### **Supporting Information**

# Cunlanceloic acids A-D: unprecedented labdane diterpenoid dimers with AChE inhibitory and cytotoxic activities from *Cunninghamia lanceolata*

Xing-De Wu,<sup>a</sup> Lin-Fen Ding,<sup>a, b</sup> Bin Chen,<sup>b</sup> Xiao-Nian Li,<sup>a</sup> Li-Yan Peng,<sup>a</sup> and Qin-Shi Zhao<sup>\*,a</sup>

<sup>a</sup>State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China

<sup>b</sup>School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming 650500, People's Republic of China

\*E-mail: qinshizhao@mail.kib.ac.cn

# Contents

| X-ray Cr  | ystallogra                         | phic analysis                         | of compou     | nds 1-      | 3                |          |                        |                               |                    | S4            |
|-----------|------------------------------------|---------------------------------------|---------------|-------------|------------------|----------|------------------------|-------------------------------|--------------------|---------------|
| Table S1  | . Crystalle                        | ographic data                         | of compou     | nd 1        |                  |          |                        |                               |                    | S5            |
| Table S2  | . Crystalle                        | ographic data                         | of compou     | nd <b>2</b> |                  |          |                        |                               |                    | S6            |
| Table S3  | . Crystalle                        | ographic data                         | of compou     | nd <b>3</b> |                  |          |                        |                               |                    | S7            |
| Figure S  | 1. <sup>1</sup> H NM               | R (800 MHz)                           | spectrum o    | of cunl     | ancelo           | ic acid  | A (1) in pyr           | idine- <i>d</i> 5             |                    | S8            |
| Figure S2 | 2. Expand                          | ed <sup>1</sup> H NMR s               | pectrum of    | cunla       | nceloic          | acid A   | A (1)                  |                               |                    | S9            |
| Figure S  | 3. <sup>13</sup> C NM              | IR and DEPT                           | (200 MHz)     | ) spect     | tra of c         | unlance  | eloic acid A           | (1) in pyrid                  | ine-d <sub>5</sub> | S10           |
| Figure S4 | 4. HSQC :                          | spectrum of c                         | unlanceloic   | acid .      | A (1)            |          |                        |                               |                    | S11           |
| Figure S: | 5. Expand                          | ed HSQC spe                           | ctrum of cu   | ınlanc      | eloic a          | cid A (  | 1)                     |                               |                    | S12           |
| Figure    | S6.                                | <sup>1</sup> H- <sup>1</sup> H C      | OSY s         | pectru      | m                | of       | cunlanceloid           | e acid                        | А                  | (1)           |
| Figure S' | 7. Expand                          | ed <sup>1</sup> H- <sup>1</sup> H COS | SY spectru    | m of c      | unlance          | eloic a  | cid A (1)              |                               |                    | S14           |
| Figure S  | 8. HMBC                            | spectrum of c                         | unlanceloi    | c acid      | A (1).           |          |                        |                               |                    | S15           |
| Figure S  | 9. Expand                          | ed HMBC sp                            | ectrum of c   | unlan       | celoic a         | icid A   | (1)                    |                               |                    | S16           |
| Figure    | S10.                               | ROESY                                 | spectr<br>S17 | um          | of               | cur      | nlanceloic             | acid                          | А                  | (1)           |
| Figure    | S11.                               | Expanded                              | ROESY         | spe         | ctrum            | of       | cunlancel              | oic acid                      | А                  | (1)           |
| Figure S  | 12. ESIM                           | S spectrum of                         | cunlancelo    | oic aci     | d A (1)          |          |                        |                               |                    | S19           |
| Figure    | S13.                               | HRESIMS                               | 5 spec<br>S20 | trum        | of               | cu       | inlanceloic            | acid                          | А                  | (1)           |
| Figure    | S14.                               | IR                                    | spectrum      | S21         | of               | cunla    | nceloic                | acid                          | А                  | (1)           |
| Figure S  | 15. <sup>1</sup> H NN              | 4R (800 MHz                           | ) spectrum    | of cur      | nlancel          | oic acio | d B ( <b>2</b> ) in py | ridine-d5                     |                    | S22           |
| Figure S  | 16. Expan                          | ded <sup>1</sup> H NMR                | spectrum of   | of cunl     | ancelo           | ic acid  | B (2)                  |                               |                    | S23           |
| Figure S  | 17. <sup>13</sup> C NI             | MR and DEP                            | Г<br>(200 MH  | z) spec     | ctra of          | cunlan   | celoic acid E          | <b>3</b> ( <b>2</b> ) in pyri | dine-d             | 5S24          |
| Figure S  | 18. HSQC                           | spectrum of                           | cunlancelo    | ic acid     | l B (2)          |          |                        |                               |                    |               |
| Figure S  | 19. Expan                          | ded HSQC sp                           | ectrum of     | cunlan      | celoic           | acid B   | (2)                    |                               |                    | S26           |
| Figure S2 | 20. <sup>1</sup> H- <sup>1</sup> H | COSY spectr                           | um of cunl    | ancelo      | oic acid         | B (2)    |                        |                               |                    | S27           |
| Figure S2 | 21. Expan                          | ded <sup>1</sup> H- <sup>1</sup> H CC | OSY spectru   | um of       | cunlan           | celoic a | acid B ( <b>2</b> )    |                               |                    | S28           |
| Figure S2 | 22. HMB0                           | C spectrum of                         | cunlancelo    | oic aci     | d B ( <b>2</b> ) |          |                        |                               |                    | S29           |
| Figure S2 | 23. Expan                          | ded HMBC s                            | pectrum of    | cunla       | nceloic          | acid B   | <b>(2)</b>             |                               |                    | S30           |
| Figure S2 | 24. ROES                           | Y spectrum o                          | f cunlancel   | oic ac      | id B ( <b>2</b>  | )        |                        |                               |                    | S31           |
| Figure S2 | 25. Expan                          | ded ROESY s                           | spectrum of   | f cunla     | anceloi          | c acid l | B ( <b>2</b> )         |                               |                    | S32           |
| Figure S2 | 26. ESIM                           | S spectrum of                         | cunlancelo    | oic aci     | d B (2)          |          |                        |                               |                    | S33           |
| Figure S2 | 27. HRES                           | IMS spectrun                          | n of cunlan   | celoic      | acid B           | (2)      |                        |                               |                    | S34           |
| Figure S2 | 28. IR spe                         | ctrum of cunl                         | anceloic ac   | id B (      | 2)               |          |                        |                               | •••••              | S35           |
| Figure S2 | 29. <sup>1</sup> H NN              | 4R (800 MHz                           | ) spectrum    | of cur      | nlancel          | oic acio | d C ( <b>3</b> ) in py | ridine- <i>d</i> 5            |                    | S36           |
| Figure S  | 30. Expan                          | ded <sup>1</sup> H NMR                | spectrum o    | of cunl     | ancelo           | ic acid  | C ( <b>3</b> )         |                               |                    | S37           |
| Figure S. | 31. <sup>13</sup> C NI             | MR and DEP                            | Г (200 МН     | z) spec     | ctra of          | cunlan   | celoic acid O          | C ( <b>3</b> ) in pyri        | dine-d             | 5 <b>S</b> 38 |
| Figure S. | 32. HSQC                           | spectrum of                           | cunlancelo    | ic acid     | l C ( <b>3</b> ) |          |                        |                               |                    | S39           |
| Figure S. | 33. Expan                          | ded HSQC sp                           | ectrum of     | cunlan      | celoic           | acid C   | (3)                    |                               |                    | S40           |

| Figure S34. | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of cunlanceloic acid C ( <b>3</b> )                         | S41 |
|-------------|----------------------------------------------------------------------------------------------------------|-----|
| Figure S35. | Expanded <sup>1</sup> H- <sup>1</sup> H COSY spectrum of cunlanceloic acid C (3)                         | S42 |
| Figure S36. | HMBC spectrum of cunlanceloic acid C (3)                                                                 | S43 |
| Figure S37. | Expanded HMBC spectrum of cunlanceloic acid C (3)                                                        | S44 |
| Figure S38. | ROESY spectrum of cunlanceloic acid C (3)                                                                | S45 |
| Figure S39. | Expanded ROESY spectrum of cunlanceloic acid C (3)                                                       | S46 |
| Figure S40. | ESIMS spectrum of cunlanceloic acid C (3)                                                                | S47 |
| Figure S41. | HRESIMS spectrum of cunlanceloic acid C (3)                                                              | S48 |
| Figure S42. | IR spectrum of cunlanceloic acid C (3)                                                                   | S49 |
| Figure S43. | <sup>1</sup> H NMR (800 MHz) spectrum of cunlanceloic acid D (4) in pyridine-d <sub>5</sub>              | S50 |
| Figure S44. | Expanded <sup>1</sup> H NMR spectrum of cunlanceloic acid D (4)                                          | S51 |
| Figure S45. | $^{13}\mathrm{C}$ NMR and DEPT (200 MHz) spectra of cunlanceloic acid D (4) in pyridine-d <sub>5</sub> . | S52 |
| Figure S46. | HSQC spectrum of cunlanceloic acid D (4)                                                                 | S53 |
| Figure S47. | Expanded HSQC spectrum of cunlanceloic acid D (4)                                                        | S54 |
| Figure S48. | <sup>1</sup> H- <sup>1</sup> H COSY spectrum of cunlanceloic acid D (4)                                  | S55 |
| Figure S49. | Expanded <sup>1</sup> H- <sup>1</sup> H COSY spectrum of cunlanceloic acid D (4)                         | S56 |
| Figure S50. | HMBC spectrum of cunlanceloic acid D (4)                                                                 | S57 |
| Figure S51. | Expanded HMBC spectrum of cunlanceloic acid D (4)                                                        | S58 |
| Figure S52. | ROESY spectrum of cunlanceloic acid D (4)                                                                | S59 |
| Figure S53. | Expanded ROESY spectrum of cunlanceloic acid D (4)                                                       | S60 |
| Figure S54. | ESIMS spectrum of cunlanceloic acid D (4)                                                                | S61 |
| Figure S55. | HRESIMS spectrum of cunlanceloic acid D (4)                                                              | S62 |
| Figure S56. | IR spectrum of cunlanceloic acid D (4)                                                                   | S63 |
|             |                                                                                                          |     |

#### X-ray Crystallographic Analysis of Compounds 1-3

Crystals of 1-3 were obtained by using the solvent vapor diffusion in methanol at room tempetature. Crystallographic data for 1-3 were collected on a Bruker APEX DUO diffractometer with graphite monochromater Cu K $\alpha$  radiation. Crystal structures were solved by direct methods with SHELXS-97, expanded using difference Fourier technique, and refined with full-matrix least-squares on  $F^2$  using SHELXS-97. Non-hydrogen atoms were refined anisotropically. Hydrogen atom were placed in idealized positions and refined using a riding model. Crystallographic data for compounds 1-3 have been deposited in the Cambridge Crystallographic Data Centre (deposition numbers: CCDC 2051450, 2051451, and 2051453, respectively). Copies of these data can be obtained free of charge via www.ccdc.cam.ac.uk (or from the Cambridge Crystallographic Data Centre, 12, Union Road, CAMBRIDGE CB2 1EZ, UK.; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).

| Identification code                      | cu_fwf202_2_0m                                   |
|------------------------------------------|--------------------------------------------------|
| Empirical formula                        | $1/2(C_{40}H_{56}O_6)$                           |
| Formula weight                           | 316.42                                           |
| Temperature                              | 100(2) K                                         |
| Wavelength                               | 1.54178 Å                                        |
| Crystal system                           | Orthorhombic                                     |
| Space group                              | C222 <sub>1</sub>                                |
| Unit cell dimensions                     | $a = 8.8961(3) \text{ Å}  a = 90^{\circ}$        |
|                                          | $b = 10.7470(4) \text{ Å} \qquad b = 90^{\circ}$ |
|                                          | $c = 36.9444(14) \text{ Å}  g = 90^{\circ}$      |
| Volume                                   | 3532.1(2) Å <sup>3</sup>                         |
| Ζ                                        | 8                                                |
| Calculated density                       | 1.190 Mg/m <sup>3</sup>                          |
| Absorption coefficient                   | 0.618 mm <sup>-1</sup>                           |
| F(000)                                   | 1376                                             |
| Crystal size                             | 0.585 x 0.570 x 0.230 mm <sup>3</sup>            |
| Theta range for data collection          | 4.788 to 69.086°                                 |
| Indices ranges                           | -9≤h≤10, -12≤k≤11, -42≤l≤38                      |
| Reflections collected                    | 10155                                            |
| Independent reflections                  | 3084 [R(int) = 0.0253]                           |
| Completeness to theta = $67.679^{\circ}$ | 97.2 %                                           |
| Absorption correction                    | Semi-empirical from equivalents                  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>      |
| Data/restraints/parameters               | 3084/0/211                                       |
| Goodness-of-fit on F <sup>2</sup>        | 1.047                                            |
| Final R indices $[I > 2\sigma(I)]$       | $R_1 = 0.0310, wR_2 = 0.0776$                    |
| R indices (all data)                     | $R_1 = 0.0314, wR_2 = 0.0779$                    |
| Absolute structure parameter             | 0.08(5)                                          |
| Largest diff. peak and hole              | 0.168 and -0.196 e.Å <sup>-3</sup>               |

 Table S1. Crystallographic data of compound 1.

| Identification code                      | cu_fwf200_0m                                              |
|------------------------------------------|-----------------------------------------------------------|
| Empirical formula                        | $2(C_{40}H_{60}O_3)\bullet H_2O$                          |
| Formula weight                           | 1195.77                                                   |
| Temperature                              | 100(2) K                                                  |
| Wavelength                               | 1.54178 Å                                                 |
| Crystal system                           | Monoclinic                                                |
| Space group                              | P21                                                       |
| Unit cell dimensions                     | $a = 17.6987(3)$ Å $\alpha = 90^{\circ}$                  |
|                                          | $b = 7.57510(10) \text{ Å}  \beta = 105.9950(10)^{\circ}$ |
|                                          | $c = 27.9558(5) \text{ Å}  \gamma = 90^{\circ}$           |
| Volume                                   | 3602.92(10) Å <sup>3</sup>                                |
| Ζ                                        | 2                                                         |
| Calculated density                       | 1.102 Mg/m <sup>3</sup>                                   |
| Absorption coefficient                   | 0.522 mm <sup>-1</sup>                                    |
| F(000)                                   | 1316                                                      |
| Crystal size                             | 1.120 x 0.160 x 0.070 mm <sup>3</sup>                     |
| Theta range for data collection          | 2.597 to 69.625°                                          |
| Indices ranges                           | -20≤h≤20, -8≤k≤7, -33≤l≤32                                |
| Reflections collected                    | 34015                                                     |
| Independent reflections                  | 10348 [R(int) = 0.0533]                                   |
| Completeness to theta = $67.679^{\circ}$ | 95.3 %                                                    |
| Absorption correction                    | Semi-empirical from equivalents                           |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>               |
| Data/restraints/parameters               | 10348 / 1 / 798                                           |
| Goodness-of-fit on F <sup>2</sup>        | 1.109                                                     |
| Final R indices $[I > 2\sigma(I)]$       | $R_1 = 0.0591, wR_2 = 0.1822$                             |
| R indices (all data)                     | $R_I = 0.0636, wR_2 = 0.1928$                             |
| Absolute structure parameter             | 0.04(11)                                                  |
| Largest diff. peak and hole              | 0.325 and -0.356 e.Å <sup>-3</sup>                        |

 Table S2. Crystallographic data of compound 2.

| Identification code                      | cu_fwf199a_0m                                    |
|------------------------------------------|--------------------------------------------------|
| Empirical formula                        | $3(C_{40}H_{60}O_3)\bullet 2(H_2O)$              |
| Formula weight                           | 1802.66                                          |
| Temperature                              | 100(2) K                                         |
| Wavelength                               | 1.54178 Å                                        |
| Crystal system                           | Triclinic                                        |
| Space group                              | P1                                               |
| Unit cell dimensions                     | $a = 7.3306(3)$ Å $\alpha = 79.290(2)^{\circ}$   |
|                                          | $b = 13.0551(5)$ Å $\beta = 89.420(2)^{\circ}$   |
|                                          | $c = 29.0818(10)$ Å $\gamma = 75.423(2)^{\circ}$ |
| Volume                                   | 2644.70(18) Å <sup>3</sup>                       |
| Ζ                                        | 1                                                |
| Calculated density                       | 1.132 Mg/m <sup>3</sup>                          |
| Absorption coefficient                   | 0.539 mm <sup>-1</sup>                           |
| F(000)                                   | 992                                              |
| Crystal size                             | 0.880 x 0.250 x 0.030 mm <sup>3</sup>            |
| Theta range for data collection          | 3.095 to 69.052°                                 |
| Indices ranges                           | -8≤h≤8, -14≤k≤15, -34≤l≤35                       |
| Reflections collected                    | 36317                                            |
| Independent reflections                  | 14387 [R(int) = 0.0526]                          |
| Completeness to theta = $67.679^{\circ}$ | 93.6 %                                           |
| Absorption correction                    | Semi-empirical from equivalents                  |
| Refinement method                        | Full-matrix least-squares on F <sup>2</sup>      |
| Data/restraints/parameters               | 14387 / 3 / 1200                                 |
| Goodness-of-fit on F <sup>2</sup>        | 1.028                                            |
| Final R indices $[I > 2\sigma(I)]$       | $R_1 = 0.0724, wR_2 = 0.1806$                    |
| R indices (all data)                     | $R_1 = 0.0808, wR_2 = 0.1883$                    |
| Absolute structure parameter             | -0.04(16)                                        |
| Largest diff. peak and hole              | 0.690 and -0.427 e.Å <sup>-3</sup>               |

 Table S3. Crystallographic data of compound 3.

Figure S1. <sup>1</sup>H NMR (800 MHz) spectrum of cunlanceloic acid A (1) in pyridine- $d_5$ .



Figure S2. Expanded <sup>1</sup>H NMR spectrum of cunlanceloic acid A (1).







Figure S4. HSQC spectrum of cunlanceloic acid A (1).



S11

Figure S5. Expanded HSQC spectrum of cunlanceloic acid A (1).



Figure S6. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid A (1).





Figure S7. Expanded <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid A (1).







Figure S9. Expanded HMBC spectrum of cunlanceloic acid A (1).



Figure S10. ROESY spectrum of cunlanceloic acid A (1).



Figure S11. Expanded ROESY spectrum of cunlanceloic acid A (1).

| a tributer | 170 | 335 |     | I | 780 | 890 | 104 | 3 |  |  |
|------------|-----|-----|-----|---|-----|-----|-----|---|--|--|
| 10000      |     |     |     |   |     |     |     |   |  |  |
| 20000      |     |     |     |   |     |     |     |   |  |  |
| 30000      |     |     |     |   |     |     |     |   |  |  |
| 40000      |     |     |     |   |     |     |     |   |  |  |
| 50000      |     |     |     |   |     |     |     |   |  |  |
| 50000      |     |     |     |   |     |     |     |   |  |  |
| 70000      |     |     |     |   |     |     |     |   |  |  |
| \$0000     |     |     | 631 |   |     |     |     |   |  |  |

## Figure S12. ESIMS spectrum of cunlanceloic acid A (1).

<Spectrum>

Data File: E:\DATA\2019\0924\1\FWF-187b.lcd

Figure S13. HRES

| Eimt               | Val.                     | Min                               | Max                           | Eimt | Val. | Min              | Max                            | Eimt                                       | Val.    | Min | Max | Eimt                                 | Val.                                   | Min                  | Max | Use Adduct |
|--------------------|--------------------------|-----------------------------------|-------------------------------|------|------|------------------|--------------------------------|--------------------------------------------|---------|-----|-----|--------------------------------------|----------------------------------------|----------------------|-----|------------|
| н                  | 1                        | 2                                 | 100                           | F    | 1    | 0                | 0                              | S                                          | 2       | 0   | 0   | Pd                                   | 2                                      | 0                    | 0   | Н          |
| 2H                 | 1                        | 0                                 | 0                             | Na   | 1    | 0                | 0                              | CI                                         | 1       | 0   | 0   | Ag                                   | 1                                      | 0                    | 0   | HCOO       |
| C                  | 4                        | 10                                | 50                            | Mg   | 2    | 0                | 0                              | Cu                                         | 2       | 0   | 0   | Ĩ                                    | 3                                      | 0                    | 0   | CI         |
| N                  | 3                        | 0                                 | 0                             | Si   | 4    | 0                | 0                              | Se                                         | 2       | 0   | 0   |                                      |                                        |                      |     |            |
| 0                  | 2                        | 0                                 | 30                            | P    | 3    | 0                | 0                              | Br                                         | 1       | 0   | 0   |                                      |                                        |                      |     |            |
| Error M<br>M<br>MS | HC I<br>HC I<br>Iax Isot | ppm):<br>Ratio:<br>opes:<br>L(%): | 5<br>unlimite<br>all<br>75.00 | d    |      | D<br>Ap<br>Isote | BE Ran<br>ply N Ru<br>ope RI ( | ge: -2.0<br>lle: yes<br>%): 1.00<br>de: OR | - 100.0 |     |     | Electro<br>Use MS<br>Isotop<br>Max R | n lons:<br>In Info:<br>Res:<br>esults: | both<br>yes<br>10000 | 0   |            |

Even#: 2 MS(E-) Ret. Time : 0.387 Scan#: 60

| 8.000e5 | 631.4002 |  |
|---------|----------|--|
| 7.000e5 |          |  |
| 6.000e5 |          |  |
| 5.000e5 |          |  |
| 4.000e5 |          |  |
| 3.000e5 |          |  |
| 2.000e5 |          |  |
| 1.000e5 |          |  |
| 1,      |          |  |

<u>631.370</u> <u>631.375</u> <u>631.380</u> <u>631.385</u> <u>631.390</u> <u>631.395</u> <u>631.400</u> <u>631.405</u> <u>631.410</u> <u>631.415</u> <u>631.420</u> <u>631.425</u> <u>631.430</u>



C40 H56 O6 [M-H]- : Predicted region for 631.4004 m/z





Figure S14. IR spectrum of cunlanceloic acid A (1).

Figure S15. <sup>1</sup>H NMR (800 MHz) spectrum of cunlanceloic acid B (2) in pyridine- $d_5$ .



Figure S16. Expanded <sup>1</sup>H NMR spectrum of cunlanceloic acid B (2).



Figure S17. <sup>13</sup>C NMR and DEPT (200 MHz) spectra of cunlanceloic acid B (2) in pyridine-*d*<sub>5</sub>.



Figure S18. HSQC spectrum of cunlanceloic acid B (2).







**Figure S20.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid B (2).



S27



Figure S21. Expanded <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid B (2).

Figure S22. HMBC spectrum of cunlanceloic acid B (2).





Figure S23. Expanded HMBC spectrum of cunlanceloic acid B (2).

Figure S24. ROESY spectrum of cunlanceloic acid B (2).





Figure S25. Expanded ROESY spectrum of cunlanceloic acid B (2).

#### Figure S26. ESIMS spectrum of cunlanceloic acid B (2).



Data File: E:\DATA\2019\0924\1\FWF-200.lcd

Figure S27. HRE

| Eimt          | Val.                     | Min                                | Max                           | Elmt | Val. | Min                       | Max                                       | Eimt                                       | Val.    | Min | Max | Elmt                                 | Val.                                     | Min                        | Max | Use Adduct |
|---------------|--------------------------|------------------------------------|-------------------------------|------|------|---------------------------|-------------------------------------------|--------------------------------------------|---------|-----|-----|--------------------------------------|------------------------------------------|----------------------------|-----|------------|
| н             | 1                        | 2                                  | 100                           | F    | 1    | 0                         | 0                                         | S                                          | 2       | 0   | 0   | Pd                                   | 2                                        | 0                          | 0   | н          |
| 2H            | 1                        | 0                                  | 0                             | Na   | 1    | 0                         | 0                                         | CI                                         | 1       | 0   | 0   | Ag                                   | 1                                        | 0                          | 0   | HCOO       |
| C             | 4                        | 10                                 | 50                            | Mg   | 2    | 0                         | 0                                         | Cu                                         | 2       | 0   | 0   | 1                                    | 3                                        | 0                          | 0   | CI         |
| N             | 3                        | 0                                  | 0                             | Si   | 4    | 0                         | 0                                         | Se                                         | 2       | 0   | 0   |                                      |                                          |                            |     |            |
| 0             | 2                        | 0                                  | 30                            | P    | 3    | 0                         | 0                                         | Br                                         | 1       | 0   | 0   |                                      |                                          |                            |     |            |
| Error M<br>MS | HC F<br>HC F<br>lax Isot | opm):<br>Ratio:<br>opes:<br>I (%): | 5<br>unlimite<br>all<br>75.00 | d    |      | D<br>Ap<br>Isote<br>MSn L | BE Ran<br>ply N Ru<br>ope RI (<br>ogic Mo | ge: -2.0<br>ile: yes<br>%): 1.00<br>de: OR | - 100.0 |     |     | Electro<br>Use MS<br>Isotop<br>Max R | n lons:<br>in Info:<br>e Res:<br>esults: | both<br>yes<br>10000<br>10 | D   |            |

Event#: 2 MS(E-) Ret. Time : 0.307 -> 0.360 Scan# : 48 -> 56

|          |        |        | 5      | 87.4473 |        |        |        |
|----------|--------|--------|--------|---------|--------|--------|--------|
| 1.400e5- |        |        |        |         |        |        |        |
| 1.200e5  |        |        |        |         |        |        |        |
| 1.000e5  |        |        |        |         |        |        |        |
| 8.000e4  |        |        |        |         |        |        |        |
| 6.000e4  |        |        |        |         |        |        |        |
| 4.000e4  |        |        |        |         |        |        |        |
| 2.000e4- |        |        |        |         |        |        |        |
|          | 587.42 | 587.43 | 587.44 | 587.45  | 587.46 | 587.47 | 587.48 |







Figure S28. IR spectrum of cunlanceloic acid B (2).

Figure S29. <sup>1</sup>H NMR (800 MHz) spectrum of cunlanceloic acid C (3) in pyridine- $d_5$ .



Figure S30. Expanded <sup>1</sup>H NMR spectrum of cunlanceloic acid C (3).



Figure S31. <sup>13</sup>C NMR and DEPT (200 MHz) spectra of cunlanceloic acid C (3) in pyridine-*d*<sub>5</sub>.



Figure S32. HSQC spectrum of cunlanceloic acid C (3).







Figure S34. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid C (3).





**Figure S35.** Expanded <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid C (**3**).

Figure S36. HMBC spectrum of cunlanceloic acid C (3).





Figure S37. Expanded HMBC spectrum of cunlanceloic acid C (3).

Figure S38. ROESY spectrum of cunlanceloic acid C (3).







| 0  |     |     | 759 |  |  |  |
|----|-----|-----|-----|--|--|--|
| 0  |     | 655 |     |  |  |  |
| 0  |     |     |     |  |  |  |
| 0  |     |     |     |  |  |  |
| 0  |     |     |     |  |  |  |
| 0  |     |     |     |  |  |  |
| )  |     |     |     |  |  |  |
| )- |     |     |     |  |  |  |
|    | 587 |     |     |  |  |  |

## Figure S40. ESIMS spectrum of cunlanceloic acid C (3).

Page 1 of 1

Data File: E:\DATA\2019\0924\1\FWF-199a.lcd



| Eimt    | Val.                                  | Min                                  | Max                           | Eimt | Val. | Min                      | Max                                       | Eimt                                       | Val.    | Min | Max | Eimt                                 | Val.                                     | Min                        | Max | Use Adduct |
|---------|---------------------------------------|--------------------------------------|-------------------------------|------|------|--------------------------|-------------------------------------------|--------------------------------------------|---------|-----|-----|--------------------------------------|------------------------------------------|----------------------------|-----|------------|
| н       | 1                                     | 2                                    | 100                           | F    | 1    | 0                        | 0                                         | S                                          | 2       | 0   | 0   | Pd                                   | 2                                        | 0                          | 0   | Н          |
| 2H      | 1                                     | 0                                    | 0                             | Na   | 1    | 0                        | 0                                         | CI                                         | 1       | 0   | 0   | Ag                                   | 1                                        | 0                          | 0   | HCOO       |
| C       | 4                                     | 10                                   | 50                            | Mg   | 2    | 0                        | 0                                         | Cu                                         | 2       | 0   | 0   | Ĩ                                    | 3                                        | 0                          | 0   | CI         |
| N       | 3                                     | 0                                    | 0                             | Si   | 4    | 0                        | 0                                         | Se                                         | 2       | 0   | 0   |                                      |                                          |                            |     |            |
| 0       | 2                                     | 0                                    | 30                            | P    | 3    | 0                        | 0                                         | Br                                         | 1       | 0   | 0   |                                      |                                          |                            |     |            |
| Error M | Margin (<br>HC<br>Max Iso<br>Sn Iso R | ppm):<br>Ratio:<br>topes:<br>tl (%): | 5<br>unlimite<br>all<br>75.00 | d    |      | D<br>Ap<br>Isote<br>MSnL | BE Ran<br>ply N Ri<br>ope RI (<br>ogic Mo | ge: -2.0<br>"le: yes<br>%): 1.00<br>de: OR | - 100.0 |     |     | Electro<br>Use MS<br>Isotop<br>Max R | n lons:<br>Sn Info:<br>e Res:<br>esults: | both<br>yes<br>10000<br>10 | D   |            |

Event#: 2 MS(E-) Ret. Time : 0.467 Scan# : 72



Measured region for 587.4472 m/z



C40 H60 O3 [M-H]- : Predicted region for 587.4470 m/z





Figure S42. IR spectrum of cunlanceloic acid C (3).

Figure S43. <sup>1</sup>H NMR (800 MHz) spectrum of cunlanceloic acid D (4) in pyridine- $d_5$ .



Figure S44. Expanded <sup>1</sup>H NMR spectrum of cunlanceloic acid D (4).



Figure S45. <sup>13</sup>C NMR and DEPT (200 MHz) spectra of cunlanceloic acid D (4) in pyridine-*d*<sub>5</sub>.



Figure S46. HSQC spectrum of cunlanceloic acid D (4).





Figure S47. Expanded HSQC spectrum of cunlanceloic acid D (4).

**Figure S48.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid D (4).





Figure S49. Expanded <sup>1</sup>H-<sup>1</sup>H COSY spectrum of cunlanceloic acid D (4).

Figure S50. HMBC spectrum of cunlanceloic acid D (4).





Figure S51. Expanded HMBC spectrum of cunlanceloic acid D (4).

Figure S52. ROESY spectrum of cunlanceloic acid D (4).





Figure S53. Expanded ROESY spectrum of cunlanceloic acid D (4).

#### Figure S54. ESIMS spectrum of cunlanceloic acid D (4).

#### <Spectrum>

Retention Time:0.520(Scan#:81) Spectrum:Averaged 0.373-0.680(58-104) Background:Averaged 0.000-0.395(2-62) MS Stage:MS Polarity:Neg Segment1 - Event2 Precursor:----- Cutoff:



Data File: E:\DATA\2019\0924\1\FWF-197.lcd

Figure S55. HRES

| Eimt                                                                                       | Val. | Min | Max | Eimt                                                                                       | Val. | Min | Max | Eimt | Val. | Min | Max                                  | Eimt                                   | Val.                 | Min | Max | Use Adduct |
|--------------------------------------------------------------------------------------------|------|-----|-----|--------------------------------------------------------------------------------------------|------|-----|-----|------|------|-----|--------------------------------------|----------------------------------------|----------------------|-----|-----|------------|
| н                                                                                          | 1    | 2   | 100 | F                                                                                          | 1    | 0   | 0   | S    | 2    | 0   | 0                                    | Pd                                     | 2                    | 0   | 0   | Н          |
| 2H                                                                                         | 1    | 0   | 0   | Na                                                                                         | 1    | 0   | 0   | CI   | 1    | 0   | 0                                    | Ag                                     | 1                    | 0   | 0   | HCOO       |
| C                                                                                          | 4    | 10  | 50  | Mg                                                                                         | 2    | 0   | 0   | Cu   | 2    | 0   | 0                                    | Ĭ                                      | 3                    | 0   | 0   | CI         |
| N                                                                                          | 3    | 0   | 0   | Si                                                                                         | 4    | 0   | 0   | Se   | 2    | 0   | 0                                    |                                        |                      |     |     |            |
| 0                                                                                          | 2    | 0   | 30  | P                                                                                          | 3    | 0   | 0   | Br   | 1    | 0   | 0                                    |                                        |                      |     |     |            |
| Error Margin (ppm): 5<br>HC Ratio: unlimited<br>Max Isotopes: all<br>MSn Iso RI (%): 75.00 |      |     |     | DBE Range: -2.0 - 100.0<br>Apply N Rule: yes<br>Isotope RI (%): 1.00<br>MSn Logic Mode: OR |      |     |     |      |      |     | Electro<br>Use MS<br>Isotop<br>Max B | n lons:<br>In Info:<br>Res:<br>esults: | both<br>yes<br>10000 | )   |     |            |

Event#: 2 MS(E-) Ret. Time: 0.360-> 0.373 Scan#: 56-> 58





C40 H58 O4 [M-H]- : Predicted region for 601.4262 m/z





Figure S56. IR spectrum of cunlanceloic acid D (4).