Supporting Information

Cu-Catalyzed Highly Selective Silylation and Borylation of Alkenylsulfonium Salts

Rong Xie, Jie Zhu and Yinhua Huang*

[†]College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China *Email: yhhuang@hznu.edu.cn*

Contents of Supporting Information:

1.	General InformationS	2
2.	Experimental DetailsS	2
	2.1 Preparation of SubstratesS	2
	2.2 Optimization of Reaction ConditionsS	5
	2.3 General Procedure for the Reaction of Alkenyl Thianthrenium Salts wit Me ₂ PhSi-Bpin (For Table 2)Se	h 6
	2.4 General Procedure for the Reaction of Alkenyl Thianthrenium Salts with B ₂ (pin) ₂ (For Table 3)Set	h 6
	2.5 Control Experiments	7
	2.6 Gram Scale Experiments	С
3.	Characterization Data of the Products	0
4.	References	8
5.	NMR Spectra	1

1 General Information

All air-sensitive manipulations were carried out with standard Schlenk techniques under nitrogen or argon. Solvents were distilled prior to use when necessary. NMR spectra were recorded on Bruker AMX 500 spectrophotometer (500 MHz for ¹H, 126 MHz for ¹³C and 471 Hz for ¹⁹F). Chemical shifts are reported in δ (ppm) referenced to an internal SiMe₄ standard (δ = 0 ppm) for ¹H NMR, chloroform-d (δ = 77.0 ppm) for ¹³C NMR. The following abbreviations were used; s: singlet, d: doublet, t: triplet, q: quartet, m: multiplet, br: broad. HRMS (ESI-TOF) were recorded on a time-of-fligh (TOF) LC/MS instrument. Flash column chromatography was performed with Silica gel 60 (Merck) or Al₂O₃ (activated 200) (Merck).

All chemicals and solvents were purchased from commercial company and used as received. Solvents were degassed before use if necessary.

2 Experimental Details

2.1 Preparation of Substrates

Me₂PhSi-Bpin (**2**) (CAS: 185990-03-8) and B₂pin₂ (**4**) (CAS: 73183-34-3) were purchased from commercial company and used as received.

The known alkenyl thianthrenium salts (**1a**, **1c-1e**, **1k-1n**, **1o**, **1v**) were prepared according to the reported procedures.^{1a} The new alkenyl thianthrenium salts (**1b**, **1f-1j**, **1w**) were prepared by the same method. The new alkenyl thianthrenium salts (**1p-1u**) were prepared by the revised procedure.^{1b}

1k (CAS: 2411696-83-6)

1I (CAS : 2411696-69-8)

1p

Z-10 (CAS : 2411696-18-7)

1q

1u

1n (CAS : 2411696-75-6) **E-1o** (CAS : 2411696-20-1)

1w

Br

CI

1v(CAS : 2411696-64-3)

(a) General procedure for the synthesis of alkenyl thianthrenium salts (1a-

1o, 1v-1w)^{1a}

General procedure A (GPA): Under ambient atmosphere, a 20 mL glassvial equipped with a magnetic stir bar was charged with alkene compound (3.00 mmol, 1.00 equiv.), thianthrene S-oxide (718 mg, 3.09 mmol, 1.03 equiv.), and MeCN (12 mL, c = 0.25 M). After cooling to 0 °C, trifluoroacetic anhydride (1.26 mL, 1.89 g, 9.00 mmol, 3.00 equiv.) was added dropwise, followed by dropwise addition of HOTf (624 µL, 1.06 g, 7.20 mmol, 2.40 equiv.). After stirring the lilac mixture at 0 °C for 60 min followed by stirring at 25 °C for 30 min, the resulting light pink mixture was concentrated under reduced pressure and subsequently diluted with CH₂Cl₂ (10 mL). The CH₂Cl₂ solution was poured onto a saturated aqueous NaHCO₃ solution (ca. 20 mL). The combined mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was collected, and the aqueous layer was further extracted with CH_2CI_2 (2 × 10 mL). The combined CH₂Cl₂ solution was washed with aqueous NaBF₄ solution (2 × 20 mL, 5% w/w). The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with CH₂Cl₂/MeOH (1:0 gradient to 20:1 (v/v)). The product-containing fractions were collected and concentrated under reduced pressure. The residue was further dried in vacuo to afford the corresponding alkenyl thianthrenium salt.

(b) General procedure for the synthesis of alkenyl thianthrenium salts (1p-1u).^{1b}

General procedure B (GPB): Under ambient atmosphere, a 20 mL glassvial equipped with a magnetic stir bar was charged with styrene (3.00 mmol, 1.00 equiv.), thianthrene S-oxide (767 mg, 3.30 mmol, 1.1 equiv.), and CH₂Cl₂ (12 mL, c = 0.25 M). After cooling to -40 °C, triflic anhydride (0.440 mL, 846 mg, 3.00 mmol, 1.00 equiv.) was added dropwise. After stirring the lilac mixture at -40 °C for 30 min followed by stirring at 0 °C for 30 min. And the resulting dark blue mixture was stirred at 25 °C for 2 h. The solution was poured onto a saturated aqueous NaHCO₃ solution (ca. 20 mL). The combined mixture was poured into a separatory funnel, and the layers were separated. The CH₂Cl₂ layer was collected, and the aqueous layer was further extracted with CH₂Cl₂ (2 × 10 mL). The combined CH₂Cl₂ solution was washed with aqueous NaBF₄ solution (2 × 20 mL, 5% w/w). The CH₂Cl₂ layer was dried over Na₂SO₄, filtered, and the solvent was removed under reduced pressure. The residue was purified by chromatography on silica gel eluting with CH_2Cl_2 / MeOH (1:0 gradient to 20:1 (v/v)). The product-containing fractions were collected and concentrated under reduced pressure. The residue was further dried in vacuo to afford the corresponding product.

2.1 Optimization of Conditions

Table S1. Optimization of Conditions^a

BF4 S S S S	catalyst + PhMe₂SiBpin base (1. solvent T ℃, 1-2	(10 mol% M) <u>1 equiv)</u> 2 h
1a Ŭ	2	3a

entry	catalyst ^b	base	solvent	yield (%) ^c
				3a
1 ^{<i>d</i>}	none	NaO ^{<i>t</i>} Bu	dioxane	<3
2	Pd(OAc) ₂	NaO ^t Bu	dioxane	30
3	Pd(PPh ₃) ₄	NaO ^t Bu	dioxane	37
4 ^d	Pd₂(dba)₃	NaO ^t Bu	dioxane	<3
5	Cul	NaO ^t Bu	dioxane	20
6	Cu(OTf) ₂	NaO ^{<i>t</i>} Bu	dioxane	30
7	CuCl	NaO ^{<i>t</i>} Bu	dioxane	50
8	CuCl	LiO ^{<i>t</i>} Bu	dioxane	89
9	CuCl	KO [#] Bu	dioxane	10
10	CuCl	K ₂ CO ₃	dioxane	30
11 ^e	CuCl	LiO ^{<i>t</i>} Bu	dioxane	85
12 ^{<i>f</i>}	CuCl	LiO ^{<i>t</i>} Bu	dioxane	98
13	CuCl	LiO ^{<i>t</i>} Bu	MeOH	30
14	CuCl	LiO ^{<i>t</i>} Bu	THF	85
15 ^f	CuCl	LiO ^t Bu	DCM	99(95)

^a Reaction conditions: **1a** (0.10 mmol), **2** (0.20 mmol), base (1.1 equiv), solvent (1 mL), at 25 °C for 2 h. ^b Catalyst (10 mol% of M) was loaded if applicable. ^c The yields were obtained by ¹H NMR analysis of the crude reaction mixture with the aid of Cl₂CHCHCl₂ as an internal standard. Isolated yields in parentheses. ^d The starting material **1a** decomposed seriously. ^e The reaction was open to air. ^f The reaction was stirred at 50 °C for 1 h. THF = tetrahydrofuran; DCM = dichloromethane.

A typical procedure for entry 15:

CuCl (1.0 mg, 0.010 mmol, 10 mol%), Me₂PhSi-Bpin (**2**) (52.4 mg, 0.200 mmol), alkenyl thianthrenium salt **1a** (41.4 mg, 0.100 mmol), and LiO^{*t*}Bu (8.8 mg, 0.11 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred at 50 °C in a pre-heated oil bath for 1 h.

The reaction mixture was passed through a short column of silica-gel with DCM as eluent. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (petroleum ether) to give **3a** (23.3 mg, 95% yield) as a colorless oil.

2.2 General Procedure for the Reaction of Alkenyl Thianthrenium Salts with Me₂PhSi-Bpin (For Table 2)

General Procedure C (GPC): CuCl (1.0 mg, 0.01 mmol, 10 mol%), Me₂PhSi-Bpin (**2**) (52.4 mg, 0.200 mmol), alkenyl thianthrenium salt **1** (0.100 mmol), and LiO⁴Bu (8.8 mg, 0.11 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred at 50 °C in a pre-heated oil bath for 1 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (petroleum ether) to give the corresponding product **3**.

2.3 General Procedure for the Reaction of Alkenyl Thianthrenium Salts with B₂(pin)₂ (For Table 3)

General Procedure D (GPD): CuCl (1.0 mg, 0.010 mmol, 10 mol%), B₂(pin)₂ (**4**) (50.8 mg, 0.200 mmol), alkenyl thianthrenium salt **1** (0.100 mmol), and LiO*t*-Bu (8.8 mg, 0.11 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred at 25 $^{\circ}$ C in for 2 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/20) to give the corresponding product **5**.

2.4 Control experiments

(1) Double silylation of 1w

CuCl (1.0 mg, 0.010 mmol, 10 mol%), Me₂PhSi-Bpin (**2**) (104 mg, 0.400 mmol), alkenyl thianthrenium salt **1w** (71.4 mg, 0.100 mmol), and LiO⁶Bu (17.6 mg, 0.220 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred at 50 °C in a pre-heated oil bath for 1 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (petroleum ether) to give **3w** (35.5 mg, 94%).

(2) Double borylation of 1w

CuCl (1.0 mg, 0.010 mmol, 10 mol%), $B_2(pin)_2$ (**4**) (102 mg, 0.400 mmol), alkenyl thianthrenium salt **1w** (71.4 mg, 0.100 mmol), and LiO'Bu (17.6 mg, 0.220 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred at 25 °C in for 2 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/20) to give the corresponding product **5w** (19.6 mg, 54%).

(3) Radical trapping experiments

(a) Radical trapping experiment for the silylation

TEMPO (17.2 mg, 0.110 mmol), CuCl (1.0 mg, 0.010 mmol, 10 mol%), Me₂PhSi-Bpin (**2**) (52.4 mg, 0.200 mmol), alkenyl thianthrenium salt **1a** (41.4 mg, 0.100 mmol), and LiO'Bu (8.8 mg, 0.11 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred at 50 °C in a pre-heated oil bath for 1 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (petroleum ether) to give the corresponding product **3a** (23.2 mg, 94%).

(b) Radical trapping experiment for the borylation

TEMPO (17.2 mg, 0.110 mmol), CuCl (1.0 mg, 0.010 mmol, 10 mol%), $B_2(pin)_2$ (4) (50.8 mg, 0.200 mmol), alkenyl thianthrenium salt 1a (41.4 mg, 0.100 mmol), and LiO*t*-Bu (8.8 mg, 0.11 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred at 25 °C in for 2 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/20) to give the corresponding product **5a** (21.9 mg, 92%).

(4) Competition experiments

CuCl (1.0 mg, 0.010 mmol, 10 mol%), Me₂PhSi-Bpin (**2**) (26.2 mg, 0.100 mmol), B₂(pin)₂ (**4**) (25.4 mg, 0.100 mmol), alkenyl thianthrenium salt **1a** (41.4 mg, 0.100 mmol), and LiO^{*t*}Bu (8.8 mg, 0.11 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (1.0 mL) was added, and the mixture was stirred under the given conditions (**Conditions 1**: 25 °C, 2 h; **Conditions 2**: 50 °C, 1 h). The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The yields of **3a** and **5a** were obtained by ¹H NMR analysis of the crude reaction mixture with the aid of Cl₂CHCHCl₂ as an internal standard (Conditions 1: **3a** 20%, **5a** 79%; Conditions 2: **3a** 14%, **5a** 85%).

2.5 Gram Scale Experiments

a) Gram scale experiment for the silylation

CuCl (49.5 mg, 0.500 mmol, 10.0 mol%), Me₂PhSi-Bpin (**2**) (2.62 g, 10.0 mmol), alkenyl thianthrenium salt **1a** (2.07 g, 5.00 mmol), and LiO⁴Bu (440 mg, 5.50 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (25 mL) was added, and the mixture was stirred at 50 °C in a pre-heated oil bath for 1 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (petroleum ether) to give the corresponding product **3a** (1.06 g, 86%) and thianthrene (1.07 g, 99%).

b) Gram scale experiment for the borylation

CuCl (39.6 mg, 0.400 mmol, 10.0 mol%), B₂(pin)₂ (**4**) (2.03 g, 8.00 mmol), alkenyl thianthrenium salt **1p** (1.94 g, 4.00 mmol), and LiO*t*-Bu (352 mg, 4.40 mmol) were placed in a Schlenk tube under nitrogen. Distilled DCM (25 mL) was added, and the mixture was stirred at 25 °C in for 2 h. The reaction mixture was passed through a short column of silica-gel with DCM as eluent. After further removal of solvent by vacuum pump, the crude ¹H NMR was taken for analysis. The solvent was removed on a rotary evaporator and the residue was subjected to silica-gel chromatography (EtOAc/petroleum ether = 1/20) to give the corresponding product **5p** (1.04 g, 84%) and thianthrene (857 mg, 99%).

3 Characterization Data of the Products

BF₄

^{BF₄} Compound 1b. Following GPA, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a yellow oil (695 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 8.33 (dd, *J* = 1.1 Hz, 7.9 Hz, 2H), 7.83 (dd, *J* = 1.1 Hz, 7.9 Hz, 2H), 7.74 (td, *J* = 1.2 Hz, 7.7 Hz, 2H), 7.65 (td, *J* = 1.2 Hz, 7.7 Hz, 2H), 7.28-7.21 (m, 1H), 6.55 (dt, *J* = 1.3 Hz, 14.8 Hz, 1H), 2.27-2.21 (m, 2H), 1.41-1.33 (m, 2H), 1.27-1.19 (m, 2H), 0.81 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.2, 135.5, 134.4, 133.6, 130.3, 130.0, 120.5, 109.1, 33.0, 29.2, 22.0, 13.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -150.74 (brs), -150.80 (brs). HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₁₈H₁₉S₂⁺ 299.0923; found 299.0918.

white solid. ¹H NMR (500 MHz, CDCl₃) δ 8.37 (dd, *J* = 1.0 Hz, 7.9 Hz, 2H), 7.82 (dd, *J* = 1.0 Hz, 7.9 Hz, 2H), 7.73 (td, *J* = 1.1 Hz, 7.7 Hz, 2H), 7.66 (td, *J* = 1.1 Hz, 7.7 Hz, 2H), 7.17 (dd, *J* = 6.8 Hz, 14.9 Hz, 1H), 6.48 (dd, *J* = 1.2 Hz, 14.9 Hz, 1H), 2.24-2.15 (m, 1H), 1.72-1.65 (m, 4H), 1.22-1.14 (m, 3H), 1.14-1.02 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 161.3, 135.5, 134.3, 134.0, 130.4, 130.0, 120.8, 107.7, 42.0, 30.8, 25.5, 25.3. ¹⁹F NMR (471 MHz, CDCl₃) δ -150.62 (brs), -150.68 (brs). HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₂₀H₂₁S₂⁺ 325.1079; Found 325.1086.

 $\bar{B}F_4$ **Compound 1g.** Following **GPA**, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a white solid (220 mg, 19%). ¹**H NMR** (500 MHz, CDCl₃) δ 8.00-7.96 (m, 2H), 7.75-7.67 (m, 6H), 2.54 (d, *J* = 1.4 Hz, 3H), 2.19 (d, *J* = 0.8 Hz, 3H), 2.03 (s, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 163.4, 133.6, 133.5, 131.3, 130.4, 129.6, 119.7, 115.0, 24.2, 24.0, 15.9. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -152.64 (brs), -152.69(brs). **HRMS** (ESI-TOF) m/z: [M]⁺ Calcd for C₁₇H₁₇S₂⁺ 285.0766.0923; found 285.0775.

^{BF₄} **Compound 1h.** Following **GPA**, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a white solid. ¹**H NMR** (500 MHz, CDCl₃) δ 8.38 (dd, J = 1.1 Hz, 7.9 Hz, 2H), 7.82 (dd, J = 1.1 Hz, 7.9 Hz, 2H), 7.73 (td, J = 1.1 Hz, 7.6 Hz, 2H), 7.68 (td, J = 1.1 Hz, 7.6 Hz, 2H), 7.33-7.26 (m, 1H), 6.56 (d, J = 14.8 Hz, 1H), 5.75-5.66 (m, 1H), 4.96-4.87 (m, 2H), 2.28-2.21 (m, 2H), 1.98 (q, J = 7.1 Hz, 2H), 1.46-1.39 (m, 2H), 1.35-1.28 (m, 2H). ¹³**C NMR** (126 MHz, CDCl₃) δ 157.2, 138.1, 135.4, 134.3, 133.9, 130.3, 129.9, 120.8, 114.9, 109.2, 33.2, 33.1, 28.2, 26.6. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -150.63 (brs), -150.69(brs). **HRMS** (ESI-TOF) m/z: [M]⁺ Calcd for C₂₀H₂₁S₂⁺ 325.1079; Found 325.1072.

Compound 1i. Following GPA, the product was

prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a white solid (1.237 g, 82%). ¹H NMR (500 MHz, CDCl₃) δ 8.26 (dd, *J* = 1.2 Hz, 7.9 Hz, 2H), 7.78-7.64 (m, 10H), 7.03 (dt, *J* = 7.2Hz, 14.9 Hz, 1H), 6.56 (d, *J* = 14.9 Hz, 1H), 3.76 (t, *J* = 6.7 Hz, 2H), 2.71-2.64 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 167.9, 151.0, 135.6, 134.4, 134.2, 134.1, 131.6, 130.3, 130.0, 123.4, 119.7, 111.9, 35.4, 32.2. ¹⁹F NMR (471 MHz, CDCl₃) δ -150.47 (brs), -150.53(brs). HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₂₄H₁₈NO₂S₂⁺ 416.0773; Found 416.0780.

 BF_4 Compound 1j. Following GPA, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a sticky yellow oil. ¹H NMR (500 MHz, CDCl₃) δ 8.33 (dd, *J* = 1.2 Hz, 7.8 Hz, 2H), 7.83 (dd, *J* = 1.2 Hz, 7.8 Hz, 2H), 7.74-7.66 (m, 4H), 7.63 (td, *J* = 1.4 Hz, 7.5 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.38 (t, *J* = 7.8 Hz, 2H), 7.25-7.17 (m, 1H), 6.67 (d, *J* = 14.9 Hz, 1H), 4.39 (t, *J* = 6.1 Hz, 2H), 2.75 (q, *J* = 6.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 166.0, 151.5, 135.4, 134.3, 133.9, 133.2, 130.3, 129.9, 129.5, 128.4, 120.0, 111.8, 61.4, 32.5. ¹⁹F NMR (471 MHz, CDCl₃) δ -150.33 (brs), -150.38(brs). HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₂₃H₁₉O₂S₂⁺ 391.0821; Found 391.0809.

 $\bar{B}F_4$ **Compound 1p.** Following **GPB**, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a white solid (877 mg, 72%). ¹**H NMR** (500 MHz, CDCl₃) δ 8.42 (dd, *J* = 1.3 Hz, 8.0 Hz, 2H), 8.09 (d, *J* = 15.1 Hz, 1H), 7.85 (dd, *J* = 1.3 Hz, 8.0 Hz, 2H), 7.74 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.66 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.51-7.47 (m, 2H), 7.42-7.36 (m, 1H) 7.33 (t, *J* = 7.5 Hz, 2H), 7.11 (d, *J* = 15.1 Hz, 1H). ¹³**C NMR** (126 MHz, CDCl₃) δ 151.8, 135.6, 134.4, 133.9, 132.3, 132.0, 130.4, 130.0, 129.1, 129.0, 120.9, 106.1. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -150.12 (brs), -150.17 (d, *J* = 1.6 Hz). **HRMS** (ESI-TOF) m/z: [M]⁺ Calcd for C₂₀ H₁₅ S₂⁺ 319.061; Found 319.0599.

 $\overline{BF_4}$ **Compound 1q.** Following **GPB**, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a pale-yellow solid (857 mg, 68%). ¹H **NMR** (500 MHz, CDCl₃) δ 8.36 (dd, *J* = 1.2 Hz, 7.9 Hz, 2H), 8.05 (d, *J* = 15.1 Hz, 1H), 7.77 (dd, *J* = 1.2 Hz, 7.9 Hz, 2H), 7.65 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.59 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.33 (d, *J* = 8.1 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 15.1 Hz, 1H), 2.26 (s, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 152.2, 143.4, 135.6, 134.2, 133.8, 130.4, 129.9, 129.9, 129.4, 129.1, 121.3, 104.3, 21.6. ¹⁹F **NMR** (471 MHz, CDCl₃) δ -150.28 (brs), -150.34 (d, *J* = 1.1 Hz). **HRMS** (ESI-TOF) m/z: [M]⁺ Calcd for C₂₁ H₁₇ S₂⁺ 333.0766; Found 333.0758.

 $\bar{B}F_4$ **Compound 1r.** Following **GPB**, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a pale-yellow solid (756 mg, 60%). ¹H **NMR** (500 MHz, CDCl₃) δ 8.49 (dd, *J* = 1.2 Hz, 7.9 Hz, 2H), 8.09 (d, *J* = 15.0 Hz, 1H), 7.84 (dd, *J* = 1.2 Hz, 7.9 Hz, 2H), 7.74 (td, *J* = 1.3 Hz, 7.6 Hz, 2H), 7.68 (td, *J* = 1.3 Hz, 7.6 Hz, 2H), 7.36 (d, *J* = 7.8 Hz, 1H), 7.31-7.26 (m, 1H) 7.18 (d, *J* = 7.6 Hz, 1H), 7.12 (t, *J* = 7.6 Hz, 1H), 7.05 (d, *J* = 15.0 Hz, 1H). ¹³C **NMR** (126 MHz, CDCl₃) δ 149.3, 139.5, 135.6, 134.3, 134.0, 132.1, 131.3, 131.1, 130.4, 130.0, 126.8, 126.4, 121.0, 106.7, 19.6. ¹⁹F **NMR** (471 MHz, CDCl₃) δ -150.07 (brs), -150.12 (brs). **HRMS** (ESI-TOF) m/z: [M]⁺ Calcd for C₂₁H₁₇S₂⁺ 333.0766; Found 333.0756.

^{BF₄} **Compound 1s.** Following **GPB**, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a pale-yellow solid (952 mg, 75%). ¹**H NMR** (500 MHz, CDCl₃) δ 8.45 (dd, *J* = 1.3 Hz, 7.9 Hz, 2H), 8.18 (d, *J* = 15.2 Hz, 1H), 7.85 (dd, *J* = 1.3 Hz, 7.9 Hz, 2H), 7.74 (td, J = 1.4 Hz, 7.6 Hz, 2H), 7.66 (td, J = 1.4 Hz, 7.6 Hz, 2H), 7.57-7.52 (m, 2H), 7.08-7.00 (m, 3H) . ¹³**C NMR** (126 MHz, CDCI₃) δ 151.0, 135.6, 134.3, 134.0, 131.4, 131.37, 130.5, 130.0, 128.4, 121.1, 116.6, 116.4. ¹⁹**F NMR** (471 MHz, CDCI₃) δ -105.26 (m), -150.03 (brs), -150.09 (brs). **HRMS** (ESI-TOF) m/z: [M]⁺ Calcd for C₂₀ H₁₄F S₂⁺ 337.0515; Found 337.0523.

Br BF₄ Compound 1t. Following GPB, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a pale-yellow solid (972 mg, 67%). ¹H NMR (500 MHz, CDCl₃) δ 8.37 (dd, J = 1.1 Hz, 8.0 Hz, 2H), 8.01 (d, J = 15.1 Hz, 1H), 7.85 (dd, J = 1.1 Hz, 8.0 Hz, 2H), 7.74 (td, J = 1.2 Hz, 7.7 Hz, 2H), 7.66 (td, J = 1.2 Hz, 7.7 Hz, 2H), 7.43 (d, J = 8.6 Hz, 2H), 7.37 (d, J = 8.6 Hz, 2H), 7.12 (d, J = 15.1 Hz, 1H),. ¹³C NMR (126 MHz, CDCl₃) δ 150.3, 135.7, 134.5, 133.8, 132.3, 131.0, 130.4, 130.2, 126.9, 120.4, 107.0. ¹⁹F NMR (471 MHz, CDCl₃) δ -149.89 (brs), -149.94 (brs). HRMS (ESI-TOF) m/z: [M]⁺ Calcd for C₂₀ H₁₄BrS₂⁺ 396.9715; Found 396.9710.

^{CIP} BF_4 **Compound 1u.** Following **GPB**, the product was prepared and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a pale-yellow solid (850 mg, 64%). ¹**H NMR** (500 MHz, CDCl₃) δ 8.34 (dd, *J* = 1.3 Hz, 7.9 Hz, 2H), 8.01 (d, *J* = 15.2 Hz, 1H), 7.78 (dd, *J* = 1.3 Hz, 7.9 Hz, 2H), 7.68 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.61 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.38 (d, *J* = 8.6 Hz, 2H), 7.22 (d, *J* = 8.6 Hz, 2H), 7.03 (d, *J* = 15.2 Hz, 1H),. ¹³**C NMR** (126 MHz, CDCl₃) δ 150.4, 138.5, 135.7, 134.4, 133.9, 130.6, 130.4, 130.3, 130.1, 129.4, 120.6, 106.7. ¹⁹**F NMR** (471 MHz, CDCl₃) δ -149.93 (brs), -149.98 (brs). **HRMS** (ESI-TOF) m/z: [M]⁺ Calcd for C₂₀ H₁₄Cl S₂⁺ 353.0220; Found 353.0219.

Compound 1w. Prepared from octa-1,7-diene (330mg, 3.00 mmol, 1.00 equiv), thianthrene S-oxide (1) (1.44 g, 6.18 mmol, 2.06 equiv), trifluoroacetic anhydride (2.52 mL, 3.78 g, 18.00 mmol, 6.00 equiv) and HOTf (1.25 mL, 2.12 g, 14.40 mmol, 4.80 equiv), according to GPA and purified by flash column chromatography (eluent: CH₂Cl₂/MeOH = 100/1) as a white solid (1.35g, 63%). ¹H NMR (500 MHz, CDCl₃) δ 8.26 (dd, *J* = 1.2 Hz, 7.9 Hz, 2H), 7.84 (dd, *J* = 1.2 Hz, 7.9 Hz, 2H), 7.73 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.66 (td, *J* = 1.3 Hz, 7.7 Hz, 2H), 7.14 (dt, *J* = 7.2 Hz, 14.8 Hz, 1H), 6.58 (d, *J* = 14.8 Hz, 1H), 2.28-2.22 (m, 2H), 1.46-1.41 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 156.8, 135.6, 134.3, 133.3, 130.2, 120.6, 109.7, 32.7, 26.1. ¹⁹F NMR (471 MHz, CDCl₃) δ -150.63 (brs), -150.68 (brs). HRMS (ESI-TOF) m/z: [M]²⁺ Calcd for C₃₂ H₂₈ S₄²⁺ 270.0531; Found 270.0528

Compound 3a (CAS: 116488-00-7, known compound)². Following GPC, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a yellow oil (24.3 mg, 95%). ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.51 (m, 2H), 7.37-7.33 (m, 3H), 6.13 (dt, *J* = 6.3 Hz, 18.6 Hz, 1H), 5.76 (dt, *J* = 1.4 Hz, 18.6 Hz, 1H), 2.19-2.12 (m, 2H), 1.44-1.38 (m, 2H), 1.34-1.28 (m, 6H), 0.89 (t, *J* = 6.9 Hz, 3H), 0.33 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 149.5, 139.4, 133.8, 128.8, 127.7, 127.2, 36.9, 31.7, 28. 9, 28.6, 22.6, 14.1, -2.4.

Compound 3b (CAS: 64545-10-4, known compound)³. Following **GPC**, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a yellow oil (16.1 mg, 74%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.55-7.51 (m, 2H), 7.38-7.33 (m, 3H), 6.13 (dt, *J* = 6.3 Hz, 18.6 Hz, 1H), 5.76 (dt, *J* = 1.5 Hz, 18.6 Hz, 1H), 2.20-2.12 (m, 2H), 1.45-1.37 (m, 2H), 1.37-1.30 (m, 2H), 0.91 (t, *J* = 7.2 Hz, 3H), 0.32 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 149.5, 139.4, 133.8, 128.8, 127.7, 127.2, 36.5, 30.8, 22.3, 14.0, -2.4. **Compound 3c (CAS: 852064-26-7**, known compound)⁴. Following **GPC**, the product was prepared as a colorless oil (21.3 mg, 80%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.51-7.48 (m, 2H), 7.37-7.34 (m, 3H), 7.31-7.27 (m, 2H), 7.23-7.17 (m, 3H), 6.17 (dt, *J* = 6.2 Hz, 18.6 Hz, 1H), 5.80 (dt, *J* = 1.5 Hz, 18.6 Hz, 1H), 2.75 (t, *J* = 7.8 Hz, 2H), 2.52-2.45 (m, 2H), 0.32 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 148.1, 141.9, 139.1, 133.8, 128.8, 128.5, 128.3, 128.2, 127.7, 125.8, 38.5, 35.1, -2.5.

Compound 3d (CAS: 773121-40-7, known compound)². Following **GPC**, the product was prepared as a colorless oil (20.2 mg, 80%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.37-7.33 (m, 3H), 7.32-7.28 (m, 2H), 7.23-7.17 (m, 3H), 6.25 (dt, *J* = 6.3 Hz, 18.4 Hz, 1H), 5.84(dt, *J* = 1.4 Hz, 18.4 Hz, 1H), 3.50 (d, *J* = 6.1 Hz, 2H), 0.33 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 147.1, 139.8, 139.0, 133.8, 129.2, 128.9, 128.7, 128.4, 127.7, 126.1, 43.3, -2.5.

Br

Compound 3e. Following **GPC**, the product was prepared as a colorless oil (29.2 mg, 90%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.37-7.33 (m, 3H), 6.11 (dt, *J* = 6.2 Hz, 18.5 Hz, 1H), 5.76(d, *J* = 18.5 Hz, 1H), 3.41 (d, *J* = 6.9 Hz, 2H), 2.19-2.12 (m, 2H), 1.90-1.82 (m, 2H), 1.49-1.40 (m, 4H), 1.36-1.30 (m, 2H), 0.32 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 149.0, 139.3, 133.8, 128.8, 127.7, 127.5, 36.6, 33.9, 32.7, 28.3, 28.3, 28.0, -2.5. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₆H₂₅BrSi Na⁺ 347.0801; Found 347.0799.

Compound 3f (CAS: 148991-59-7, known compound)². Following **GPC**, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a yellow oil (21.1 mg, 86%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.54-7.50 (m, 2H), 7.38-7.33 (m, 3H), 6.09 (dd, *J* = 6.0 Hz, 18.8 Hz, 1H), 5.71 (dd, *J* = 1.4 Hz, 18.8 Hz, 1H), 2.06-1.97 (m, 1H), 1.80-1.70 (m, 4H), 1.69-1.62 (m, 1H), 1.34-1.25 (m, 2H), 1.21-1.08 (m, 3H), 0.32 (s,

S16

6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 154.9, 139.5, 133.8, 128.7, 127.7, 123.8, 44.0, 32.3, 26.2, 26.0, -2.4.

Compound 3g (CAS: 129156-01-0, known compound)⁵. Following **GPC**, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a yellow oil (6.5 mg, 32%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.52-7.49 (m, 2H), 7.34-7.31 (m, 3H), 1.76 (s, 3H), 1.71 (s, 3H), 1.70 (s, 3H), 0.37 (s, 6H).

Compound 3h. Following **GPC**, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a colorless oil (18.8 mg, 77%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.55-7.49 (m, 2H), 7.37-7.33 (m, 3H), 6.12 (dt, *J* = 6.3 Hz, 18.5 Hz, 1H), 5.86-5.73 (m, 2H), 5.00(dd, *J* = 1.5 Hz, 17.1 Hz, 1H), 4.94 (d, *J* = 10.2 Hz, 1H), 2.19-2.13 (m, 2H), 1.90-1.82 (m, 2H), 1.49-1.40 (m, 4H), 1.36-1.30 (m, 2H), 0.32 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 149.0, 139.3, 133.8, 128.8, 127.7, 127.5, 36.6, 33.9, 32.7, 28.3, 28.3, 28.0, -2.5. **HRMS** (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₆H₂₄Si Na⁺ 267.1539; Found 267.1530.

Compound 3i (CAS: 1138502-22-3, known compound)⁶. According to **GPC** at 25 °C in DCM (1 mL) for 2 h. The product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (26.1 mg, 78%). ¹H NMR (500 MHz, CDCl₃) δ 7.84-7.81 (m, 2H), 7.72-7.69 (m, 3H), 7.42-7.38 (m, 2H), 7.32-7.29 (m, 1H), 7.28-7.24 (m, 1H), 6.07 (dt, J = 6.6 Hz, 18.5 Hz, 1H), 5.79 (dt, J = 1.2 Hz, 18.5 Hz, 1H), 3.80 (t, J = 7.0 Hz, 2H), 2.57-2.51 (m, 2H), 0.24 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 144.2, 138.5, 133.8, 133.7, 132.0, 131.6, 128.8, 127.6, 123.1, 37.0, 35.6, -2.8.

prepared and purified by flash column chromatography (eluent:

EtOAc/petroleum ether = 1/20) as a yellow oil (14.6 mg, 47%). ¹H NMR (500 MHz, CDCl₃) δ 8.73 (dd, *J* = 1.1 Hz, 8.2 Hz, 2H), 7.59-7.54 (m, 1H), 7.52-7.48 (m, 2H),7.43 (t, *J* = 7.8 Hz, 2H), 7.37-7.29 (m, 3H), 6.16 (dt, *J* = 6.3 Hz, 18.6 Hz, 1H), 5.96 (dt, *J* = 1.3 Hz, 18.6 Hz, 1H), 4.42 (t, *J* = 6.7 Hz, 2H), 2.73 (qd, *J* = 1.3 Hz, 6.6 Hz, 2H), 0.33 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 166.5, 143.7, 138.7, 133.8, 132.8, 131.3, 130.4, 129.5, 128.9, 128.3, 127.7, 63.6, 36.0, -2.7. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₉H₂₂O₂SiNa⁺ 333.1281; Found 333.1275.

Compound 3k. Following **GPC**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a yellow solid (20.5 mg, 47%). ¹H **NMR** (500 MHz, CDCl₃) δ 8.73 (d, *J* = 8.5 Hz, 1H), 8.38 (s, 1H), 8.24 (d, *J* = 8.5 Hz, 1H), 8.18 (d, *J* = 7.2 Hz, 2H), 7.80-7.75 (m, 1H), 7.62-7.57 (m, 1H), 7.56-7.52 (m, 2H), 7.51-7.46 (m, 3H), 7.32-7.24 (m, 3H), 6.21 (dt, *J* = 6.2 Hz, 18.6 Hz, 1H), 6.03 (d, *J* = 18.6 Hz, 1H), 4.59 (t, *J* = 6.6 Hz, 2H), 2.73 (qd, *J* = 0.91 Hz, 6.5 Hz, 2H), 0.34 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 166. 5, 156.8, 149.3, 143.4, 138.9, 138.5, 135.9, 133.8, 131.8, 130.4, 129.9, 129.7, 129.0, 128.97, 127.8, 127.77, 127.5, 125.5, 124.0, 120.3, 64.6, 36.0, -2.6. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₈H₂₈NO₂Si⁺ 438.1884; Found 438.1889.

Compound 3I (CAS: 108025-34-9, known compound)². Following **GPC**, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as yellow oil (18.2 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 7.53-7.48 (m, 2H), 7.37-7.32 (m, 3H), 6.07-6.05 (m, 1H), 2.10-1.98 (m, 4H), 1.64-1.58 (m, 4H), 0.31 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 138.8, 137.9, 136.7, 134.0, 128.7, 127.6, 26.9, 26.8, 22.9, 22.4, -3.6.

and purified by flash column chromatography (eluent: petroleum ether) as a

colorless oil (12.9 mg, 53%). ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.50 (m, 2H), 7.37-7.32 (m, 3H), 6.06 (t, *J* = 6.9Hz, 1H), 2.29-2.25 (m, 2H), 2.25-2.20 (m, 2H), 1.51-1.34 (m, 8H), 0.35 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 141.7, 140.2, 139.1, 134.0, 128.7, 127.6, 29.7, 28.9, 27.5, 27.0, 26.4, 26.1, -2.9. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₆H₂₄Si Na⁺ 267.1539; Found 267.1539.

Compound 3n. According to **GPC** at 50 °C in DCM (1 mL) for 2 h. The product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a colorless oil (13.6 mg, 56%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.53-7.49 (m, 2H), 7.37-7.32 (m, 3H), 6.01 (t, *J* = 6.0Hz, 1H), 5.62-5.54 (m, 1H), 5.52-5.45(m, 1H), 2.50-2.43 (m, 4H), 2.42-2.35 (m, 2H), 2.27-2.20 (m, 2H), 0.31 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 139.8, 139.1, 138.3, 134.1, 128.9, 128.7, 128.5, 127.6, 30.8, 29.0, 29.0, 27.6, -2.90. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₆H₂₃Si ⁺ 243.1564; Found 243.1559.

^{pr} **Compound E-3o (CAS: 191798-74-0**, known compound)⁷. Following **GPC**, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a colorless oil (19.9 mg, 81%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.53-7.49 (m, 2H), 7.36-7.32 (m, 3H), 5.82 (t, *J* = 6.9 Hz, 1H), 2.15-2.06 (m, 4H), 1.41 (q, *J* = 7.4 Hz, 2H), 1.23 (q, *J* = 7.6, 2H), 0.92 (t, *J* = 7.4 Hz, 3H), 0.83 (t, *J* = 7.3 Hz, 3H), 0.34 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 142.7, 139.5, 138.9, 134.0, 128.6, 127.6, 32.1, 30.7, 23.4, 22.7, 14.4, 13.9, -2.5.

Pr

^br **Compound Z-30 (CAS: 873663-95-7**, known compound)⁷. Following the general procedure, the product was prepared and purified by flash column chromatography (eluent: petroleum ether) as a colorless oil (14.3 mg, 58%). ¹H NMR (500 MHz, CDCl₃) δ 7.55-7.51 (m, 2H), 7.35-7.31 (m, 3H), 6.07 (t, *J* = 7.5 Hz, 1H), 2.11-2.06 (m, 2H), 1.93 (dd, *J* = 7.4 Hz, 14.8 Hz, 2H), 1.39-1.33 (m, 2H), 1.26-1.22 (m, 2H), 0.87 (t, *J* = 7.3 Hz, 3H), 0.75 (t, *J* = 7.4 Hz, 3H), 0.38 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 144.7, 140.1, 136.8, 133.8, 128.6, 127.6, 40.7, 34.4, 24.0, 22.9, 13.8, 13.7, -0.8. **Compound 3p (CAS: 64788-85-8**, known compound)². Following **GPC**, the product was prepared as a colorless oil (19.0 mg, 80%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.59-7.55 (m, 2H), 7.46-7.43 (m, 2H), 7.38-7.35 (m, 3H), 7.34-7.30 (m, 2H), 7.26-7.23 (m, 1H), 6.94 (d, *J* = 19.1 Hz, 1H), 6.58 (d, *J* = 19.1 Hz, 1H), 0.43 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 145.3, 138.6, 138.2, 133.9, 129.0, 128.5, 128.2, 127.8, 127.1, 126.5, -2.5.

Compound 3q (CAS: 264189-27-7, known compound)². Following **GPC**, the product was prepared as a colorless oil (24.9 mg, 99%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.60-7.57 (m, 2H), 7.50-7.39 (m, 5H), 7.14 (d, *J* = 7.9 Hz, 2H), 6.92 (d, *J* = 19.1 Hz, 1H), 6.53 (d, *J* = 19.1 Hz, 1H), 2.35 (s, 3H), 0.43 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 145.2, 138.8, 138.1, 135.5, 133.9, 129.2, 129.0, 127.8, 126.4, 125.7, 21.2, -2.5.

Compound 3r (CAS: 1440971-96-9, known compound)³. Following **GPC**, the product was prepared as a colorless oil (23.2 mg, 92%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.59-7.55 (m, 2H), 7.55-7.51 (m, 1H), 7.40-7.37 (m, 3H), 7.23-7.12 (m, 4H), 6.49 (d, *J* = 19.0 Hz, 1H), 2.36 (s, 3H), 0.44 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 143.1, 138.7, 137.5, 135.4, 133.9, 130.3, 129.0, 128.9, 127.9, 127.8, 126.1, 125.4, 19.6, -2.5.

F Compound 3s (CAS: 264189-28-8, known compound)². Following GPC, the product was prepared as a colorless oil (21.5 mg, 84%). ¹H NMR (500 MHz, CDCl₃) δ 7.59-7.55 (m, 2H), 7.44-7.36 (m, 5H), 7.02 (t, J = 8.7Hz, 2H), 6.90 (d, J = 19.1 Hz, 1H), 6.50 (d, J = 19.1 Hz, 1H), 0.44 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 162.7 (d, J = 247.5 Hz), 143.9, 138.4, 134.4 (d, J = 3.3 Hz), 133.9, 129.1, 128.0 (d, J = 8.1 Hz), 127.8, 126.9 (d, J = 2.2 Hz), 115.4 (d, J = 21.6 Hz), -2.6. ¹⁹F NMR (471 MHz, CDCl₃) δ -113.72 (m).

Compound 3t (CAS: 264189-30-2, known compound)².

Following **GPC**, the product was prepared as a colorless oil (30.3 mg, 96%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.59-7.55 (m, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.40-7.36 (m, 3H), 7.31 (d, *J* = 8.5 Hz, 2H), 6.87 (d, *J* = 19.1 Hz, 1H), 6.58 (d, *J* = 19.1 Hz, 1H), 0.44 (s, 6H). ¹³C **NMR** (126 MHz, CDCl₃) δ 143.9, 138.2, 137.1, 133.9, 131.6, 129.1, 128.3, 128.0, 127.9, 122.0, -2.6.

Cl Compound 3u (CAS: 264189-29-9, known compound)². Following GPC, the product was prepared as a colorless oil (26.9 mg, 99%). ¹H NMR (500 MHz, CDCl₃) δ 7.58-7.55 (m, 2H), 7.40-7.35 (m, 5H), 7.29 (d, *J* = 8.5 Hz, 2H), 6.88 (d, *J* = 19.1 Hz, 1H), 6.56 (d, *J* = 19.1 Hz, 1H), 0.44 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 143.8, 138.3, 136.6, 133.9, 133.8, 129.1, 128.7, 128.1, 127.9, 127.7, -2.6.

compound)⁸. According to general procedure and prepared as a colorless oil (35.5 mg, 94%). ¹H NMR (500 MHz, CDCl3) δ 7.56-7.52 (m, 2H), 7.38-7.33 (m, 3H), 7.32-7.28 (m, 2H), 6.13 (dt, *J* = 6.2 Hz, 18.6 Hz, 1H), 5.78(d, *J* = 18.6 Hz, 1H), 2.20-2.15 (m, 2H), 1.4-1.42 (m, 2H), 0.34 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 149.2, 139.3, 133.8, 128.8, 127.7, 127.4, 36.6, 28.2, -2.4.

Compound 5a (CAS: 83947-55-1, known compound)⁹. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a yellow oil (21.4 mg, 90%). ¹H NMR (500 MHz, CDCl₃) δ 6.63 (dt, *J* = 6.4 Hz, 18.0 Hz, 1H), 5.42 (dt, *J* = 1.5 Hz, 18.0 Hz, 1H), 2.17-2.11 (m, 2H), 1.44-1.37 (m, 2H), 1.30-1.24 (m, 18H), 0.87 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 154.8, 83.0, 35.8, 31.7, 28.9, 28.2, 24.8, 22.58, 14.1.

Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a yellow oil (15.1 mg,

72%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.63 (dt, *J* = 6.4 Hz, 18.0 Hz, 1H), 5.42 (d, *J* = 18.0 Hz, 1H), 2.18-2.12 (m, 2H), 1.43-1.36 (m, 2H), 1.34-1.29 (m, 3H), 1.26 (s, 12H), 0.88 (t, *J* = 7.2 Hz, 3H). ¹³**C NMR** (126 MHz, CDCl₃) δ 154.8, 83.0, 35.5, 30.3, 24.8, 22.2, 13.9.

Compound 5c (CAS: 172512-84-4, known compound)¹⁰. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (14.7 mg, 57%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.30-7.5 (m, 2H), 7.21-7.15 (m, 3H), 6.70 (dt, *J* = 6.2 Hz, 18.0 Hz, 1H), 5.50 (d, *J* = 18.0 Hz, 1H), 2.74 (t, *J* = 8.0 Hz, 2H), 2.50-2.44 (m, 2H), 1.27 (s, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 153.4, 141.8, 128.3, 125.8, 83.1, 37.5, 34.6, 24.8.

Compound 5d (CAS: 177573-86-3, known compound)⁹. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (21.2 mg, 87%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.31-7.26 (m, 2H), 7.22-7.15 (m, 3H), 6.76 (dt, *J* = 6.3 Hz, 17.9 Hz, 1H), 5.44 (dt, *J* = 1.4 Hz, 17.9 Hz, 1H), 3.44 (d, *J* = 6.3 Hz, 2H), 1.25 (s, 12H). ¹³C **NMR** (126 MHz, CDCl₃) δ 152.4, 139.1, 128.9, 128.4, 126.1, 83.1, 42.3, 24.8.

Br Compound 5e (CAS: 1547450-06-9). Following GPD, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (24.0 mg, 76%). ¹H NMR (500 MHz, CDCl₃) δ 6.61(dt, J = 6.4 Hz, 18.0 Hz, 1H), 5.42(d, J = 18.0 Hz, 1H), 3.39(t, J = 6.8 Hz, 2H), 2.18-2.11 (m, 2H), 1.87-1.81 (m, 2H),1.45-1.39 (m, 4H), 1.35-1.29 (m, 2H), 1.26 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 154.3, 83.0, 35.6, 33.9, 32.7, 28.3, 28.0, 27.9, 24.8. HRMS (ESI-TOF) m/z: [M+H]+ Calcd for C₁₄H₂₆BBrO₂H⁺ 316.1318; Found 316.1308.

Compound 5f (CAS: 172512-85-5, known compound)¹¹. Following GPD, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (14.2 mg, 60%). ¹H NMR (500 MHz, CDCl₃) δ 6.57 (dd, J = 6.2 Hz, 18.2 Hz, 1H), 5.37 (dd, J = 1.4 Hz, 18.0 Hz, 1H), 2.06-1.98 (m, 1H), 1.78-1.70 (m, 4H), 1.64-1.60(m, 1H), 1.26 (s, 12H), 1.19-1.04 (m, 5H). ¹³C NMR (126 MHz, CDCl₃) δ 159.8, 83.0, 43.2, 31.9, 26.2, 25.9, 24.8.

Compound 5g (CAS: 219488-99-0, known compound)¹¹. Following GPD, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (1.8 mg, 9%). ¹**H NMR** (500 MHz, CDCl₃) δ 1.97 (d, J = 1.4 Hz, 3H), 1.72 (brs, 3H), 1.67 (brs, 3H), 1.27 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 148.2, 82.7, 24.8, 24.4, 21.2, 16.5.

Compound 5h. Following GPD, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (15.1 mg, 64%). ¹H NMR (500 MHz, CDCl₃) δ 6.63 (dt, J = 6.7 Hz, 17.9 Hz, 1H), 5.85-5.73 (m, 1H), 5.43 (dt, J = 1.4 Hz, 17.9 Hz, 1H), 2.19-2.13 (m, 2H), 2.08-2.01 (m, 2H), 1.46-1.39 (m, 4H), 1.26 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 154.5, 138.9, 114.3, 83.0, 35.6, 33.6, 28.4, 27.7, 24.8. HRMS (ESI-TOF) m/z: [M+Na]⁺ Calcd for C₁₄H₂₅BO₂Na⁺ 258.1876; Found 258.1873.

Compound 5i (CAS: 1160924-49-1). Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (25.5 mg, 78%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.84-7.81 (m, 2H), 7.71-7.68 (m, 2H), 6.59 (dt, *J* = 6.7

Hz, 18.0 Hz, 1H), 5.52 (dt, J = 1.4 Hz, 18.0 Hz, 1H), 3.78 (d, J = 7.5 Hz, 2H), 2.57-2.51 (m, 2H), 1.24 (s, 12H). ¹³**C** NMR (126 MHz, CDCl₃) δ 168.2, 149.2, 133.9, 132.1, 123.2, 83.2, 36.7, 34.6, 24.7. HRMS (ESI-TOF) m/z: [M+H]⁺ Calcd for C₁₈H₂₂BNO₄H⁺ 327.1751; Found 327.1756.

. **Compound 5j (CAS: 581802-27-9**, known compound)¹³. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (25.4 mg, 84%). ¹H **NMR** (500 MHz, CDCl₃) δ 8.03 (d, *J* = 7.1 Hz, 2H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 6.66 (dt, *J* = 6.6 Hz, 17.9 Hz, 1H), 5.60 (d, *J* = 17.9 Hz, 1H), 4.39 (t, *J* = 6.7 Hz, 2H), 2.66-2.61 (m, 2H), 1.27 (s, 12H). ¹³C **NMR** (126 MHz, CDCl₃) δ 166.5, 149.0, 132.9, 130.3, 129.6, 128.3, 83.2, 63.5, 35.0, 24.8.

Compound 5k. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a yellow solid (34.3 mg, 80%). ¹H **NMR** (500 MHz, CDCl₃) δ 8.73 (dd, *J* = 0.7 Hz, 8.6 Hz, 1H), 8.38 (s, 1H), 8.24-8.18 (m, 3H), 7.76 (ddd, *J* = 1.4 Hz, 6.9 Hz, 8.4 Hz, 1H), 7.62 (ddd, *J* = 1.4 Hz, 6.9 Hz, 8.4 Hz, 1H), 7.57-7.52 (m, 2H), 7.51-7.46 (m, 1H), 6.71 (dt, *J* = 6.5 Hz, 18.0 Hz, 1H), 5.68 (dt, *J* = 1.4 Hz, 18.0 Hz, 1H), 4.57 (t, *J* = 6.6 Hz, 2H), 2.73 (qd, *J* = 1.4 Hz, 6.6 Hz, 2H), 1.26 (s, 12H). ¹³C **NMR** (126 MHz, CDCl₃) δ 166.4, 156.7, 149.2, 148.6, 138.8, 135.9, 130.3, 129.9, 129.7, 128.9, 127.7, 127.5, 125.5, 124.0, 120.3, 83.3, 64.3, 34.9, 24.8. **HRMS** (ESI-TOF) m/z: [M+H]⁺ Calcd for C₂₆H₂₉BNO₄⁺ 429.2220; Found 429.2215

Compound 5I (CAS: 141091-37-4, known compound)¹⁴.

Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (17.3 mg, 83%). ¹**H NMR** (500 MHz, CDCl₃) δ 6.59-6.54 (m, 1H), 2.12-2.06 (m, 4H), 1.60-1.56 (m, 4H), 1.25 (s, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 142.9, 83.0, 26.6, 26.1, 24.8, 22.5, 22.1.

Compound 5n (CAS: 1392323-63-5, known compound)¹⁵. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (13.6 mg, 58%). ¹H **NMR** (500 MHz, CDCl₃) δ 6.51 (d, *J* = 5.3 Hz, 1H), 5.56-5.50 (m, 2H), 2.56-2.52 (m, 2H), 2.47-2.38 (m, 4H), 2.36-2.30 (m, 2H), 1.24 (s, 12H). ¹³C **NMR** (126 MHz, CDCl₃) δ 144.29, 129.28, 127.99, 83.08, 77.25, 77.00, 76.75, 30.57, 29.44, 27.77, 27.01, 24.78.

^pr **Compound Z-50 (CAS: 177949-95-0**, known compound)¹⁶. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (7.6 mg, 32%). ¹H **NMR** (500 MHz, CDCl₃) δ 6.29 (t, *J* = 7.1 Hz, 1H), 2.13-2.08 (m, 4H), 1.44-1.40 (m, 2H), 1.36-1.32 (m, 2H), 1.25 (s, 12H), 0.91 (t, *J* = 7.4 Hz, 3H), 0.88 (t, *J* = 7.4 Hz, 3H). ¹³C **NMR** (126 MHz, CDCl₃) δ 146.0, 83.0, 30.63, 30.56, 24.7, 23.3, 22.4, 14.1, 14.0.

^{Pr} **Compound E-50 (CAS: 2055824-75-2**, known compound)¹⁷. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (16.2 mg, 68%). ¹**H NMR** (500 MHz, CDCl₃) δ 5.98 (t, *J* = 7.4 Hz, 1H), 2.27 (q, *J* = 7.3 Hz, 2H), 2.06 (t, *J* = 7.4 Hz, 2H), 1.41-1.34 (m, 4H), 1.26 (s, 12H), 0.90-0.84 (m, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 145.9, 82.7, 39.1, 33.1, 24.8, 23.4, 23.2, 13.8, 13.7.

Compound 5p (CAS: 83947-56-2, known compound)¹⁸. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (18.4 mg, 80%). ¹H **NMR** (500 MHz, CDCl₃) δ 7.44-7.40 (m, 2H), 7.33 (d, *J* = 18.5 Hz, 1H), 7.29-7.19 (m, 3H), 6.10 (d, *J* = 18.5 Hz, 1H), 1.24 (s, 12H). ¹³C **NMR** (126 MHz, CDCl₃) δ 149.5, 137.5, 128.9, 128.6, 127.0, 83.3, 24.8.

Compound 5q (CAS: 149777-84-4, known compound)¹⁸. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (19.3 mg, 79%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.40-7.35 (m, 3H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.11 (d, *J* = 18.5 Hz, 1H), 2.35 (s, 3H), 1.24 (s, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 149.5, 138.9, 134.8, 129.3, 127.0, 83.3, 24.8, 21.3.

Compound 5r (CAS: 1294009-26-9, known compound)¹⁸. Following **GPD**, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (20.0 mg, 82%). ¹**H NMR** (500 MHz, CDCl₃) δ 7.65 (d, *J* = 18.3 Hz, 1H), 7.57-7.54 (m, 1H), 7.21-7.13 (m, 3H), 6.08 (d, *J* = 18.3 Hz, 1H), 2.42 (s, 3H), 1.32 (s, 12H). ¹³**C NMR** (126 MHz, CDCl₃) δ 147.1, 136.7, 136.3, 130.4, 128.6, 126.1, 125.8, 83.3, 24.8, 19.8.

F Compound 5s (CAS: 504433-86-7, known compound)¹⁸. Following GPD, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a white solid (20.6 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ 7.48-7.43 (m, 2H), 7.35 (d, *J* = 18.5 Hz, 1H), 7.02 (t, J = 8.7 Hz, 2H), 6.07 (d, J = 18.5 Hz, 1H), 1.31 (s, 12H). ¹³**C** NMR (126 MHz, CDCl₃) δ 163.1 (d, J = 248.6 Hz), 148.2, 133.7 (d, J = 2.9 Hz), 128.7 (d, J = 8.3 Hz), 115.5 (d, J = 21.7 Hz), 83.4, 24.8. ¹⁹F NMR (471 MHz, CDCl₃) δ - 112.41 (m).

Br Compound 5t (CAS: 1242770-51-9, known compound)¹⁸. Following GPD, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a white solid (26.5 mg, 86%). ¹H NMR (500 MHz, CDCl₃) δ 7.46 (d, J = 8.5 Hz, 2H), 7.36-7.29 (m, 3H), 6.15 (d, J = 18.4 Hz, 1H), 1.31 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 148.1, 136.4, 131.7, 128.5, 122.9, 83.5, 24.8.

Cl Compound 5u (CAS: 223919-54-8, known compound)¹⁸. Following GPD, the product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a white solid (21.9 mg, 83%). ¹H NMR (500 MHz, CDCl₃) δ 7.40 (d, *J* = 8.5 Hz, 2H), 7.33 (d, *J* = 18.5 Hz, 1H), 7.30 (d, *J* = 8.5 Hz, 2H), 6.13 (d, *J* = 18.5 Hz, 1H), 1.31 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 148.0, 136.0, 134.6, 128.8, 128.2, 83.5, 24.8.

Compound 5v (CAS: 1046811-99-7, known compound)¹⁹. According to **GPD** at 25 °C for 3 h. The product was prepared and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (13.2 mg, 63%). ¹H NMR (500 MHz, CDCl₃) δ 6.97 (s, 1H), 4.01 (t, *J* = 5.2 Hz, 2H), 2.08-2.04 (m, 2H), 1.84-1.79 (m, 2H), 1.24 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 155.1, 82.61, 66.2, 24.7, 22.2, 20.1.

Compound 5w (CAS: 1902952-72-0,

known compound)²⁰. According to general procedure and purified by flash column chromatography (eluent: EtOAc/petroleum ether = 1/20) as a colorless oil (19.6 mg, 54%). ¹H NMR (500 MHz, CDCl₃) δ 6.61 (dt, *J* = 6.5 Hz, 18.0 Hz, 1H), 5.41 (d, *J* = 18.0 Hz, 1H), 2.18-2.12 (m, 2H), 1.45-1.41 (m, 2H), 1.24 (s, 12H). ¹³C NMR (126 MHz, CDCl₃) δ 154.4, 83.0, 35.6, 27.8, 24.8.

4 References

- (a) J. Chen, J. Li, M. B. Plutschack, F. Berger and T. Ritter, Regio- and Stereoselective Thianthrenation of Olefins to Access Versatile Alkenyl Electrophiles, *Angew. Chem. Int. Ed.*, 2020, **59**, 5616–5620; (b) M. H. Aukland, F. J. T. Talbot, J. A. Fernández-Salas, M. Ball, A. P. Pulis, D. J. Procter, An Interrupted Pummerer/Nickel-Catalysed Cross-CouplingSequence, *Angew. Chem. Int. Ed.*, 2018, **57**, 9785–9789
- Y. Nagashima, D. Yukimori, C. Wang and M. Uchiyama, In Situ Generation of Silylzinc by Si–B Bond Activation Enabling Silylzincation and Silaboration of Terminal Alkynes, *Angew. Chem. Int. Ed.*, 2018, **57**, 8053–8057.
- Y. Duan, G. Ji, S. Zhang, X. Chen and Y. Yang, Additive-Modulated Switchable Reaction Pathway in the Addition of Alkynes with Organosilanes Catalyzed by Supported Pd Nanoparticles: Hydrosilylation versus Semihydrogenation, *Catal. Sci. Technol.*, 2018, 8, 1039–1050.
- L. Zhang and M. Oestreich, Copper-Catalyzed Cross-Coupling of Vinyliodonium Salts and ZincBased Silicon Nucleophiles, *Org. Lett.*, 2018, 20, 8061–8063.
- W. Adam and M. Richter, Regio- and Diastereoselective Ene Reaction of Triazolinedione with Vinylsilanes, *Chem. Ber.* 1992, **125**, 243 -246.
- S. Couty, C. Meyer and J. Cossy, Gold-Catalyzed Cycloisomerizations of Ene-Ynamides, *Tetrahedron*, 2009, 65, 1809–1832.

- P. Żak, M. Bołt, M. Kubicki and C. Pietraszuk, Highly Selective Hydrosilylation of Olefins and Acetylenes by Platinum(0) Complexes Bearing Bulky N-Heterocyclic Carbene Ligands, *Dalton Trans.*, 2018, **47**, 1903–1910.
- P. Żak, M. Bołt and C. Pietraszuk, Selective Hydrosilylation of Dienes, Enynes, and Diynes Catalyzed by a Platinum Complex with a Very Bulky NHC Ligand – The Crucial Role of Precise Tuning of the Reaction Conditions, *Eur. J. Inorg. Chem.*, 2019, **2019**, 2455–2461.
- S. Tanaka, Y. Saito, T. Yamamoto and T. Hattori, Electrophilic Borylation of Terminal Alkenes with BBr₃/2, 6-Disubstituted Pyridines, *Org. Lett.*, 2018, 20, 1828–1831.
- J. Li, C. Wang, J. Yu, P. Wang and J. Yu, Cu-Catalyzed C-H Alkenylation of Benzoic Acid and Acrylic Acid Derivatives with Vinyl Boronates, *Org. Lett.*, 2020, **22**, 4692–4696.
- H. Yoshida, I. Kageyuki and K. Takaki, Silver-Catalyzed Highly Regioselective Formal Hydroboration of Alkynes, *Org. Lett.*, 2014, 16, 3512–3515.
- M. Silvi, C. Sandford and V. K. Aggarwa, Merging Photoredox with 1, 2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes, *J. Am. Chem. Soc.*, 2017, **139**, 5736–5739.
- M. Fujita, H. J. Lee and T. Okuyama, Stereochemical Inversion in the Vinylic Substitution of Boronic Esters to Give Iodonium Salts: Participation of the Internal Oxy Group, *Org. Lett.*, 2006, **8**, 1399–1401.
- 14.L. Tao, X. Guo, J. Li, R. Li, Z. Lin and W. Zhao, Rhodium-Catalyzed Deoxygenation and Borylation of Ketones: A Combined Experimental and Theoretical Investigation, *J. Am. Chem. Soc.*, 2020, **142**, 18118–18127.
- 15.Y. Wang, J. Wu, C. Hoong, V. Rauniyar and F. D. Toste, Enantioselective Halocyclization Using Reagents Tailored for Chiral Anion Phase-Transfer Catalysis, *J. Am. Chem. Soc.*, 2012, **134**, 12928–12931.
- 16.G. Zhang, J. Wu, H. Zeng, M. C. Neary, M. Devany, S. Zheng and P. A. Dub, Dearomatization and Functionalization of Terpyridine Ligands Leading to Unprecedented Zwitterionic Meisenheimer Aluminum Complexes and Their Use in Catalytic Hydroboration, ACS Catal., 2019, **9**, 874–884.

- 17. L. Zhang and L. Jiao, Pyridine-Catalyzed Radical Borylation of Aryl Halides, *J. Am. Chem. Soc.*, 2017, **139**, 607–610.
- X. Shi, S. Li and L. Wu, H₂-Acceptorless Dehydrogenative Boration and Transfer Boration of Alkenes Enabled by Zirconium Catalyst, *Angew. Chem. Int. Ed.*, 2019, **58**, 16167–16171.
- K. Takao, T. Jun, I. Tatsuo and M. Norio, Iridium-catalyzed Vinylic C–H Borylation of Cyclic Vinyl Ethers by Bis(pinacolato)diboron, *Chem. Lett.*, 2008, 37, 664–665.
- 20.M. Fleige, J. Möbus, T. V. Stein, F. Glorius and D. W. Stephan, Lewis Acid Catalysis: Catalytic Hydroboration of Alkynes Initiated by Piers' Borane, *Chem. Commun.*, 2016, **52**, 10830–10833.

5 NMR Spectra

