-pyrrolidinopyridine (1.0 equiv.), 5 mol % of catalyst, DMF (2.0 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

Loading of catalyst^a

Entry	Loading (x mol %)	Yield $(\%)^b$
1	2	82
2	5	86
3	10	78

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), x mol % of CuOTf, 4-pyrrolidinopyridine (1.0 equiv.), DMF (2.0 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

Concentration^a

Entry Concentration (x mL)		Yield $(\%)^b$
1	1	77
2	2	86
3	3	38

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2a** (0.3 mmol, 1.5 equiv.), 5 mol % of CuOTf, 4-pyrrolidinopyridine (1.0 equiv.), DMF (x mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

Substitution group^a

Entry	Substitution group	Yield $(\%)^b$	
1	$\mathbf{R} = \mathbf{H}$	70	
2	$\mathbf{R} = \mathbf{SiMe}_3$	86	

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1.0 equiv.), **2** (0.3 mmol, 1.5 equiv.), 5 mol % of CuOTf, 4-pyrrolidinopyridine (1.0 equiv.), DMF (2 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product.

Representative Procedure for the Reaction of Quinoxaline-2(1H)-ones

1 with Cycloalkyl Silyl Peroxides 2

An oven-dried 10 mL Schlenk-tube equipped with a magnetic stir bar was charged with quinoxalin-2(1*H*)-ones 1 (0.2 mmol, 1.0 equiv.), CuOTf (5 mol %, 2.2 mg) and 4-pyrrolidinopyridine (0.2 mmol, 1.0 equiv., 29.6 mg). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of cycloalkyl silyl peroxides 2 (0.3 mmol, 1.5 equiv.) in DMF (2 mL) were injected into the tube by syringe under nitrogen atmosphere. The tube was then sealed and the mixture was stirred at 25 °C for 12 h. After that, the resulting mixture was diluted with EtOAc. And the organic phase was washed with H₂O (3 x 10 mL) and brine (10 mL) the dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (gradient eluent of petroleum ether/EtOAc = 10:1 to 2/1) to give the desired product **3** and **4** in isolated yields.

General Procedure for the Reaction of Naphthoquinone 5d with Cyclopentyl Silyl Peroxide 2a

An oven-dried 10 mL Schlenk-tube equipped with a magnetic stir bar was charged with naphthoquinone **5d** (0.2 mmol, 1.0 equiv.), catalyst (5 mol %) and base (1.0 equiv.). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of cyclopentyl silyl peroxide **2a** (0.3 mmol, 1.5 equiv.) in DMF (2 mL) were injected into the tube by syringe under nitrogen atmosphere. The tube was then sealed and the mixture was stirred at 25 °C for 12 h. After that, the resulting mixture was diluted with EtOAc. And the organic phase was washed with H₂O (3 x 10 mL) and brine (10 mL) the dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (gradient eluent of petroleum ether/EtOAc = 8:1) to give the desired product **6d** and **6d'**. The results are summarized as following.

Table S2. Optimization of the Reaction of Quinones 5 with Cyclopentyl

Silyl Peroxide 2a^a

Entry	Catalyst	Base	Ratio (5d : 2a)	Yield $(\%)^b$
1	CuOTf	4-pyrrolidinopyridine	1:1.5	17/31
2	CuOTf	4-pyrrolidinopyridine	1:3	0/46
3	Fe(OTf) ₂	-	1:1.5	45/47
4	Fe(OTf) ₂	-	1:3	32/55

^{*a*}Reaction conditions: **5d** (0.2 mmol, 1.0 equiv.), **5d** : **2a** = 1 : x , 5 mol % of catalyst, 4-pyrrolidinopyridine (1.0 equiv.), DMF (2 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product **6d** and **6d**'.

	+ OOTI	MS Fe(OTf) ₂ (5 mol %) DMF (0.1 M), 25 °C, N ₂ , 12 h		R、 ,Ph ⁺ Ph↓{}&∕ O	R R R Ph	
5	2a		6		6'	
	Entry	Ratio	(5:2a)	Yield	(%) ^b	
	1	1	: 1.5	28/	50	
	2	1.5 : 1		1.5 : 1 42/14		14
	3 ^c	1.	5:1	47/	12	

^{*a*}Reaction conditions: **5f** (0.2 mmol, 1.0 equiv.), **5f** : **2a** = 1 : x , 5 mol % of Fe(OTf)₂, DMF (2 mL), 25 °C, for 12 h, under N₂. ^{*b*}Yields of isolated product **6** and **6'**. ^{*c*}Reaction conditions: **5e** (0.3 mmol, 1.5 equiv.), **5e** : **2a** = 1.5 : 1.

Representative Procedure for the Reaction of Quinones 5 with Cycloalkyl Silyl Peroxides 2

An oven-dried 10 mL Schlenk-tube equipped with a magnetic stir bar was charged with quinones **5** (0.2 mmol, 1.0 equiv.), Fe(OTf)₂ (5 mol %, 3.5mg). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of cyclopentyl silyl peroxide **2a** (0.3 mmol, 1.5 equiv.) in DMF (2 mL) were injected into the tube by syringe under nitrogen atmosphere. The tube was then sealed and the mixture was stirred at 25 °C for 12 h. After that, the resulting mixture was diluted with EtOAc. And the organic phase was washed with H₂O (3 x 10 mL) and brine (10 mL) the dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (gradient eluent of petroleum ether/EtOAc = 15:1 to 5:1) to give the desired product **6** and **6'** in isolated yields.

Larger Scale Reaction of Quinoxaline-2(1H)-one 1a with Cyclopentyl

Silyl Peroxide 2a

An 100 mL oven-dried sealed tube equipped with a magnetic stir bar was charged with quinoxalin-2(1*H*)-one **1a** (2 mmol, 1.0 equiv., 0.32 g), CuOTf (5 mol %, 22 mg) and 4-pyrrolidinopyridine (2 mmol, 1.0 equiv., 296 mg). Then, the tube was evacuated and backfilled with nitrogen (three times). Subsequently, a solution of cyclopentyl silyl peroxide **2a** (3 mmol, 1.5 equiv., 0.75 g) in DMF (20 mL) were injected into the tube by syringe under nitrogen atmosphere. The tube was then sealed and the mixture was stirred at 25 °C for 12 h. After that, the resulting mixture was diluted with EtOAc. And the organic phase was washed with H₂O (3 x 10 mL) and brine (10 mL) the dried (Na₂SO₄) and concentrated in vacuo. The crude product was purified by flash column chromatography on silica gel (gradient eluent of petroleum ether/EtOAc = 5:1) to give the product **3a** (0.53 g, 84%).

Investigation of the Reaction Mechanism

Radical Trapping Experiments

When 2.0 equiv. of TEMPO was added to the reaction under the standard conditions, no product **3a** was detected. Meanwhile, the TEMPO-adduct **9a**² was isolated in 47% yield and 98% of the raw material quinoxalin-2(1*H*)-one **1a** was recovered. This result indicates that radical intermediate was probably involved in this transformation.

Radical Inhibition Experiments

When 2.0 equiv. of BHT was added to the reaction under the standard conditions, the yield of 3a was reduced to 21% yield and 47% of the raw material quinoxalin-2(1*H*)-one 1a was recovered. This result indicates that the reaction might proceed via a radical pathway.

Characterization of Products 3, 4 and 6 - 8

1-Methyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (3a): (known compound)³ yellow liquid (55.1 mg, 86%). R_f = 0.56 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.97 – 7.95 (m, 2H), 7.81 (dd, J = 7.6, 1.2 Hz, 1H), 7.56 – 7.50 (m, 2H), 7.47 – 7.43 (m, 2H), 7.35 – 7.29 (m, 2H), 3.70 (s, 3H), 3.06 (t, J = 7.2 Hz, 2H), 3.01 (t, J = 7.2 Hz, 2H), 1.92 – 1.90 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 200.3, 160.7, 154.9, 137.0, 133.1, 132.9, 132.7, 129.7, 129.6, 128.5, 128.1, 123.6, 113.6, 38.5, 33.9, 29.1, 26.3, 24.1 ppm.**

1-Methyl-3-(5-oxo-5-(o-tolyl)pentyl)quinoxalin-2(1*H***)-one (3b): yellow oil (52.1 mg, 78%), R_f = 0.17 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.74 (d,** *J* **= 8.0 Hz, 1H), 7.55 (d,** *J* **= 7.2 Hz, 1H), 7.44 (t,** *J* **= 7.6 Hz, 1H), 7.28 – 7.20 (m, 3H), 7.16 (t,** *J* **= 8.0 Hz, 2H), 3.61 (s, 3H), 2.93 – 2.89 (m, 4H), 2.40 (s, 3H), 1.82 – 1.77 (m, 4H). ¹³C NMR (100 MHz, CDCl₃)) \delta 203.5, 159.6, 153.8, 137.1, 136.8, 132.0, 131.6, 130.8, 130.0, 128.61, 128.57, 127.3, 124.6, 122.5, 112.5, 40.4, 32.9, 28.0, 25.2, 23.2, 20.2 ppm; IR (neat): v_{max} 2961, 2378, 2312, 1653, 1601, 1515, 1465, 1415, 1257, 1049, 754 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂N₂O₂Na [M+Na]⁺ 357.1573, found 357.1576.**

3-(5-(2-Fluorophenyl)-5-oxopentyl)-1-methylquinoxalin-2(1*H***)-one (3c**): white solid (60.1 mg, 89%), m.p. 85 – 86 °C. $R_f = 0.17$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 – 7.72 (m, 2H), 7.46 – 7.39 (m, 2H), 7.27 – 7.20 (m, 2H), 7.15 – 7.11 (m, 1H), 7.06 – 7.01 (m, 1H), 3.62 (s, 3H), 3.02 – 2.95 (m, 2H), 2.92 (t, *J* = 6.8 Hz, 2H), 1.84 – 1.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 197.6 (d, *J* = 4.1 Hz), 160.8 (d, *J* = 253.0 Hz), 159.6, 153.8, 133.2 (d, *J* = 8.9 Hz), 132.0, 131.6, 129.6 (d, *J* = 2.7 Hz), 128.6 (d, *J* = 6.9 Hz), 124.8 (d, *J* = 13.2 Hz), 123.3 (d, *J* = 3.4 Hz), 122.5, 115.7, 115.5, 112.5, 42.4 (d, *J* = 7.0 Hz), 32.9, 28.0, 25.1, 22.8 (d, *J* = 2.0 Hz) ppm; IR (neat): v_{max} 2935, 2314, 1684, 1652, 1603, 1412, 1271, 1209, 1098, 757, 637 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₀FN₂O₂ [M+H]⁺ 339.1503, found 339.1506.

3-(5-(3-Fluorophenyl)-5-oxopentyl)-1-methylquinoxalin-2(1*H***)-one (3d): white solid (61.8 mg, 91%), m.p. 95 – 96 °C. R_f = 0.15 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.73 (d, J = 8.0 Hz, 1H), 7.66 (d, J = 7.6 Hz, 1H), 7.57 – 7.54 (m, 1H), 7.46 – 7.42 (m, 1H), 7.37 – 7.32 (m, 1H), 7.27 – 7.13 (m, 3H), 3.61 (s, 3H), 3.04 – 2.86 (m, 4H), 1.85 – 1.77 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 197.8 (d, J = 2.1 Hz), 161.8 (d, J = 247.8 Hz), 159.5, 153.8, 138.0 (d, J = 6.0 Hz), 132.0, 131.6, 129.2 (d, J = 7.6 Hz), 128.6, 122.8 (d, J = 3.0 Hz), 122.5, 118.8 (d, J = 21.5 Hz), 113.7 (d, J = 22.1 Hz), 112.5, 37.5, 32.8, 28.0, 25.1, 22.9 ppm; IR (neat): v_{max} 2932, 2314, 1687, 1652, 1595, 1470, 1444, 1311, 1251, 1163, 1038, 878, 796, 755 cm⁻¹; HRMS (ESI) calcd for C₂₀H₁₉FN₂O₂Na [M+Na]⁺ 361.1323, found 361.1326.**

3-(5-(3-Chlorophenyl)-5-oxopentyl)-1-methylquinoxalin-2(1*H***)-one (3e): yellow solid (45.6 mg, 64%), m.p. 94 – 95 °C. R_f = 0.23 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.85 – 7.84 (m, 1H), 7.77 – 7.73 (m, 2H), 7.47 – 7.43 (m, 2H), 7.31 (t,** *J* **= 8.0 Hz, 1H), 7.28 – 7.21 (m, 2H), 3.62 (s, 3H), 2.99 – 2.90 (m, 4H), 1.86 – 1.78 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 197.8, 159.5, 153.9, 137.5, 133.9, 132.1, 131.8, 131.7, 128.9, 128.64, 128.61, 127.2, 125.1, 122.5, 112.5, 37.5, 32.8, 28.0, 25.1, 22.9 ppm; IR (neat): v_{max} 2953, 2378, 2313, 1651, 1598, 1467, 1415, 1259, 1209, 1033, 799, 754 cm⁻¹; HRMS (ESI) calcd for C₂₀H₁₉ClN₂O₂Na [M+Na]⁺ 377.1027, found 377.1035.**

1-methyl-3-(5-Oxo-5-(p-tolyl)pentyl)quinoxalin-2(1*H***)-one (3f**): white solid (56.8 mg, 85%), m.p. 65 – 66 °C. $R_f = 0.20$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 8.4 Hz, 2H), 7.75 – 7.73 (m, 1H), 7.47 – 7.43 (m, 1H), 7.28 – 7.21 (m, 2H), 7.19 – 7.16 (m, 2H), 3.62 (s, 3H), 2.98 – 2.92 (m, 4H), 2.33 (s, 3H), 1.86 – 1.78 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 159.7, 153.8, 142.6, 133.5, 132.0, 131.6, 128.61, 128.57, 128.2, 127.2, 122.5, 112.5, 37.3, 32.9, 28.0, 25.3, 23.2, 20.6 ppm; IR (neat): v_{max} 2963, 2900, 2378, 2313, 1653, 1603, 1515, 1464, 1413, 1258, 1175, 1048, 804, 755, 634 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₃N₂O₂ [M+H]⁺ 335.1754, found 335.1759.

3-(5-(4-Fluorophenyl)-5-oxopentyl)-1-methylquinoxalin-2(1*H***)-one (3g): yellow oil (54.4 mg, 80%), R_f = 0.15 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.94 – 7.90 (m, 2H), 7.74 (d, J = 7.6 Hz, 1H), 7.48 – 7.44 (m, 1H), 7.28 – 7.20 (m, 2H), 7.06 – 7.01 (m, 2H), 3.63 (s, 3H), 3.00 – 2.91 (m, 4H), 1.86 – 1.81 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 197.6, 164.6 (d, J = 254.2 Hz), 159.6, 153.9, 132.4 (d, J = 2.4 Hz), 132.0, 131.6, 129.7 (d, J = 9.2 Hz), 129.5, 128.6 (d, J = 3.4 Hz), 122.6, 114.6 (d, J = 21.8 Hz), 112.6, 37.3, 32.8, 28.0, 25.2, 23.0 ppm; IR (neat): v_{max} 2960, 2378, 2313,**

1652, 1598, 1508, 1466, 1412, 1310, 1228, 1157, 1047, 802, 755 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{20}FN_2O_2$ [M+H]⁺ 339.1503, found 339.1507.

1-Methyl-3-(5-oxo-5-(4-(trifluoromethyl)phenyl)pentyl)quinoxalin-2(1*H***)-one (3h**): white solid (63.9 mg, 82%), m.p. 87 – 88 °C. $R_f = 0.18$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, J = 8.0 Hz, 2H), 7.73 (d, J = 7.6 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.47 – 7.43 (m, 1H), 7.28 – 7.19 (m, 2H), 3.62 (s, 3H), 3.01 (t, J = 6.8 Hz, 2H), 2.94 (t, J = 6.8 Hz, 2H), 1.87 – 1.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.1, 159.5, 153.8, 138.6, 133.2 (q, J = 32.8 Hz), 132.0, 131.6, 128.7, 128.6, 127.4, 125.3 (q, J = 271.0 Hz), 124.6 (q, J = 3.8 Hz), 122.6, 112.6, 37.7, 32.8, 28.0, 25.1, 22.8 ppm; IR (neat): v_{max} 2945, 2378, 2313, 1691, 1653, 1600, 1512, 1468, 1411, 1324, 1261, 1168, 1126, 1065, 801, 756 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₀F₃N₂O₂ [M+H]⁺ 389.1471, found 389.1476.

3-(5-(4-Fluoro-3-methylphenyl)-5-oxopentyl)-1-methylquinoxalin-2(1*H***)-one (3i): colorless oil (56.7 mg, 80%), R_f = 0.14 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.76 – 7.70 (m, 3H), 7.47 – 7.43 (m, 1H), 7.28 – 7.20 (m, 2H), 6.97 (t,** *J* **= 8.8 Hz, 1H), 3.62 (s, 3H), 2.96 – 2.91 (m, 4H), 2.24 (s, 3H), 1.87 – 1.77 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 197.9, 163.2 (d,** *J* **= 253.1 Hz), 159.6, 153.9, 132.1 (d,** *J* **= 6.0 Hz), 132.0, 131.6, 130.9 (d,** *J* **= 6.6 Hz), 128.6, 127.0 (d,** *J* **= 9.2 Hz), 124.2 (d,** *J* **= 17.7 Hz), 122.5, 114.1 (d,** *J* **= 22.9 Hz), 112.6, 37.3, 32.9, 28.0, 25.2, 23.1, 13.6 (d,** *J* **= 3.6 Hz) ppm; IR (neat): v_{max} 2962, 2378, 2314, 1652, 1599, 1508, 1465, 1413, 1311, 1253, 1157, 1049, 802, 756 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₁FN₂O₂Na [M+Na]⁺ 375.1479, found 375.1482.**

1-Methyl-3-(5-(naphthalen-1-yl)-5-oxopentyl)quinoxalin-2(1*H***)-one (3j): yellow oil (56.5 mg, 76%), R_f = 0.19 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 8.47 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 7.2 Hz, 2H), 7.72 (dd, J = 8.0, 1.2 Hz, 1H), 7.49 – 7.38 (m, 4H), 7.26 – 7.20 (m, 2H), 3.60 (s, 3H), 3.07 (t, J = 6.4 Hz, 2H), 2.93 (t, J = 6.8 Hz, 2H), 1.89 – 1.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 203.7, 159.6, 153.8, 135.2, 132.9, 132.0, 131.7, 131.3, 129.1, 128.62, 128.56, 127.3, 126.7, 126.2, 125.3, 124.8, 123.3, 122.5, 112.5, 41.0, 32.9, 28.0, 25.2, 23.5 ppm; IR (neat): v_{max} 2962, 2378, 2313, 1652, 1599, 1511, 1465, 1414, 1261, 1041, 868, 799 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₂N₂O₂Na [M+Na]⁺ 393.1573, found 393.1578.**

1-Methyl-3-(5-oxo-5-(thiophen-2-yl)pentyl)quinoxalin-2(1*H***)-one (3k): white solid (51.4 mg, 79%), m.p. 119 – 120 °C. R_f = 0.19 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.74 (d,** *J* **= 7.6 Hz, 1H), 7.65 (d,** *J* **= 2.8 Hz, 1H), 7.54 (d,** *J* **= 4.4 Hz, 1H), 7.45 (t,** *J* **= 7.6 Hz, 1H), 7.28 – 7.21 (m, 2H), 7.05 – 7.03 (m, 1H), 3.63 (s, 3H), 2.94 – 2.91 (m, 4H), 1.85 – 1.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 192.2, 159.5, 153.8, 143.4, 132.3, 132.1, 131.7, 130.7, 128.63, 128.60, 127.0, 122.5, 112.5, 38.2, 32.8, 28.0, 25.2, 23.5 ppm; IR (neat): v_{max} 2966, 2899, 2377, 2312, 1744, 1653, 1601, 1515, 1465, 1414, 1257, 1049, 891, 802, 752 cm⁻¹; HRMS (ESI) calcd for C₁₈H₁₈N₂O₂SNa [M+Na]⁺ 349.0981, found 349.0986.**

1-Methyl-3-(5-oxodecyl)quinoxalin-2(1*H***)-one (3l):** white solid (34.9 mg, 56%), m.p. 47 – 48 °C. $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.75 – 7.73 (m, 1H), 7.47 – 7.43 (m, 1H), 7.28 – 7.21 (m, 2H), 3.63 (s, 3H), 2.88 (t, *J* = 7.2 Hz, 2H), 2.41 (t, *J* = 7.2 Hz, 2H), 2.33 (t, *J* = 7.2 Hz, 2H), 1.78 – 1.71 (m, 2H), 1.69 – 1.60 (m, 2H), 1.56 – 1.44 (m, 2H), 1.28 – 1.15 (m, 4H), 0.81 (t, *J* = 6.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 211.4, 160.6, 154.9, 133.1, 132.7, 129.63, 129.61, 123.6, 113.6, 42.8, 42.6, 33.9, 31.4, 29.0, 26.2, 23.63, 23.57, 22.5, 13.9 ppm; IR (neat): v_{max} 2932, 2315, 1653, 1600, 1466, 1414, 1260, 1167, 1045, 799, 754 cm⁻¹; HRMS (ESI) calcd for C₁₉H₂₆N₂O₂Na [M+Na]⁺ 337.1886, found 337.1890.

Methyl 5-(4-methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)pentanoate (3m): (known compound)⁴ white solid (48.7 mg, 89%), m.p. 103 – 104 °C. $R_f = 0.19$ (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) δ 7.75 (dd, J = 8.0, 1.2 Hz, 1H), 7.48 – 7.43 (m, 1H), 7.29 – 7.20 (m, 2H), 3.63 (s, 3H), 3.59 (s, 3H), 2.89 (t, J = 6.8 Hz, 2H), 2.33 (t, J = 7.6 Hz, 2H), 1.83 – 1.68 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 173.0, 159.5, 153.8, 132.0, 131.6, 128.6, 122.5, 112.5, 50.5, 32.9, 32.7, 28.0, 25.1, 23.8 ppm.

1-Methyl-3-(6-oxo-6-phenylhexan-2-yl)quinoxalin-2(1*H***)-one (3n): white solid (56.6 mg, 85%), m.p. 97 - 98 °C. R_f = 0.14 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.85**

(d, J = 8.0 Hz, 2H), 7.74 (d, J = 7.6 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.37 – 7.32 (m, 2H), 7.25 – 7.18 (m, 2H), 3.65 – 3.59 (m, 3H), 3.54 – 3.49 (m, 1H), 2.93 (t, J = 7.2 Hz, 2H), 2.00 – 1.90 (m, 1H), 1.80 – 1.67 (m, 2H), 1.65 – 1.57 (m, 1H), 1.23 (dd, J = 6.8, 0.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 163.0, 153.6, 136.0, 131.83, 131.79, 131.7, 128.8, 128.5, 127.5, 127.0, 122.4, 112.4, 37.6, 35.0, 33.1, 28.0, 21.2, 17.4 ppm; IR (neat): v_{max} 2963, 2378, 2312, 1746, 1650, 1597, 1516, 1460, 1313, 1259, 1029, 801, 753, 692 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂N₂O₂Na [M+Na]⁺ 357.1573, found 357.1576.

1-Methyl-3-(1-oxo-1-phenyldodecan-5-yl)quinoxalin-2(1*H***)-one (30): colorless oil (68.2 mg, 81%), R_f = 0.43 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.86 – 7.84 (m, 2H), 7.76 (d, J = 8.0 Hz, 1H), 7.47 – 7.43 (m, 2H), 7.36 – 7.33 (m, 2H), 7.28 – 7.21 (m, 2H), 3.63 (s, 3H), 3.49 – 3.45 (m, 1H), 2.98 – 2.82 (m, 2H), 1.95 – 1.88 (m, 1H), 1.84 – 1.77 (m, 1H), 1.71 – 1.58 (m, 4H), 1.21 – 1.12 (m, 10H), 0.79 – 0.75 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.4, 162.6, 153.9, 136.0, 131.8, 128.8, 128.5, 127.5, 127.0, 122.4, 112.5, 40.4, 37.7, 32.5, 31.7, 30.8, 28.8, 28.2, 28.1, 26.5, 21.6, 21.3, 13.1 ppm; IR (neat): v_{max} 2926, 2378, 2314, 1744, 1686, 1652, 1600, 1515, 1462, 1417, 1261, 1051, 896, 800, 754, 693, 637 cm⁻¹; HRMS (ESI) calcd for C₂₇H₃₅N₂O₂ [M+H]⁺ 419.2693, found 419.2695.**

1-Methyl-3-(3-(2-oxo-2-phenylethyl)cyclopentyl)quinoxalin-2(1*H***)-one (3p**): colorless oil (59.4 mg, 86%, d.r. = 1 : 1), R_f = 0.25 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.74 – 7.71 (m, 1H), 7.49 – 7.36 (m, 4H), 7.26 – 7.19 (m, 2H), 3.80 – 3.73 (m, 1H), 3.61 (s, 3H), 3.09 – 3.00 (m, 2H), 2.70 – 2.65 (m, 0.54H), 2.63 – 2.57 (m, 0.49H), 2.27 – 2.19 (m, 1H), 2.11 – 1.92 (m, 3H), 1.75 – 1.64 (m, 1H), 1.46 – 1.40 (m, 0.49H), 1.36 – 1.29 (m, 0.52H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 199.1, 162.2, 162.1, 153.9, 136.2, 131.8, 128.8, 128.7, 128.40, 128.37, 127.5, 127.11, 127.07, 122.40, 122.38, 112.5, 112.4, 43.8, 43.6, 41.4, 40.5, 36.3, 35.8, 35.3, 34.2, 32.3, 31.1, 29.3, 28.9, 28.0 ppm; IR (neat): v_{max} 2949, 2313, 1653, 1597, 1513, 1463, 1376, 1262, 1212, 1041, 800, 754, 693 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₂N₂O₂Na [M+Na]⁺ 369.1573, found 369.1578.

1-Methyl-3-(6-oxo-6-phenylhexyl)quinoxalin-2(1*H*)-one (3q): yellow solid (47.3 mg, 71%), m.p. 63 – 64 °C. $R_f = 0.13$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87

(m, 2H), 7.74 (d, J = 8.0 Hz, 1H), 7.52 – 7.43 (m, 2H), 7.38 (t, J = 7.6 Hz, 2H), 7.28 – 7.21 (m, 2H), 3.63 (s, 3H), 2.95 – 2.88 (m, 4H), 1.84 – 1.71 (m, 4H), 1.54 – 1.42 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.4, 160.0, 153.9, 136.0, 132.1, 131.8, 131.7, 128.6, 128.5, 127.5, 127.0, 122.5, 112.5, 37.5, 33.2, 28.2, 28.0, 25.6, 23.2 ppm; IR (neat): v_{max} 2933, 2378, 2350, 2314, 1684, 1652, 1599, 1515, 1465, 1415, 1315, 1260, 1048, 800, 754, 694 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂N₂O₂Na [M+Na]⁺ 357.1573, found 357.1576.

1-Methyl-3-(7-oxo-7-phenylheptan-2-yl)quinoxalin-2(1*H***)-one (3r): white solid (61.4 mg, 88%), m.p. 109 – 110 °C. R_f = 0.30 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.87 – 7.82 (m, 2H), 7.75 (dd, J = 8.0, 1.2 Hz, 1H), 7.49 – 7.41 (m, 2H), 7.39 – 7.33 (m, 2H), 7.29 – 7.20 (m, 2H), 3.62 (s, 3H), 3.47 (q, J = 6.8 Hz, 1H), 2.91 – 2.87 (m, 2H), 1.94 – 1.84 (m, 1H), 1.73 – 1.66 (m, 2H), 1.59 – 1.49 (m, 1H), 1.44 – 1.31 (m, 2H), 1.22 (d, J = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.4, 163.4, 153.6, 136.0, 131.9, 131.8, 131.7, 128.8, 128.5, 127.5, 127.0, 122.4, 112.5, 37.5, 35.0, 33.3, 28.1, 26.3, 23.4, 17.3 ppm; IR (neat): v_{max} 2934, 2378, 2313, 1652, 1598, 1515, 1462, 1315, 1259, 1060, 800, 754, 693 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₄N₂O₂Na [M+Na]⁺ 371.1730, found 371.1732.**

1-Methyl-3-(7-oxo-7-phenylheptyl)quinoxalin-2(1*H***)-one (3s):** yellow solid (64.9 mg, 93%), m.p. 85 – 86 °C. $R_f = 0.17$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.85 (m, 2H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.48 – 7.43 (m, 2H), 7.41 – 7.34 (m, 2H), 7.26 – 7.19 (m, 2H), 3.61 (s, 3H), 2.90 – 2.84 (m, 4H), 1.79 – 1.61 (m, 4H), 1.46 – 1.40 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.5, 160.1, 153.8, 136.0, 132.0, 131.8, 131.7, 128.6, 128.5, 127.5, 127.0, 122.5, 112.5, 37.5, 33.2, 28.3, 28.1, 28.0, 25.6, 23.2 ppm; IR (neat): v_{max} 2930, 2314, 1682, 1653, 1599, 1466, 1413, 1313, 1259, 1214, 1092, 1038, 800, 753, 693 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₃N₂O₂ [M+H]⁺ 349.1911, found 349.1914.

1-Methyl-3-(8-oxo-8-phenyloctyl)quinoxalin-2(1*H***)-one (3t): white solid (24.0 mg, 33%), m.p. 90 – 91 °C. R_f = 0.23 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.89 – 7.84 (m, 2H), 7.75 (dd, J = 8.0, 1.2 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.40 – 7.34 (m, 2H), 7.28 – 7.20 (m, 2H), 3.62 (s, 3H), 2.90 – 2.84 (m, 4H), 1.79 – 1.62 (m, 4H), 1.41 – 1.33 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.6, 160.2, 153.9, 136.0, 132.0, 131.8, 131.7, 128.6, 128.5, 127.5, 127.0, 122.5, 112.5, 37.6, 33.3, 28.4, 28.3, 28.2, 28.0, 25.7, 23.3 ppm; IR (neat): v_{max} 2928, 2853, 2377, 2313, 1746, 1648, 1597, 1524, 1465, 1412, 1308, 1260, 1218, 1169, 1063, 799, 751, 693 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₇N₂O₂ [M+H]⁺ 363.2067, found 363.2071.**

1-Methyl-3-(12-oxo-12-phenyldodecyl)quinoxalin-2(1*H***)-one (3u): white solid (61.9 mg, 74%), m.p. 92 – 93 °C. R_f = 0.26 (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.89 – 7.87 (m, 2H), 7.76 – 7.74 (m, 1H), 7.50 – 7.43 (m, 2H), 7.40 – 7.35 (m, 2H), 7.28 – 7.22 (m, 2H), 3.62 (s, 3H), 2.90 – 2.84 (m, 4H), 1.76 – 1.62 (m, 4H), 1.36 – 1.21 (m, 14H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.60, 160.33, 153.86, 136.03, 132.04, 131.80, 131.68, 128.55, 128.44, 127.49, 127.01, 122.47, 112.51, 37.61, 33.38, 28.57, 28.54, 28.49, 28.46, 28.438, 28.437, 28.35, 27.99, 25.83, 23.36 ppm; IR (neat): v_{max} 2919, 2852, 2314, 1650, 1600, 1466, 1415, 1313, 1258, 1211, 1170, 1047, 799, 745 cm⁻¹; HRMS (ESI) calcd for C₂₇H₃₅N₂O₂ [M+H]⁺ 419.2693, found 419.2695.**

6-Methoxy-1-methyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4a): white solid (70.1 mg, 88%), m.p. 90 – 91 °C. R_f = 0.18 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.97 – 7.95 (m, 2H), 7.57 – 7.52 (m, 1H), 7.48 – 7.42 (m, 2H), 7.30 (d,** *J* **= 2.8 Hz, 1H), 7.23 – 7.20 (m, 1H), 7.14 (dd,** *J* **= 9.2, 2.8 Hz, 1H), 3.88 (s, 3H), 3.69 (s, 3H), 3.06 (t,** *J* **= 6.8 Hz, 2H), 3.01 (t,** *J* **= 7.2 Hz, 2H), 1.94 – 1.90 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.2, 160.2, 154.9, 153.5, 136.0, 132.4, 131.9, 127.5, 127.1, 126.3, 117.7, 113.5, 110.1, 54.7, 37.4, 33.0, 28.2, 25.3, 23.1 ppm; IR (neat): v_{max} 2972, 2314, 1686, 1647, 1506, 1461, 1271, 1171, 1040, 864, 805, 753, 693, 629 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂N₂O₃Na [M+Na]⁺ 373.1523, found 373.1521.**

1,6/1,7-Dimethyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4b)^{***b***}: white solid (48.8 mg, 93%), m.p. 97 – 98 °C. R_f = 0.22 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.89 (d,** *J* **= 8.0 Hz, 2H), 7.61 (d,** *J* **= 8.0 Hz, 0.62H), 7.54 (s, 0.41H), 7.47 (t,** *J* **= 7.6 Hz, 1H), 7.37 (t,** *J* **= 7.6 Hz, 2H), 7.26 (d,** *J* **= 8.4 Hz, 0.41H), 7.09 (dd,** *J* **= 13.6, 8.4 Hz, 1H), 7.01 (s, 0.62H), 3.60 (s, 3H), 2.99 (t,** *J* **= 6.4 Hz, 2H), 2.95 – 2.87 (m, 2H), 2.43 (s, 1.80H), 2.37 (s, 1.19H), 1.84 – 1.81 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.2, 159.5, 158.3, 154.0, 153.8, 139.2, 135.9, 132.3, 131.9, 131.8, 131.6, 129.84, 129.82, 129.7, 128.5, 128.3, 127.5, 127.0, 123.8, 112.7, 112.3, 37.4, 32.9, 32.8, 28.0, 27.9, 25.3, 25.2, 23.12, 23.09, 21.0, 19.6 ppm; IR (neat): v_{max} 2930, 1681, 1651, 1611, 1505, 1456, 1367, 1308, 1262, 1217, 1096, 807, 749, 693 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₃N₂O₂ [M+H]⁺ 335.1754, found 335.1763.**

^b An inseparable mixture of 6-methyl and 7-methylquinoxalin-2(1H)-ones was used as substrate.

6-Fluoro-1-methyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4c): yellow solid (57.6 mg, 85%), m.p. 109 – 110 °C. R_f = 0.23 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.89 – 7.87 (m, 2H), 7.49 – 7.43 (m, 1H), 7.42 (dd,** *J* **= 8.8, 2.0 Hz, 1H), 7.37 (t,** *J* **= 7.6 Hz, 2H), 7.22 – 7.17 (m, 2H), 3.61 (s, 3H), 2.98 (t,** *J* **= 6.8 Hz, 2H), 2.93 (t,** *J* **= 6.8 Hz, 2H), 1.87 – 1.81 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.1, 161.2, 157.6 (d,** *J* **= 243.5 Hz), 153.4, 135.9, 132.2 (d,** *J* **= 11.2 Hz), 131.9, 128.7 (d,** *J* **= 2.2 Hz), 127.5, 127.0, 116.2 (d,** *J* **= 23.8 Hz), 114.1 (d,** *J* **= 22.4 Hz), 113.6 (d,** *J* **= 8.8 Hz), 37.3, 32.9, 28.3, 25.0, 23.0 ppm; IR (neat): v_{max} 2963, 2378, 2313, 1653, 1506, 1460, 1265, 1163, 1054, 872, 805, 694 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₀FN₂O₂ [M+H]⁺ 339.1503, found 339.1508.**

6-Chloro-1-methyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4d): white solid (70.9 mg, 81%), m.p. 113 – 114 °C. R_f = 0.45 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.97 – 7.95 (m, 2H), 7.79 (d, J = 2.4 Hz, 1H), 7.59 – 7.51 (m, 1H), 7.50 – 7.42 (m, 3H), 7.22 (d, J = 8.8 Hz, 1H), 3.67 (s, 3H), 3.06 (t, J = 7.2 Hz, 2H), 3.00 (t, J = 7.2 Hz, 2H), 1.95 – 1.89 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.1, 161.0, 153.5, 135.9, 132.2, 131.9, 130.7, 128.5, 128.0, 127.8, 127.5, 127.0, 113.7, 37.4, 32.8, 28.2, 24.9, 23.0 ppm; IR (neat): v_{max} 2933, 2314, 1656, 1595, 1457, 1418, 1223, 1101, 883, 807, 750, 692 cm⁻¹; HRMS (ESI) calcd for C₂₀H₁₉ClN₂O₂Na [M+Na]⁺ 377.1027, found 377.1025.**

6-Bromo-1-methyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4e): white solid (60.4 mg, 76%), m.p. 108 - 109 °C. R_f = 0.24 (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.96 - 7.95 (m, 1H), 7.95 - 7.93 (m, 2H), 7.58 (dd, J = 8.8, 2.4 Hz, 1H), 7.54 - 7.53 (m, 1H), 7.46 - 7.43 (m, 2H), 7.15 (d, J = 8.8 Hz, 1H), 3.66 (s, 3H), 3.05 (t, J = 6.8 Hz, 2H), 2.99 (t, J = 7.2 Hz, 2H), 1.92 - 1.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.1, 161.0, 153.5, 135.9, 132.5, 131.9, 131.2, 131.1, 131.0, 127.5, 127.0, 115.0, 114.0, 37.4, 32.8, 28.2, 24.9, 23.0 ppm; IR (neat): v_{max} 2935, 1655, 1593, 1456, 1415, 1221, 1101, 884, 806, 748, 692 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₀BrN₂O₂ [M+H]⁺ 399.0703, found 399.0708.**

1-Methyl-6-nitro-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1H)-one (4f): yellow solid (49.8 mg,

68%), m.p. 129 – 130 °C. R_f = 0.33 (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.66 (d, *J* = 2.4 Hz, 1H), 8.35 (dd, *J* = 9.2, 2.4 Hz, 1H), 7.97 – 7.95 (m, 2H), 7.57 – 7.53 (m, 1H), 7.47 – 7.43 (m, 2H), 7.39 (d, *J* = 9.2 Hz, 1H), 3.73 (s, 3H), 3.07 (t, *J* = 6.8 Hz, 2H), 3.02 (t, *J* = 7.2 Hz, 2H), 1.94 – 1.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 162.3, 153.4, 142.2, 136.7, 135.9, 132.0, 130.8, 127.5, 127.0, 124.3, 123.1, 113.2, 37.3, 32.8, 28.6, 24.6, 22.8 ppm; IR (neat): v_{max} 2932, 1670, 1607, 1520, 1457, 1414, 1341, 1299, 1220, 1080, 906, 826, 742, 693 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₀N₃O₄ [M+H]⁺ 366.1448, found 366.1452.

7-Fluoro-1-methyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4g): white solid (51.2 mg, 76%), m.p. 139 – 140 °C. R_f = 0.13 (petroleum ether/ethyl acetate = 6:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.97 – 7.91 (m, 2H), 7.77 (dd, J = 8.8, 6.0 Hz, 1H), 7.57 – 7.51 (m, 1H), 7.48 – 7.40 (m, 2H), 7.06 – 7.01 (m, 1H), 6.96 (dd, J = 10.0, 2.4 Hz, 1H), 3.64 (s, 3H), 3.05 (t, J = 6.8 Hz, 2H), 2.97 (t, J = 7.2 Hz, 2H), 1.93 – 1.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.1, 161.9 (d, J = 249.6 Hz), 158.4 (d, J = 3.3 Hz), 153.7, 135.9, 133.4 (d, J = 11.5 Hz), 131.9, 130.5 (d, J = 10.4 Hz), 128.4 (d, J = 2.3 Hz), 127.5, 127.0, 110.2 (d, J = 23.3 Hz), 99.5 (d, J = 27.7 Hz), 37.4, 32.7, 28.3, 25.1, 23.0 ppm; IR (neat): v_{max} 2945, 2314, 1613, 1455, 1408, 1358, 1311, 1257, 1209, 1085, 967, 870, 812, 753, 693 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₀FN₂O₂ [M+H]⁺ 339.1503, found 339.1508.**

1,6,7-Trimethyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4h): white solid (59.8 mg, 86%), m.p. 108 - 109 °C. R_f = 0.17 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.90 - 7.87 (m, 2H), 7.48 - 7.45 (m, 2H), 7.39 - 7.35 (m, 2H), 6.97 (s, 1H), 3.59 (s, 3H), 2.98 (t,** *J* **= 6.8 Hz, 2H), 2.91 (t,** *J* **= 7.2 Hz, 2H), 2.32 (s, 3H), 2.26 (s, 3H), 1.84 - 1.81 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.3, 158.3, 153.9, 138.3, 135.9, 131.8, 131.4, 130.04, 130.02, 128.7, 127.5, 127.1, 113.1, 37.4, 32.8, 27.9, 25.3, 23.1, 19.5, 18.2 ppm; IR (neat): v_{max} 2944, 2313, 1649, 1458, 1260, 1023, 801, 743, 694 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₅N₂O₂ [M+H]⁺ 349.1911, found 349.1916.**

6,7-Dichloro-1-methyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4i): white solid (55.7 mg, 72%), m.p. 148 – 149 °C. R_f = 0.32 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.97 – 7.95 (m, 2H), 7.88 (s, 1H), 7.58 – 7.54 (m, 1H), 7.48 – 7.44 (m, 2H), 7.38 (s, 1H), 3.65 (s, 3H), 3.06 (t,** *J* **= 6.8 Hz, 2H), 2.99 (t,** *J* **= 7.2 Hz, 2H), 1.90 – 1.88 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.1, 161.2, 153.3, 135.9, 132.6, 131.9, 131.4, 130.7, 129.5, 127.5, 127.0, 126.2, 114.0, 37.3, 32.8, 28.3, 24.8, 22.9 ppm; IR (neat): v_{max} 2963, 2314, 1741, 1660, 1515, 1462, 1416, 1260, 1052, 886,**

799, 754, 694, 635 cm⁻¹; HRMS (ESI) calcd for C₂₀H₁₉Cl₂N₂O₂ [M+H]⁺ 389.0818, found 389.0825.

1-Methyl-3-(5-oxo-5-phenylpentyl)benzo[g]quinoxalin-2(1*H***)-one (4j): yellow solid (47.3 mg, 64%), m.p. 126 – 127 °C. R_f= 0.35 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 8.21 (s, 1H), 7.91 – 7.86 (m, 3H), 7.81 (d,** *J* **= 8.0 Hz, 1H), 7.48 – 7.45 (m, 3H), 7.41 – 7.35 (m, 3H), 3.66 (s, 3H), 3.00 (t,** *J* **= 7.2 Hz, 2H), 2.96 (t,** *J* **= 7.2 Hz, 2H), 1.89 – 1.81 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.2, 160.1, 153.7, 135.9, 132.3, 131.9, 131.0, 130.7, 128.7, 127.6, 127.5, 127.3, 127.0, 126.6, 126.1, 124.2, 108.8, 37.4, 32.9, 28.0, 25.2, 23.1 ppm; IR (neat): v_{max} 2944, 2314, 1661, 1460, 1411, 1365, 1263, 1215, 1090, 867, 800, 747, 693 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₃N₂O₂ [M+H]⁺ 371.1754, found 371.1757.**

3-(5-Oxo-5-phenylpentyl)-1-propylquinoxalin-2(1*H***)-one (4k): colorless oil (64.2 mg, 92%), R_f = 0.12 (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.97 – 7.93 (m, 2H), 7.82 (dd, J = 8.0, 1.6 Hz, 1H), 7.57 – 7.48 (m, 2H), 7.44 (t, J = 7.6 Hz, 2H), 7.34 – 7.28 (m, 2H), 4.22 – 4.18 (m, 2H), 3.07 (t, J = 7.2 Hz, 2H), 3.01 (t, J = 7.2 Hz, 2H), 1.97 – 1.87 (m, 4H), 1.83 – 1.74 (m, 2H), 1.05 (t, J = 7.6 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.2, 159.7, 153.6, 136.0, 131.92, 131.85, 131.2, 128.9, 128.5, 127.5, 127.1, 122.3, 112.6, 42.7, 37.4, 32.8, 25.3, 23.1, 19.6, 10.4 ppm; IR (neat): v_{max} 2961, 2933, 1683, 1651, 1599, 1460, 1368, 1262, 1222, 1043, 753, 693 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₄N₂O₂Na [M+Na]⁺ 371.1730, found 371.1725.**

1-Benzyl-3-(5-oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4l): white solid (66.6 mg, 84%), m.p. 88 – 89 °C. R_f = 0.09 (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.89 – 7.85 (m, 2H), 7.73 (dd, J = 8.0, 1.6 Hz, 1H), 7.49 – 7.42 (m, 1H), 7.39 – 7.33 (m, 2H), 7.32 – 7.27 (m, 1H), 7.25 – 7.18 (m, 3H), 7.18 – 7.13 (m, 4H), 5.40 (s, 2H), 3.06 – 2.88 (m, 4H), 1.89 – 1.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) \delta 200.2, 160.8, 155.0, 137.0, 135.3, 133.0, 132.9, 132.4, 129.8, 129.6, 128.9, 128.6, 128.1, 127.7, 126.9, 123.6, 114.4, 45.9, 38.5, 34.0, 26.3, 24.1 ppm; IR (neat): v_{max} 2935, 1653, 1600, 1453, 1364, 1305, 1220, 1177, 803, 751, 695 cm⁻¹; HRMS (ESI) calcd for C₂₆H₂₄N₂O₂Na [M+Na]⁺ 419.1730, found 419.1729.**

Ethyl 2-(2-oxo-3-(5-oxo-5-phenylpentyl)quinoxalin-1(2*H***)-yl)acetate (4m): white solid (73.3 mg, 93%), m.p. 105 – 106 °C. R_f = 0.18 (petroleum ether/ethyl acetate = 4:1). ¹H NMR (400 MHz, CDCl₃) \delta 7.98 – 7.93 (m, 2H), 7.83 (dd, J = 8.0, 1.6 Hz, 1H), 7.59 – 7.50 (m, 1H), 7.53 – 7.40 (m, 3H), 7.33 (td, J = 8.0, 1.2 Hz, 1H), 7.05 (dd, J = 8.4, 1.2 Hz, 1H), 5.02 (s, 2H), 4.24 (q, J = 7.2 Hz, 2H), 3.07 (t, J = 7.0 Hz, 2H), 3.02 (t, J = 7.2 Hz, 2H), 1.95 – 1.90 (m, 4H), 1.27 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) \delta 199.2, 166.1, 159.4, 153.4, 135.9, 131.9, 131.7, 131.2, 129.0, 128.7, 127.5, 127.1, 122.8, 112.0, 61.0, 42.5, 37.4, 32.8, 25.1, 23.1, 13.1 ppm; IR (neat): v_{max} 2928, 2315, 1746, 1657, 1601, 1463, 1418, 1372, 1260, 1208, 1022, 859, 800, 755, 693 cm⁻¹; HRMS (ESI) calcd for C₂₃H₂₄N₂O₄Na [M+Na]⁺ 415.1628, found 415.1625.**

3-(5-Oxo-5-phenylpentyl)quinoxalin-2(1*H***)-one (4n):** white solid (49.3 mg, 80%), m.p. 169 – 170 °C. $R_f = 0.25$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 12.43 (s, 1H), 7.91 – 7.88 (m, 2H), 7.76 – 7.71 (m, 1H), 7.51 – 7.45 (m, 1H), 7.43 – 7.35 (m, 3H), 7.31 – 7.23 (m, 2H), 3.02 (t, *J* = 7.2 Hz, 2H), 2.98 (t, *J* = 7.2 Hz, 2H), 1.91 – 1.84 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 160.1, 155.6, 135.9, 131.9, 131.8, 129.9, 128.7, 127.7, 127.5, 127.0, 123.1, 114.7, 37.4, 32.1, 25.3, 23.1 ppm; IR (neat): v_{max} 2961, 1660, 1562, 1259, 1020, 901, 798, 753, 689 cm⁻¹; HRMS (ESI) calcd for C₁₉H₁₈N₂O₂Na [M+Na]⁺ 329.1260, found 329.1256.

1-Phenyl-5-(2-phenyl-2H-indazol-3-yl)pentan-1-one (40): yellow solid (10.8 mg, 15%), m.p. 98 – 99 °C. $R_f = 0.24$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 7.88 – 7.84 (m, 2H), 7.70 (dd, J = 14.0, 8.4 Hz, 2H), 7.59 – 7.48 (m, 6H), 7.47 – 7.41 (m, 2H), 7.35 – 7.28 (m, 1H), 7.11 – 7.07 (m, 1H), 3.11 (t, J = 7.2 Hz, 2H), 2.88 (t, J = 6.4 Hz, 2H), 1.76 – 1.73 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 147.6, 139.0, 135.8, 135.2, 132.0, 128.2, 127.9, 127.5, 126.9, 125.6, 125.2, 120.03, 120.01, 119.1, 116.6, 36.8, 28.0, 24.2, 22.7 ppm; IR (neat): v_{max} 2964, 2378, 2313, 1742, 1686, 1511, 1459, 1377, 1259, 1053, 892, 801, 749, 693 cm⁻¹; HRMS (ESI) calcd for C₂₄H₂₃N₂O [M+H]⁺ 355.1805, found 355.1810.

2-(5-Oxo-5-phenylpentyl)quinoline 1-oxide (4p): white solid (35.0 mg, 57%), m.p. 85 – 86 °C. $R_f = 0.15$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.70 (d, *J* = 8.8 Hz, 1H), 7.89 – 7.87 (m, 2H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.69 – 7.64 (m, 1H), 7.60 (d, *J* = 8.4 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.49 – 7.44 (m, 1H), 7.40 – 7.33 (m, 2H), 7.27 (d, *J* = 8.4 Hz, 1H), 3.12 (t, *J* = 6.8 Hz, 2H), 1.88 – 1.85 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 147.8, 140.6, 135.9, 132.0, 129.3, 128.1, 127.5, 126.99, 126.97, 126.8, 124.3, 121.0, 118.6, 37.1, 30.4, 24.6, 23.0 ppm; IR (neat): $v_{max} 2934, 2314, 1681, 1564, 1514, 1451, 1353, 1238, 1086, 1019, 872, 809, 749, 692 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₀NO₂ [M+H]⁺ 306.1489, found 306.1493.$

3-Methyl-2-(5-oxo-5-phenylpentyl)quinoline 1-oxide (4q): white solid (26.3 mg, 41%), m.p. 103 – 104 °C. $R_f = 0.24$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 8.63 (d, J = 8.8 Hz, 1H), 7.90 – 7.88 (m, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.64 – 7.58 (m, 1H), 7.52 – 7.44 (m, 3H), 7.41 – 7.36 (m, 2H), 3.17 (t, J = 7.6 Hz, 2H), 3.02 (t, J = 7.2 Hz, 2H), 2.44 (s, 3H), 1.91 – 1.80 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.2, 148.6, 139.1, 135.9, 131.9, 129.8, 128.5, 127.5, 127.3, 127.0, 126.9, 126.2, 124.9, 118.6, 37.2, 27.3, 23.8, 23.6, 18.9 ppm; IR (neat): v_{max} 2962, 2378, 2314, 1681, 1502, 1451, 1412, 1335, 1261, 1225, 1089, 1023, 800, 750, 693 cm⁻¹; HRMS (ESI) calcd for C₂₁H₂₂NO₂ [M+H]⁺ 320.1645, found 320.1652.

6-Methyl-2-(5-oxo-5-phenylpentyl)quinoline 1-oxide (4r): yellow solid (33.0 mg, 52%), m.p. 110 – 111 °C. $R_f = 0.18$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.57 (d, J = 8.4 Hz, 1H), 7.89 – 7.87 (m, 2H), 7.52 – 7.44 (m, 4H), 7.38 – 7.34 (m, 2H), 7.23 – 7.21 (m, 1H), 3.10 (t, J = 6.8 Hz, 2H), 3.00 (t, J = 6.8 Hz, 2H), 2.44 (s, 3H), 1.85 – 1.82 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.1, 147.0, 139.1, 136.9, 135.9, 132.0, 131.5, 128.2, 127.5, 127.0, 125.9, 124.0, 121.0, 118.4, 37.1, 30.3, 24.7, 23.0, 20.3 ppm; IR (neat): v_{max} 2933, 2314, 1681, 1512, 1454, 1344, 1252, 1202, 1088, 817, 738, 691, 650 cm⁻¹; HRMS (ESI) calcd for $C_{21}H_{22}NO_2$ [M+H]⁺ 320.1645, found 320.1650.

6-Bromo-2-(5-oxo-5-phenylpentyl)quinoline 1-oxide (4s): white solid (41.9 mg, 55%), m.p. 117 – 118 °C. $R_f = 0.21$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.56 (d, J = 9.2 Hz, 1H), 7.91 – 7.87 (m, 3H), 7.72 (d, J = 8.4 Hz, 1H), 7.51 – 7.44 (m, 2H), 7.41 – 7.34 (m, 2H), 7.30 (d, J = 8.4 Hz, 1H), 3.09 (t, J = 6.8 Hz, 2H), 3.01 (t, J = 6.4 Hz, 2H), 1.85 – 1.83 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 148.3, 139.4, 135.8, 132.6, 132.0, 129.2, 128.9, 127.6, 127.0, 123.2, 122.2,

121.1, 120.7, 37.0, 30.4, 24.5, 23.0 ppm; IR (neat): v_{max} 2931, 2313, 1681, 1597, 1555, 1506, 1450, 1344, 1257, 1185, 1089, 1022, 883, 803, 749, 691 cm⁻¹; HRMS (ESI) calcd for $C_{20}H_{19}BrNO_2$ [M+H]⁺ 384.0594, found 384.0593.

2-(5-Oxo-5-phenylpentyl)quinoxaline 1-oxide (4t): white solid (45.5 mg, 75%), m.p. 125 – 126 °C. $R_f = 0.25$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (s, 1H), 8.53 – 8.51 (m, 1H), 8.04 – 8.01 (m, 1H), 7.91 – 7.84 (m, 2H), 7.74 – 7.63 (m, 2H), 7.50 – 7.44 (m, 1H), 7.42 – 7.32 (m, 2H), 3.06 (t, *J* = 7.2 Hz, 2H), 3.00 (t, *J* = 6.8 Hz, 2H), 1.90 – 1.79 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 145.8, 143.5, 141.6, 136.0, 135.8, 132.0, 129.6, 129.2, 129.0, 127.6, 127.0, 117.7, 37.0, 27.8, 24.2, 23.0 ppm; IR (neat): v_{max} 2943, 2377, 2313, 1743, 1682, 1495, 1453, 1356, 1304, 1261, 1055, 870, 760, 689 cm⁻¹; HRMS (ESI) calcd for C₁₉H₁₉N₂O₂ [M+H]⁺ 307.1441, found 307.1445.

4-Cyano-2-(5-oxo-5-phenylpentyl)pyridine 1-oxide (4u): yellow solid (4.5 mg, 10%), m.p. 67 – 68 °C. $R_f = 0.11$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, J = 6.8 Hz, 1H), 7.94 – 7.86 (m, 2H), 7.53 – 7.47 (m, 2H), 7.43 – 7.38 (m, 2H), 7.32 (dd, J = 6.8, 2.4 Hz, 1H), 3.00 (t, J = 6.8 Hz, 2H), 2.88 (t, J = 7.2 Hz, 2H), 1.81 – 1.75 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.6, 152.7, 139.3, 135.8, 132.1, 127.6, 127.01, 126.98, 124.9, 115.2, 106.4, 36.8, 29.2, 24.1, 22.6 ppm; IR (neat): v_{max} 2966, 2902, 2378, 2314, 1837, 1741, 1689, 1515, 1463, 1420, 1260, 1051, 880, 800, 695, 633 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₇N₂O₂ [M+H]⁺ 281.1285, found 281.1287.

2-Methyl-3-(5-oxo-5-phenylpentyl)naphthalene-1,4-dione (6a): yellow solid (54.3 mg, 82%), m.p. 81 – 82 °C. R_f = 0.35 (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.99 – 7.95 (m, 2H), 7.88 (d, *J* = 7.6 Hz, 2H), 7.60 (dd, *J* = 5.6, 3.6 Hz, 2H), 7.50 – 7.44 (m, 1H), 7.41 – 7.36 (m, 2H), 2.95 (t, *J* = 7.2 Hz, 2H), 2.62 (t, *J* = 8.0 Hz, 2H), 2.12 (s, 3H), 1.82 – 1.75 (m, 2H), 1.55 – 1.47 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 184.2, 183.6, 145.9, 142.4, 135.9, 132.3, 132.0, 131.0, 127.5, 127.0, 125.21, 125.16, 37.1, 27.3, 25.9, 23.4, 11.7 ppm; IR (neat): v_{max} 2936, 2378, 2314, 1685, 1658, 1516, 1455, 1376, 1293, 1050, 895, 794, 716 cm⁻¹; HRMS (ESI) calcd for C₂₂H₂₀O₃Na [M+Na]⁺ 355.1305, found 355.1308.

2-Chloro-3-(5-oxo-5-phenylpentyl)naphthalene-1,4-dione (6b): yellow solid (10.1 mg, 15%), m.p. 82 – 83 °C. $R_f = 0.15$ (petroleum ether/ethyl acetate = 20:1). ¹H NMR (400 MHz, CDCl₃) δ 8.10 – 8.04 (m, 2H), 7.90 – 7.88 (m, 2H), 7.69 – 7.67 (m, 2H), 7.51 – 7.47 (m, 1H), 7.41 – 7.37 (m, 2H), 2.98 (t, *J* = 7.2 Hz, 2H), 2.80 (t, *J* = 7.6 Hz, 2H), 1.86 – 1.78 (m, 2H), 1.65 – 1.57 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 181.4, 176.7, 147.1, 142.2, 135.9, 133.2, 132.9, 132.0, 130.7, 130.3, 127.6, 127.0, 126.1, 126.0, 37.1, 27.3, 26.4, 23.2 ppm; IR (neat): v_{max} 2962, 2377, 2315, 1840, 1741, 1677, 1596, 1515, 1455, 1418, 1329, 1280, 1260, 1039, 799, 693 cm⁻¹; HRMS (ESI) calcd for C₂₁H₁₇ClO₃Na [M+Na]⁺ 375.0758, found 375.0761.

2,3-Dimethoxy-5-methyl-6-(5-oxo-5-phenylpentyl)cyclohexa-2,5-diene-1,4-dione (6c): orange solid (36.2 mg, 53%), m.p. 48 – 49 °C. $R_f = 0.25$ (petroleum ether/ethyl acetate = 5:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 (d, J = 7.2 Hz, 2H), 7.49 (t, J = 7.2 Hz, 1H), 7.39 (t, J = 7.6 Hz, 2H), 3.92 (s, 6H), 2.94 (t, J = 7.2 Hz, 2H), 2.45 (t, J = 7.6 Hz, 2H), 1.96 (s, 3H), 1.77 – 1.69 (m, 2H), 1.47 – 1.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 183.6, 183.1, 143.3, 143.2, 141.4, 138.0, 135.9, 132.0, 127.6, 127.0, 60.2, 37.1, 27.3, 25.2, 23.2, 11.0 ppm; IR (neat): v_{max} 2942, 2378, 2314, 1743, 1650, 1516, 1453, 1373, 1264, 1204, 1154, 1059, 800, 746, 693 cm⁻¹; HRMS (ESI) calcd for C₂₀H₂₂O₅Na [M+Na]⁺ 365.1359, found 365.1364.

2-(5-Oxo-5-phenylpentyl)naphthalene-1,4-dione (6d): yellow solid (28.6 mg, 45%), m.p. 95 – 96 °C. $R_f = 0.32$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 8.04 – 7.97 (m, 2H), 7.92 – 7.87 (m, 2H), 7.70 – 7.64 (m, 2H), 7.51 – 7.47 (m, 1H), 7.42 – 7.36 (m, 2H), 6.75 (s, 1H), 2.97 (t, J = 7.2 Hz, 2H), 2.57 (t, J = 7.2 Hz, 2H), 1.83 – 1.76 (m, 2H), 1.66 – 1.60 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.8, 184.2, 184.1, 150.3, 135.9, 133.9, 132.7, 132.6, 132.0, 131.2, 131.1, 127.6, 127.0, 125.6, 125.0, 37.1, 28.5, 26.6, 22.8 ppm; IR (neat): v_{max} 2967, 2899, 2379, 2313, 1672, 1515, 1460, 1416, 1305, 1261, 1053, 897, 799, 747, 689 cm⁻¹; HRMS (ESI) calcd for C₂₁H₁₉O₃ [M+H]⁺ 319.1329, found 319.1333.

2,3-Bis(5-oxo-5-phenylpentyl)naphthalene-1,4-dione (6d'): yellow solid (45.1 mg, 47%), m.p. 98 – 99 °C. $R_f = 0.22$ (petroleum ether/ethyl acetate = 8:1). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (dd, J = 6.0, 3.2 Hz, 1H), 7.97 – 7.95 (m, 1H), 7.68 (dd, J = 5.6, 3.2 Hz, 1H), 7.56 – 7.52 (m, 1H), 7.46 – 7.42 (m, 2H), 3.04 (t, J = 7.2 Hz, 2H), 2.68 (t, J = 8.0 Hz, 2H), 1.91 – 1.84 (m, 2H), 1.64 – 1.56 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 198.9, 184.0, 145.9, 135.9, 132.3, 131.9, 131.1, 127.6, 127.0, 125.2, 37.1,

28.2, 25.9, 23.5 ppm; IR (neat): v_{max} 2947, 2378, 2313, 1674, 1595, 1516, 1454, 1290, 1054, 798, 724 cm⁻¹; HRMS (ESI) calcd for $C_{32}H_{31}O_4$ [M+H]⁺ 479.2217, found 479.2221.

3,5-Dimethyl-2-(5-oxo-5-phenylpentyl)cyclohexa-2,5-diene-1,4-dione (6e): yellow oil (28.0 mg, 47%), $R_f = 0.26$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.50 – 7.47 (m, 1H), 7.40 – 7.37 (m, 2H), 6.47 – 6.46 (m, 1H), 2.93 (t, J = 7.6 Hz, 2H), 2.44 (t, J = 7.6 Hz, 2H), 1.97 (s, 3H), 1.96 (d, J = 1.6 Hz, 3H), 1.77 – 1.69 (m, 2H), 1.47 – 1.39 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 187.2, 186.3, 144.3, 143.2, 139.9, 135.9, 132.1, 132.0, 127.6, 127.0, 37.1, 27.3, 25.1, 23.3, 14.9, 11.2 ppm; IR (neat): v_{max} 2943, 2378, 2313, 1684, 1647, 1515, 1455, 1373, 1261, 1222, 1048, 888, 799, 750, 693 cm⁻¹; HRMS (ESI) calcd for C₁₉H₂₀O₃Na [M+Na]⁺ 319.1305, found 319.1308.

2,6-Dimethyl-3,5-bis(5-oxo-5-phenylpentyl)cyclohexa-2,5-diene-1,4-dione (6e'): yellow solid (10.8 mg, 12%), m.p. 71 – 72 °C. $R_f = 0.15$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 4H), 7.50 – 7.47 (m, 2H), 7.40 – 7.37 (m, 4H), 2.93 (t, *J* = 7.2 Hz, 4H), 2.46 (t, *J* = 8.0 Hz, 4H), 1.96 (s, 6H), 1.76 – 1.69 (m, 4H), 1.46 – 1.37 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 199.0, 187.0, 185.9, 142.9, 139.4, 135.9, 132.0, 127.6, 127.0, 37.1, 27.3, 25.4, 23.3, 11.2 ppm; IR (neat): ν_{max} 2969, 2314, 1916, 1743, 1686, 1645, 1515, 1457, 1419, 1260, 1051, 896, 798, 751, 693, 635 cm⁻¹; HRMS (ESI) calcd for C₃₀H₃₂O₄Na [M+Na]⁺ 479.2193, found 479.2199.

3,5-Dichloro-2-(5-oxo-5-phenylpentyl)cyclohexa-2,5-diene-1,4-dione (6f): brown oil (28.6 mg, 42%), $R_f = 0.28$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 2H), 7.51 – 7.47 (m, 1H), 7.41 – 7.37 (m, 2H), 6.95 (s, 1H), 2.94 (t, *J* = 7.2 Hz, 2H), 2.64 (t, *J* = 7.6 Hz, 2H), 1.80 – 1.72 (m, 2H), 1.56 – 1.48 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 181.4, 171.8, 145.2, 142.2, 139.3, 135.8, 132.7, 132.1, 127.6, 127.0, 36.9, 26.8, 26.3, 23.0 ppm; IR (neat): v_{max} 2963, 2931, 2378, 2313, 1743, 1684, 1515, 1457, 1418, 1260, 1044, 886, 798, 694 cm⁻¹; HRMS (ESI) calcd for C₁₇H₁₅Cl₂O₃ [M+H]⁺ 337.0393, found 337.0389.

2,6-Dichloro-3,5-bis(5-oxo-5-phenylpentyl)cyclohexa-2,5-diene-1,4-dione (6f'): yellow oil (13.9 mg, 14%), $R_f = 0.14$ (petroleum ether/ethyl acetate = 10:1). ¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.87 (m, 4H), 7.51 – 7.47 (m, 2H), 7.41 – 7.37 (m, 4H), 2.95 (t, J = 7.2 Hz, 4H), 2.65 (t, J = 7.6 Hz, 4H), 1.79 – 1.72 (m, 4H), 1.56 – 1.49 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 198.7, 181.2, 171.7, 144.9, 138.9, 135.9, 132.0, 127.6, 127.0, 36.9, 27.0, 26.3, 23.0 ppm; IR (neat): v_{max} 2942, 2868, 1680, 1592, 1448, 1257, 1016, 800, 742, 693 cm⁻¹; HRMS (ESI) calcd for C₂₈H₂₆Cl₂O₄Na [M+Na]⁺ 519.1100, found 519.1107.

5-(4-Methyl-3-oxo-3,4-dihydroquinoxalin-2-yl)pentanoic acid (7a)⁵: white solid (30 mg, 64%), m.p. 115 – 116 °C. $R_f = 0.17$ (petroleum ether/ethyl acetate = 2:1). ¹H NMR (400 MHz, CDCl₃) δ 7.78 – 7.75 (m, 1H), 7.48 – 7.43 (m, 1H), 7.28 – 7.22 (m, 2H), 3.63 (s, 3H), 2.90 (t, *J* = 7.2 Hz, 2H), 2.37 (t, *J* = 6.8 Hz, 2H), 1.84 – 1.69 (m, 4H). ¹³C NMR (100 MHz, CDCl₃) δ 178.0, 159.5, 153.9, 132.0, 131.6, 128.7, 128.6, 122.6, 112.6, 32.8, 32.6, 28.1, 25.0, 23.5 ppm.

1-Phenyl-5-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)pentan-1-one (8a): (known compound)² colorless oil (30.4 mg, 47 %). $R_f = 0.30$ (petroleum ether/ethyl acetate = 30:1). ¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.88 (m, 2H), 7.50 – 7.46 (m, 1H), 7.41 – 7.37 (m, 2H), 3.71 (t, *J* = 6.4 Hz, 2H), 2.94 (t, *J* = 7.4 Hz, 2H), 1.81 – 1.73 (m, 2H), 1.59 – 1.51 (m, 2H), 1.39 – 1.33 (m, 4H), 1.27 – 1.17 (m, 2H), 1.08 (s, 6H), 1.01 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 199.3, 136.0, 131.9, 127.5, 127.0, 58.6, 38.6, 37.6, 32.1, 27.4, 20.5, 19.1, 16.1 ppm.

References

(1) (a) D. Chen, Z.-J. Wang and W. Bao, Copper-Catalyzed Cascade Syntheses of 2H-benzo[b][1,4]thiazin-3(4H)ones and Quinoxalin-2(1H)-ones through Capturing S and N Atom Respectively from AcSH and TsNH₂, *J. Org. Chem.*, 2010, **75**, 5768-5771. (b) H.-M. Mbuvi, E.-R. Klobukowski, G.-M. Roberts and L.-K. Woo, O-H Insertion and Tandem N-H Insertion/Cyclization Reactions using an Iron Porphyrin as Catalyst with Diazo Compounds as Carbene Sources, *J. Porphyr. Phthalocyanines*, 2010, **14**, 284-292. (c) A. Carrer, J. D. Brion, S. Messaoudi and M. Alami, Palladium(II)-Catalyzed Oxidative Arylation of Quinoxalin-2(1H)-ones with Arylboronic Acids, *Org. Lett.*, 2013, **15**, 5606-5609. (d) C. Sachin and K. Sushil, Synthesis and Biological Activity of Peptide Derivatives of 1,2-Dihydro-3Methyl-2-Oxoquinoxaline-6-Carboxylic Acid, *Der. Pharma. Chemica.*, 2015, **7**, 210.

(2) (a) K. Zmitek, M. Zupan, S. Stavber, and J. Iskra, The Effect of Iodine on the Peroxidation of Carbonyl Compounds, J. Org. Chem., 2007, 72, 6534-6540. (b) J.-C. Yang, L. Chen, F. Yang, P. Li and L.-N. Guo, Copper-Catalyzed Borylation of Cycloalkylsilyl Peroxides via Radical C-C Bond Cleavage, Org. Chem. Front., 2019, 6, 2792-2795. (c) P. Gao, H. Wu, J.-C. Yang and L.-N. Guo, Iron-Catalyzed Decarboxylative Olefination of Unstrained Carbon-Carbon Bonds Relying on Alkoxyl Radical Induced Cascade, Org. Lett., 2019, 21, 7104-7108. (d) L. Chen, J.-C. Yang, P. Xu, J.-J. Zhang, X.-H. Duan and L.-N. Guo, Nickel-catalyzed Suzuki Coupling of Cycloalkyl Silyl Peroxides with Boronic Acids, J. Org. Chem., 2020, 85, 7515-7525. (e) M.-T. Suo, S. Yang, J.-C. Yang, Z.-Y. Liu, J.-J. Zhang and L.-N. Guo, Iron Catalyzed Ketoalkylation and Ketoalkylation/Etherification of Styrenes Initiated by Selective C-C Bond Cleavage, Org. Chem. Front., 2020, 7, 2414-2418. (f) S. Yang, P. Gao, M.-T. Suo, S.-X. Gao, X.-H. Duan and L.-N. Guo, Copper-Catalyzed Alkylarylation of Vinylarenes with Cycloalkylsilyl Peroxides and Boronic Acids, Chem. Commun., 2020, 56, 10714-10717. (g) S. Sakurai, T. Kano and K. Maruoka, Cu-Catalyzed O-Alkylation of Phenol Derivatives with Alkylsilyl Peroxides, Chem. Commun., 2021, 57, 81-84. (h) J. Lv, W. Xu, H. Lu, T. Kato, Y. Liu and K. Maruoka, The Copper-Catalyzed Selective Monoalkylation of Active Methylene Compounds with Alkylsilyl Peroxides, Org. Biomol. Chem., 2021, 19, 2658-2662. (i) W. Xu, Y. Liu, T. Kato and K. Maruoka, The Formation of C-C or C-N Bonds via the Copper-Catalyzed Coupling of Alkylsilyl Peroxides and Organosilicon Compounds: A Route to Perfluoroalkylation, Org. Lett., 2021, 23, 1809-1813.

(3) M. Hai, L.-N. Guo, L. Wang and X.-H. Duan, Visible Light Promoted Ketoalkylation of Quinoxaline-2(1*H*)ones via Oxidative Ring-Opening of Cycloalkanols, *Acta Chim. Sinica*, 2019, **77**, 895-900.

(4) K. Niu, L. Song, Y. Hao, Y. Liu and Q. Wang, Electrochemical Decarboxylative C3 Alkylation of Quinoxalin-2(1H)-ones with N-Hydroxyphthalimide Ester, *Chem. Commun.*, 2020, **56**, 11673-11676.

(5) N. A. Lack, P. Axerio-Cilies, P. Tavassoli, F. Q. Han, K. H. Chan, C. Feau, E. LeBlanc, E. T. Guns, R. K. Guy, P. S. Rennie and A. Cherkasov, Targeting the Binding Function 3 (BF₃) Site of the Human Androgen Receptor through Virtual Screening, *J. Med. Chem.*, 2011, **54**, 8563-8573.

¹H NMR and ¹³C NMR Spectra of the Products 3, 4 and 6 - 8

f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 3g

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $_{f1\ (ppm)}$

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 30

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4a

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4b

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4d

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4h

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4i

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4j

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4n

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 40

S71

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4q

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4r

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 4t

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6a

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6b

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 $\,$ f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6d'

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6f

¹H NMR (400 MHz, CDCl₃) and ¹³C NMR (100 MHz, CDCl₃) spectra of product 6f'

f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)