Electronic Supplementary Information

Ru(II)-catalyzed C-H activation/annulation reactions of N-aryl-

pyrazolidinones with sulfoxonium ylides: synthesis of cinnoline-fused

pyrazolidinones

Hai-Shan Jin,[‡] Ya-Zhen Du,[‡] Qing-Yang Zhao, and Li-Ming Zhao*

School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou

221116, Jiangsu, China

lmzhao@jsnu.edu.cn

Table of Contents

1. General Methods
2. General Procedure for the Synthesis of Product 3 and Characterization Data
3. Gram-Scale Synthesis of 3aa
4. Procedure for the Synthesis of Compound 4 and Characterization Data
5. Procedure for the Synthesis of Compound 5 and Characterization Data
6. H/D Exchange Experiments
7. References
8. Copies of ¹ H and ¹³ C NMR Spectra for Compounds 3
9. Copies of ¹ H and ¹³ C NMR Spectra for Compound 4
10. Copies of ¹ H and ¹³ C NMR Spectra for Compound 5
11. Crystal Structure of Compound 3la

1. General Methods. Solvents and reagents were used as purchased without further purification. Reactions were carried out under air in sealed tubes. Temperatures quoted are external. Reaction progress was monitored by thin-layer chromatography (TLC) on silica gel GF₂₅₄ precoated plates. Visualization of developed plates was performed under a UV lamp. Chromatographic purification was performed on silica gel columns (100-200 mesh size). Melting points were uncorrected. ¹H NMR and ¹³C NMR spectra were recorded at 400 and 100 MHz in CDCl₃ with chemical shift (δ) given in parts per million (ppm) relative to tetramethylsilane (TMS) as the internal standard. Multiplicities were indicated as followed: s (singlet), d (doublet), t (triplet), m (multiplet), dd (doublet of doublets), and so forth; the coupling constant (*J*) was given in hertz (Hz). High-resolution mass spectra (HRMS) were recorded on a Q-Exactive Focus Orbitrap mass spectrometer. *N*-arylpyrazolidin-3-ones **1** and sulfoxonium ylides **2** were prepared according to literature procedures.^{1,2}

2. General Procedure for the Synthesis of Product 3. To a solution of *N*-arylpyrazolidin-3-ones 1 (0.3 mmol, 1.0 equiv) and sulfoxonium ylides 2 (0.45 mmol, 1.5 equiv) in DCE (2 mL) were added [RuCl₂(*p*-cymene)]₂ (18.4 mg, 0.03 mmol) and Zn(OTf)₂ (109 mg, 0.3 mmol). The reaction mixture was stirred at 100 °C on a heating block for 10 min. After cooling to room temperature, the solvent was removed in vacuo and the residue was purified using column chromatography to afford product 3.

5-Phenyl-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3aa**). Yellow solid (75 mg, 95% yield), ethyl acetate/petroleum ether = 1:4. mp 158-159 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.50 (d, *J* = 7.6 Hz, 2H), 7.40-7.30 (m, 3H), 7.15 (t, *J* = 7.8 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 6.45 (s, 1H), 3.96 (t, *J* = 7.8 Hz, 2H), 2.67 (t, *J* =

7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.2, 146.5, 137.3, 133.0, 129.3, 128.9, 128.4, 126.7, 126.1, 125.0, 122.6, 115.5, 111.2, 45.5, 30.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₅N₂O 263.1184; found 263.1175.

8-*Fluoro-5-phenyl-1*, 2-*dihydro-3H-pyrazolo*[*1*, 2-*a*]*cinnolin-3-one* (**3ba**). Yellow solid (78 mg, 93% yield), ethyl acetate/petroleum ether = 1:4. mp 152-153 °C. ¹H NMR (400 MHz, CDCl3) δ : 7.51-7.49 (m, 2H), 7.41-7.34 (m, 3H), 6.84 (td *J* = 8.4 Hz, *J* = 2.8 Hz, 1H), 6.78 (dd, *J* = 8.4 Hz, *J* = 2.8 Hz, 1H), 6.64 (dd, *J* = 8.8 Hz, *J* = 4.4 Hz, 1H), 6.36 (s, 1H), 3.94 (t, *J* = 7.8 Hz, 2H), 2.68 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.3, 158.7 (*J* = 239.9 Hz), 142.6 (*J* = 2.5 Hz), 138.8, 132.7, 129.4, 128.6, 126.9 (*J* = 8.3 Hz), 126.4, 115.0 (*J* = 22.8 Hz), 114.5 (*J* = 2.5 Hz), 113.4 (*J* = 23.6 Hz), 112.4 (*J* = 8.2 Hz), 45.9, 30.8. HRMS (ESI) m/z: [M -H]⁻ calcd for C₁₇H₁₂FN₂O 279.0934; found 279.0925.

8-*Chloro-5-phenyl-1*, 2-*dihydro-3H-pyrazolo*[*1*, 2-*a*]*cinnolin-3-one* (**3***ca*). Yellow solid (80 mg, 90% yield), ethyl acetate/petroleum ether = 1:4. mp 162-163 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.49 (d, *J* = 8.0 Hz, 2H), 7.41-7.36 (m, 3H), 7.10 (dd, *J* = 8.4 Hz, *J* = 2.4 Hz, 1H), 7.01 (d, *J* = 2.4 Hz, 1H), 6.62 (d, *J* = 8.4 Hz, 1H), 6.34 (s, 1H), 3.94 (t, *J* = 7.8 Hz, 2H), 2.68 (t, *J* = 8.0 Hz, 2H) . ¹³C NMR (100 MHz, CDCl₃) δ: 170.0, 145.1, 138.7, 132.7, 129.4, 128.6, 128.6, 127.9, 126.7, 126.4, 126.2, 114.2, 112.5, 45.8, 30.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄ClN₂O 297.0795; found 297.0783.

8-*Bromo-5-phenyl-1*, 2-*dihydro-3H-pyrazolo*[*1*, 2-*a*]*cinnolin-3-one* (**3***da*). Yellow solid (101 mg, 99% yield), ethyl acetate/petroleum ether = 1:4. mp 150-151 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.48 (dd, *J* = 8.0 Hz, *J* = 1.6 Hz, 2H), 7.41-7.34 (m, 3H), 7.25-7.22 (m, 1H), 7.14 (s, 1H), 6.55 (dd, *J* = 8.4 Hz, *J* = 3.2 Hz, 1H), 6.32 (s, 1H), 3.94-3.89 (m, 2H), 2.69-2.65 (m, 2H).

¹³C NMR (100 MHz, CDCl₃) δ: 170.0, 145.6, 138.6, 132.7, 131.6, 129.4, 129.0, 128.6, 127.1, 126.4, 115.2, 114.1, 112.9, 45.7, 30.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄BrN₂O 341.0290; found 341.0277.

8-*Methyl-5-phenyl-1*, 2-*dihydro-3H-pyrazolo*[*1*, 2-*a*]*cinnolin-3-one* (**3***ea*). Yellow solid (75 mg, 91% yield), ethyl acetate/petroleum ether = 1:4. mp 161-162 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.51 (d, *J* = 7.2 Hz, 2H), 7.40-7.31 (m, 3H), 6.97 (d, *J* = 8.0 Hz, 1H), 6.89 (s, 1H), 6.62 (d, *J* = 8.4 Hz, 2H), 6.43 (s, 1H), 3.95 (t, *J* = 8.0 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.26 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.5, 144.2, 137.3, 133.2, 132.2, 129.7, 128.9, 128.5, 127.5, 126.2, 125.1, 115.7, 111.3, 45.7, 30.9, 20.6. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₈H₁₅N₂O 275.1184; found 275.1171.

8-*Methoxy*-5-*phenyl*-1, 2-*dihydro*-3*H*-*pyrazolo*[1, 2-*a*]*cinnolin*-3-*one* (**3***fa*). Yellow solid (63 mg, 72% yield), ethyl acetate/petroleum ether = 1:4. mp 138-139 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.52 (d, *J* = 7.6 Hz, 2H), 7.40-7.33 (m, 3H), 6.71 (dd, *J* = 8.4 Hz, *J* = 2.4 Hz, 1H), 6.67-6.65 (m, 2H), 6.43 (s, 1H), 3.95 (t, *J* = 7.8 Hz, 2H), 3.78 (s, 3H), 2.69 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.6, 155.5, 140.1, 138.1, 133.1, 129.1, 128.5, 126.4, 126.3, 115.3, 113.7, 112.7, 112.3, 55.7, 45.9, 30.9. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₈H₁₅N₂O₂ 291.1134; found 291.1120.

3-Oxo-5-phenyl-2,3-dihydro-1H-pyrazolo[1,2-a]cinnoline-8-carbonitrile (**3ga**). Yellow solid (58 mg, 67% yield), ethyl acetate/petroleum ether = 1:4. mp 208-209 ℃. ¹H NMR (400 MHz, CDCl₃) δ 7.47-7.45 (m, 2H), 7.41-7.39 (m, 4H), 7.19 (s, 1H), 6.65 (d, *J* = 8.4 Hz, 1H), 6.25 (s, 1H), 3.95 (t, *J* = 8.0 Hz, 2H), 2.71 (t, *J* = 8.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 150.3, 139.1, 133.6, 132.3, 129.7, 129.1, 128.6, 126.4, 125.5, 118.8, 113.5, 111.2, 105.5,

45.5, 30.6. HRMS (ESI) m/z: $[M + H]^+$ calcd for C₁₈H₁₄N₃O 288.1137; found 288.1124.

5-Phenyl-8-(trifluoromethyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3ha**). Yellow solid (84 mg, 85% yield), ethyl acetate/petroleum ether = 1:4. mp 153-154 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.49-7.47 (m, 2H), 7.41-7.34 (m, 4H), 7.23 (s, 1H), 6.70 (d, *J* = 8.4 Hz, 1H), 6.35 (s, 1H), 3.95 (t, *J* = 8.0 Hz, 2H), 2.68 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 169.5, 149.4, 138.7, 132.6, 129.5, 128.6, 126.4, 126.4 (q, *J* = 4.0 Hz), 125.3, 124.7 (q, *J* = 32.0 Hz), 124.1 (q, *J* = 270.0 Hz), 123.2 (q, *J* = 3.8 Hz), 114.3, 111.0, 45.6, 30.7. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₁₃F₃N₂NaO 353.0878; found 353.0863.

10-Chloro-5-phenyl-1, 2-dihydro-3H-pyrazolo[*1, 2-a*]*cinnolin-3-one* (*3ia*). Yellow solid (63 mg, 71% yield), ethyl acetate/petroleum ether = 1:4. mp 70-71 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.43 (d, *J* = 7.2 Hz, 2H), 7.39-7.33 (m, 3H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.88 (d, *J* = 7.2 Hz, 1H), 6.80 (t, *J* = 7.6 Hz, 2H), 6.24 (s, 1H), 4.52 (t, *J* = 8.2 Hz, 2H), 2.70 (t, *J* = 8.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 168.8, 146.0, 137.2, 132.9, 132.0, 129.0, 128.5, 127.0, 126.0, 125.6, 117.8, 116.7, 49.8, 30.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄ClN₂O 297.0795; found 297.0782.

10-Methyl-5-phenyl-1, 2-dihydro-3H-pyrazolo[*1, 2-a*]*cinnolin-3-one* (*3ja*). Yellow solid (67 mg, 81% yield), ethyl acetate/petroleum ether = 1:4. mp 118-119 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.43 (d, *J* = 7.2 Hz, 2H), 7.38-7.29 (m, 3H), 6.92 (d, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 6.4 Hz, 1H), 6.80 (t, *J* = 7.2 Hz, 1H), 6.26 (s, 1H), 4.11 (t, *J* = 8.4 Hz, 2H), 2.68 (t, *J* = 8.4 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 167.9, 149.2, 135.8, 133.6, 133.4, 128.6, 128.4, 125.8, 125.2, 124.5, 122.8, 122.1, 118.1, 50.7, 30.4, 22.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₇N₂O 277.1341; found 277.1329.

9-Chloro-5-phenyl-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (3ka). Yellow solid (66 mg, 74% yield), ethyl acetate/petroleum ether = 1:4. mp 196-197 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.50-7.48 (m, 2H), 7.40-7.33 (m, 2H), 6.95 (d, *J* = 8.0 Hz, 1H), 6.87 (dd, *J* = 8.0 Hz, *J* = 1.6 Hz, 1H), 6.69 (s, 1H), 6.38 (s, 1H), 3.93 (t, *J* = 7.8 Hz, 2H), 2.68 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.0, 147.7, 137.5, 134.7, 132.8, 129.2, 128.6, 127.5, 176.2, 123.6, 122.6, 114.6, 111.8, 45.7, 30.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄ClN₂O 297.0795; found 297.0783.

9-Methyl-5-phenyl-1, *2-dihydro-3H-pyrazolo*[*1*, *2-a*]*cinnolin-3-one* (*3la*). Yellow solid (68 mg, 82% yield), ethyl acetate/petroleum ether = 1:4. mp 190-191 ℃. ¹H NMR (400 MHz, CDCl₃) δ: 7.50 (d, *J* = 7.6 Hz, 2H), 7.39-7.30 (m, 3H), 6.95 (d, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 7.6 Hz, 1H), 6.54 (s, 1H), 6.45 (s, 1H), 3.97 (t, *J* = 7.8 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.4, 146.6, 139.7, 136.3, 133.3, 128.8, 128.5, 126.8, 126.1, 123.3, 122.4, 115.8, 112.2, 45.6, 30.8, 22.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₇N₂O 277.1341; found 277.1330.

7, *10-Dimethyl-5-phenyl-1*, *2-dihydro-3H-pyrazolo*[*1*, *2-a*]*cinnolin-3-one* (**3ma**). Yellow solid (44 mg, 51% yield), ethyl acetate/petroleum ether = 1:4. mp 180-181 °C. ¹H NMR (400 MHz, CDCl₃) δ: 7.45 (d, *J* = 7.2 Hz, 2H), 7.38-7.29 (m, 3H), 6.82 (d, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 7.6 Hz, 1H), 6.42 (s, 1H), 4.09 (t, *J* = 8.4 Hz, 2H), 2.68 (t, *J* = 8.2 Hz, 2H), 2.32 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 168.0, 150.1, 135.4, 133.6, 133.1, 132.4, 128.6, 128.4, 125.9, 124.1, 123.1, 119.6, 115.9, 50.8, 30.3, 22.0, 19.3. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₁₈N₂NaO 313.1317; found 313.1303.

8-Chloro-10-fluoro-5-phenyl-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (3na).

Yellow solid (79 mg, 84% yield), ethyl acetate/petroleum ether = 1:4. mp 168-169 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.47-7.45 (m, 2H), 7.41-7.37 (m, 3H), 6.89 (dd, *J* = 12.8 Hz, *J* = 2.0 Hz, 1H), 6.81 (s, 1H), 6.28 (s, 1H), 4.23 (t, *J* = 7.8 Hz, 2H), 2.69(t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.3, 148.7 (*J* = 244.0 Hz), 139.3, 132.7 (*J* = 8.1 Hz), 132.5, 129.6 (*J* = 2.4 Hz), 128.8 (*J* = 4.1 Hz), 128.6 (*J* = 2.3 Hz), 127.9 (*J* = 11.0 Hz), 126.3 (*J* = 2.1 Hz), 122.2 (*J* = 3.2 Hz), 117.2 (*J* = 26.7 Hz), 114.0 (*J* = 4.2 Hz), 48.3 (*J* = 15.0 Hz), 31.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₃CIFN₂O 315.0700; found 315.0687.

5-(4-Fluorophenyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3ab**). Yellow solid (66 mg, 78% yield), ethyl acetate/petroleum ether = 1:4. mp 141-142 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.49-7.46 (m, 2H), 7.16 (t, *J* = 7.8 Hz, 1H), 7.08-7.02 (m, 3H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 6.37 (s, 1H), 3.96 (t, *J* = 7.8 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.2, 163.1 (*J* = 247.3 Hz), 146.4, 136.4, 129.4, 129.3 (*J* = 3.3 Hz), 128.0 (*J* = 8.2 Hz), 126.6, 124.9, 122.7, 115.5 (*J* = 21.8 Hz), 115.2 (*J* = 1.6 Hz), 111.2, 45.6, 30.7. HRMS (ESI) m/z: [M + H] + calcd for C₁₇H₁₄FN₂O 281.1090; found 281.1079.

5-(4-Chlorophenyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3ac**). Yellow solid (75 mg, 84% yield), ethyl acetate/petroleum ether = 1:4. mp 189-190 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.43 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.18 (t, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.6 Hz, 1H), 6.91 (t, *J* = 7.4 Hz, 1H), 6.72 (d, *J* = 8.4 Hz, 1H), 6.44 (s, 1H), 3.98 (t, *J* = 8.0 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.5, 146.5, 136.2, 134.7, 131.6, 129.6, 128.8, 127.5, 126.9, 124.8, 122.8, 116.0, 111.3, 45.6, 30.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄ClN₂O 297.0795; found 297.0785.

5-(4-Bromophenyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (3ad). Yellow solid

(97 mg, 95% yield), ethyl acetate/petroleum ether = 1:4. mp 139-140 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.50 (d, *J* = 8.4 Hz, 2H), 7.37 (d, *J* = 8.4 Hz, 2H), 7.18 (t, *J* = 7.6 Hz, 1H), 7.05 (d, *J* = 7.6, 1H), 6.92 (t, *J* = 7.4, 1H), 6.72 (d, *J* = 8.0, 1H), 6.45 (s, 1H), 3.98 (t, *J* = 8.0, 2H), 2.67 (t, *J* = 8.0, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 168.9, 150.3, 139.1, 133.7, 132.3, 129.7, 129.1, 128.6, 126.4, 125.5, 118.9, 113.5, 111.2, 45.5, 30.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄BrN₂O 341.0290; found 341.0275.

5-(4-(*Trifluoromethyl*)*phenyl*)-1, 2-*dihydro-3H-pyrazolo*[1, 2-*a*]*cinnolin-3-one* (**3ae**). Yellow solid (90 mg, 91% yield), ethyl acetate/petroleum ether = 1:4. mp 182-183 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.63 (d, *J* = 8.8 Hz, 2H), 7.59 (d, *J* = 8.8 Hz, 2H), 7.20 (t, *J* = 7.6 Hz, 1H), 7.07 (d, *J* = 7.2 Hz, 1H), 6.93 (d, *J* = 7.6 Hz, 1H), 6.73 (d, *J* = 8.0 Hz, 1H), 6.53 (s, 1H), 3.99 (t, *J* = 7.8 Hz, 2H), 2.69 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.5, 146.8, 136.6 (*J* = 2.0 Hz), 135.8, 130.5 (q, *J* = 32.6 Hz), 130.1, 127.2, 126.4, 125.5 (q, *J* = 3.8 Hz), 124.5, 124.2 (q, *J* = 270.1 Hz), 117.6, 111.4, 45.8, 30.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₄F₃N₂O 331.1058; found 331.1048.

4-(3-Oxo-2, 3-dihydro-1H-pyrazolo[1, 2-a]cinnolin-5-yl)benzonitrile (**3af**). Yellow solid (68 mg, 79% yield), ethyl acetate/petroleum ether = 1:4. mp 206-207 ℃. ¹H NMR (400 MHz, CDCl₃) δ: 7.65 (d, J = 8.4 Hz, 2H), 7.58 (d, J = 8.4 Hz, 2H), 7.23 (t, J = 7.8 Hz, 1H), 7.09 (d, J = 7.2 Hz, 1H), 6.94 (t, J = 7.6 Hz, 1H), 6.75 (d, J = 8.0 Hz, 1H), 6.58 (s, 1H), 4.01 (t, J = 7.8 Hz, 2H), 2.69 (t, J = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.8, 146.8, 137.6, 135.3, 132.3, 130.5, 127.5, 126.6, 124.3, 122.9, 118.9, 118.6, 112.0, 111.5, 45.8, 30.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₄N₃O 288.1137; found 288.1126.

5-(4-Nitrophenyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (3ag). Orange solid

(58 mg, 63% yield), ethyl acetate/petroleum ether = 1:4. mp 190-191 °C. ¹H NMR (400 MHz, CDCl₃) δ : 8.22 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 8.8 Hz, 2H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.10 (d, *J* = 7.2 Hz, 1H), 6.94 (t, *J* = 7.4 Hz, 1H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.63 (s, 1H), 4.03 (t, *J* = 7.8 Hz, 2H), 2.71 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.8, 147.6, 146.8, 139.4, 134.9, 130.7, 127.6, 126.7, 124.1, 123.9, 122.9, 119.3, 111.6, 45.9, 30.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄N₃O₃ 308.1035; found 308.1024.

5-(2-Bromophenyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3ah**). Yellow solid (91 mg, 89% yield), ethyl acetate/petroleum ether = 1:4. mp 177-178 ℃. ¹H NMR (400 MHz, CDCl₃) δ: 7.57 (d, J = 7.6 Hz, 1H), 7.38 (dd, J = 7.2 Hz, J = 1.8 Hz, 1H), 7.34 (t, J = 7.4 Hz, 1H), 7.23 (td, J = 8.0 Hz, J = 2.0 Hz, 1H), 7.11(t, J = 7.6 Hz, 1H), 6.89 (d, J = 6.0 Hz, 1H), 6.85 (t, J = 7.4 Hz, 1H), 6.53 (d, J = 8.0 Hz, 1H), 5.83 (s, 1H), 3.71 (t, J = 8.4 Hz, 2H), 2.74 (t, J = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 164.3, 148.0, 136.5, 134.7, 132.6, 130.7, 130.2, 129.6, 127.6, 125.8, 124.2, 123.0, 122.4, 116.6, 111.4, 47.5, 30.9. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₇H₁₂BrN₂O 339.0133; found 339.0121.

5-(3-Bromophenyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3ai**). Yellow solid (94 mg, 92% yield), ethyl acetate/petroleum ether = 1:4. mp 151-152 ℃. ¹H NMR (400 MHz, CDCl₃) δ: 7.64 (s, 1H), 7.44 (t, *J* = 9.6 Hz, 2H), 7.24 (t, *J* = 7.8 Hz, 1H), 7.18 (t, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 7.2 Hz, 1H), 6.92 (t, *J* = 7.6 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.46 (s, 1H), 3.98 (t, *J* = 7.8 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.7, 146.6, 132.8, 135.3, 131.8, 130.0, 129.8, 129.0, 127.1, 124.9, 124.7, 122.8, 122.7, 116.8, 111.4, 45.7, 30.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₄BrN₂O 341.0290; found 341.0277.

5-(4-Methoxyphenyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (3aj). Yellow solid

(74 mg, 85% yield), ethyl acetate/petroleum ether = 1:4. mp 170-171 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.45 (d, *J* = 8.4 Hz, 2H), 7.14 (t, *J* = 7.6 Hz, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 6.92-6.88 (m, 3H), 6.71 (d, *J* = 8.0 Hz, 1H), 6.36 (s, 1H), 3.97 (t, *J* = 7.8 Hz, 2H), 3.82 (s, 3H), 2.67 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.5, 160.3, 146.3, 137.2, 128.9, 127.6, 126.5, 125.6, 125.5, 122.7, 114.0, 113.7, 111.2, 54.4, 45.4, 30.9. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₁₆N₂NaO₂ 315.1109; found 315.1093.

5-(*p*-*Tolyl*)-1, 2-*dihydro-3H-pyrazolo*[1, 2-*a*]*cinnolin-3-one* (**3ak**). Yellow solid (77 mg, 93% yield), ethyl acetate/petroleum ether = 1:4. mp 150-151 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.40 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 7.14 (t, *J* = 8.0 Hz, 1H), 7.03 (d, *J* = 7.2 Hz, 1H), 6.90 (t, *J* = 7.4 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 6.41 (s, 1H), 3.96 (t, *J* = 8.0 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.36 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 170.3, 146.5, 139.1, 137.5, 130.3, 129.3, 129.1, 126.7, 126.2, 125.3, 122.7, 114.7, 111.2, 45.5, 30.9, 21.5. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₈H₁₅N₂O 275.1184; found 275.1171.

5-(o-Tolyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3al**). Yellow solid (75 mg, 91% yield), ethyl acetate/petroleum ether = 1:4. mp 127-128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.31-7.25 (m, 2H), 7.23-7.17 (m, 2H), 7.11 (t, *J* = 7.6 Hz, 1H), 6.89 (d, *J* = 7.2 Hz, 1H), 6.85 (t, *J* = 7.2 Hz, 1H), 6.54 (d, *J* = 8.0 Hz, 1H), 5.81 (s, 1H), 3.73 (t, *J* = 8.4 Hz, 2H), 2.68 (t, *J* = 8.2 Hz, 2H), 2.39 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 164.9, 147.5, 137.5, 136.0, 133.7, 130.0, 129.2, 128.9, 128.9, 126.0, 125.6, 124.6, 122.9, 115.8, 111.2, 47.1, 31.0, 19.9. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₈H₁₅N₂O 275.1185; found 275.1172.

5-(*m*-Tolyl)-1, 2-dihydro-3H-pyrazolo[1, 2-a]cinnolin-3-one (**3am**). Yellow solid (76 mg, 92% yield), ethyl acetate/petroleum ether = 1:4. mp 134-135 °C. ¹H NMR (400 MHz, CDCl₃)

δ: 7.31 (d, J = 7.2 Hz, 2H), 7.27 (t, J = 7.8 Hz, 1H), 7.17-7.13 (m, 2H), 7.05 (d, J = 7.2 Hz, 1H), 6.90 (t, J = 7.4 Hz, 1H), 6.71 (d, J = 8.0 Hz, 1H), 6.44(s, 1H), 3.97 (t, J = 7.8 Hz, 2H), 2.67 (t, J = 7.8 Hz, 2H), 2.38 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ: 170.4, 146.6, 138.1, 137.5, 133.1, 129.9, 129.3, 128.4, 126.8, 125.2, 123.5, 122.7, 115.5, 111.3, 45.6, 30.9, 21.7. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₇N₂O 277.1341; found 277.1328.

5-(*Thiophen-2-yl*)-1, 2-*dihydro-3H-pyrazolo*[1, 2-*a*]*cinnolin-3-one* (**3an**). Yellow solid (64 mg, 79% yield), ethyl acetate/petroleum ether = 1:4. mp 126-127 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.30 (d, *J* = 4.8 Hz, 1H), 7.23 (d, *J* = 3.6 Hz, 1H), 7.17 (t, *J* = 7.2 Hz, 1H), 7.06 (d, *J* = 7.2 Hz, 1H), 7.03 (t, *J* = 4.6 Hz, 1H), 6.92 (t, *J* = 7.4 Hz, 1H), 6.76 (d, *J* = 8.0 Hz, 1H), 6.52 (s, 1H), 4.0 (t, *J* = 7.8 Hz, 2H), 2.65 (t, *J* = 7.6 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ : 172.1, 146.1, 136.8, 132.0, 129.3, 127.7, 127.0, 126.4, 126.2, 125.1, 122.8, 114.7, 111.4, 45.2, 30.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₅H₁₃N₂OS 269.0749; found 269.0736.

5-*Cyclohexyl-1*, 2-*dihydro-3H-pyrazolo*[*1*, 2-*a*]*cinnolin-3-one* (**3ao**). Yellow solid (58 mg, 72% yield), ethyl acetate/petroleum ether = 1:4. mp 96-97 °C. ¹H NMR (400 MHz, CDCl₃) δ : 7.07-7.01 (m, 1H), 6.81 (s, 1H), 6.80 (s, 1H), 6.48 (d, *J* = 8.0 Hz, 1H), 5.71 (s, 1H), 3.67 (t, *J* = 8.0 Hz, 1H), 3.24 (t, *J* = 11.4 Hz, 1H), 2.69 (t, *J* = 8.4 Hz, 2H), 1.97 (d, *J* = 12.0 Hz, 2H), 1.80-1.70 (m, 3H), 1.44-1.33 (m, 2H), 1.27-1.14 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ : 166.4, 146.7, 145.6, 128.4, 125.0, 124.3, 122.7, 110.8, 109.9, 46.4, 37.0, 31.9, 31.7, 26.5, 26.3. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₇H₁₉N₂O 267.1497; found 267.1488.

5-*Isopropyl-1*, 2-*dihydro-3H-pyrazolo*[*1*, 2-*a*]*cinnolin-3-one* (**3***a***p**). Yellow solid (54 mg, 78% yield), ethyl acetate/petroleum ether = 1:4. mp 74-75 ℃. ¹H NMR (400 MHz, CDCl₃) δ: 7.07-7.03 (m, 1H), 6.84-6.80 (m, 2H), 6.48 (d, *J* = 8.0 Hz, 1H), 5.75 (s, 1H), 3.68 (t, *J* = 8.4 Hz,

2H), 3.63-3.56 (m, 1H), 2.71(t, *J* = 8.4 Hz, 2H), 1.17 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ: 166.4, 146.6, 146.5, 128.5, 125.1, 124.2, 122.7, 110.8, 109.6, 46.4, 31.7, 27.5, 21.1. HRMS (ESI) m/z: [M - H]⁻ calcd for C₁₄H₁₅N₂O 227.1184; found 227.1174.

8-Bromo-5-(4-bromophenyl)-1,2-dihydro-3H-pyrazolo[1,2-a]cinnolin-3-one (3dd). Yellow solid (115 mg, 92% yield), ethyl acetate/petroleum ether = 1:4. mp 179-180 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 8.4 Hz, 2H), 7.34 (d, *J* = 8.4 Hz, 2H), 7.26 (d, *J* = 8.4 Hz, 1H), 7.14 (s, 1H), 6.57 (d, *J* = 8.4 Hz, 1H), 6.32 (s, 1H), 3.94 (t, *J* = 8.0 Hz, 2H), 2.68 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 145.5, 137.5, 131.8, 131.7, 131.6, 129.1, 127.8, 126.7, 123.5, 115.2, 114.4, 112.9, 45.7, 30.6. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₃Br₂N₂O 420.9374; found 420.9359.

8-*Bromo-5-(p-tolyl)-1,2-dihydro-3H-pyrazolo*[*1,2-a*]*cinnolin-3-one* (*3dk*). Yellow solid (103 mg, 97% yield), ethyl acetate/petroleum ether = 1:4. mp 195-196 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.38 (d, *J* = 8.0 Hz, 2H), 7.23 (d, *J* = 8.8 Hz, 1H), 7.19 (d, *J* = 7.6 Hz, 2H), 7.13 (s, 1H), 6.55 (d, *J* = 8.4 Hz, 1H), 6.29 (s, 1H), 3.92 (t, *J* = 7.8 Hz, 2H), 2.68 (t, *J* = 8.0 Hz, 2H), 2.37 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 169.9, 145.5, 139.6, 138.7, 131.3, 129.9, 129.3, 128.8, 127.3, 126.3, 115.2, 113.2, 112.8, 45.6, 30.8, 21.5. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₈H₁₆BrN₂O 355.0446; found 355.0435.

5-(4-Bromophenyl)-9-methyl-1,2-dihydro-3H-pyrazolo[1,2-a]cinnolin-3-one (3ld). Yellow solid (87 mg, 82% yield), ethyl acetate/petroleum ether = 1:4. mp 227-228 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 6.95 (d, J = 7.6 Hz, 1H), 6.73 (d, J = 7.6 Hz, 1H), 6.55 (s, 1H), 6.45 (s, 1H), 3.98 (t, J = 7.8 Hz, 2H), 2.67 (t, J = 7.8 Hz, 2H), 2.33 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.6, 146.5, 140.1, 135.2, 132.2, 131.6, 127.6, 126.9, 123.4, 122.7, 122.2, 116.2, 112.2, 45.7, 30.7, 22.0. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₈H₁₅BrN₂NaO 377.0265; found 377.0254.

9-*Methyl-5-(p-tolyl)-1,2-dihydro-3H-pyrazolo*[*1,2-a*]*cinnolin-3-one* (**3***l***k**). Yellow solid (63 mg, 73% yield), ethyl acetate/petroleum ether = 1:4. mp 204-205 ℃. ¹H NMR (400 MHz, CDCl₃) δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.18 (d, *J* = 8.0 Hz, 2H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.71 (d, *J* = 7.6 Hz, 1H), 6.54 (s, 1H), 6.41 (s, 1H), 3.97 (t, *J* = 7.8 Hz, 2H), 2.67 (t, *J* = 7.8 Hz, 2H), 2.36 (s, 3H), 2.32 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 146.5, 139.4, 138.8, 136.4, 130.4, 129.2, 126.6, 126.0, 123.2, 122.6, 114.8, 112.1, 45.6, 30.9, 22.0, 21.5. HRMS (ESI) m/z: [M -H]⁻ calcd for C₁₉H₁₇N₂O 289.1341; found 289.1327.

2,2-Dimethyl-5-phenyl-1,2-dihydro-3H-pyrazolo[1,2-a]cinnolin-3-one (**3**oa). Yellow solid (84 mg, 96% yield), ethyl acetate/petroleum ether = 1:4. mp 187-188 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.40-7.33 (m, 5H), 7.11 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 7.2 Hz, 1H), 6.85 (t, *J* = 7.6 Hz, 1H), 6.61 (d, *J* = 8.0 Hz, 1H), 6.22 (s, 1H), 3.66 (s, 2H), 1.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.5, 147.8, 137.1, 133.0, 129.2, 128.9, 128.3, 126.5, 126.3, 124.2, 122.5, 115.6, 111.4, 59.9, 40.7, 23.9. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₉N₂O 291.1497; found 291.1484.

5-(4-Bromophenyl)-2,2-dimethyl-1,2-dihydro-3H-pyrazolo[1,2-a]cinnolin-3-one (**3od**). Yellow solid (107 mg, 97% yield), ethyl acetate/petroleum ether = 1:4. mp 192-193 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 7.6 Hz, 2H), 7.13 (t, *J* = 7.8 Hz, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.86 (t, *J* = 7.4 Hz, 1H), 6.62 (d, *J* = 8.0 Hz, 1H), 6.22 (s, 1H), 3.67 (s, 2H), 1.29 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.7, 147.7, 136.0, 132.0, 131.5, 129.5, 128.0, 126.5, 123.9, 122.9, 122. 6, 116.0, 111. 5, 59.8, 40.7, 23.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₉H₁₈BrN₂O 369.0603; found 369.0587.

2,2-Dimethyl-5-(4-(trifluoromethyl)phenyl)-1,2-dihydro-3H-pyrazolo[1,2-a]cinnolin-3one (**3**oe). Yellow solid (96 mg, 90% yield), ethyl acetate/petroleum ether = 1:4. mp 146-147 \mathbb{C} . ¹H NMR (400 MHz, CDCl₃) δ 7.61 (d, *J* = 8.0 Hz, 2H), 7.48 (d, *J* = 8.4Hz, 2H), 7.15 (t, *J* = 7.6 Hz, 1H), 6.99 (d, *J* = 7.6 Hz, 1H), 6.87 (t, *J* = 7.4 Hz, 1H), 6.63 (d, *J* = 8.0 Hz, 1H), 6.29 (s, 1H), 3.68 (s, 2H), 1.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 172.8, 147.8, 136.5 (q, *J* = 1.6 Hz), 135.5, 130.4 (q, *J* = 32.3 Hz), 129.9, 126.8, 126.7, 125.3 (q, *J* = 4.0 Hz), 124.2 (q, *J* = 270.7 Hz), 123.6, 122.6, 117.4, 111.5, 59.9, 40.7, 23.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₈F₃N₂O 359.1371; found 359.1356.

4-(2,2-Dimethyl-3-oxo-2,3-dihydro-1H-pyrazolo[1,2-a]cinnolin-5-yl)benzonitrile (**3of**). Yellow solid (86 mg, 91% yield), ethyl acetate/petroleum ether = 1:4. mp 190-191 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.0 Hz, 2H), 7.17 (t, *J* = 7.8 Hz, 1H), 7.01 (d, *J* = 7.2 Hz, 1H), 6.88 (t, *J* = 7.6 Hz, 1H), 6.64 (d, *J* = 8.0 Hz, 1H), 6.36 (s, 1H), 3.70 (s, 2H), 1.30 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 173.2, 147.9, 137.5, 135.0, 132.1, 130.3, 127.1, 126.9, 123.3, 122.6, 118.9, 118.4, 111.9, 111.6, 59.9, 40.6, 23.8. HRMS (ESI) m/z: [M + H]⁺ calcd for C₂₀H₁₈N₃O 316.1450; found 316.1439.

2,2-Dimethyl-5-(thiophen-2-yl)-1,2-dihydro-3H-pyrazolo[1,2-a]cinnolin-3-one (3on). Yellow solid (69 mg, 78% yield), ethyl acetate/petroleum ether = 1:4. mp 171-172 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 5.2 Hz, 1H), 7.15-7.09 (m, 2H), 7.01 (t, *J* = 4.4 Hz, 1H), 6.98 (d, *J* = 7.2 Hz, 1H), 6.85 (t, *J* = 7.6 Hz, 1H), 6.65 (d, *J* = 8.0 Hz, 1H), 6.38 (s, 1H), 3.70 (s, 2H), 1.28 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 174.4, 147.5, 136.0, 131.4, 129.2, 127.4, 126.7, 126.6, 126.0, 124.0, 122.4, 115.2, 111.5, 58.9, 40.6, 24.1. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₇N₂OS 297.1062; found 297.1051.

5-*Cyclohexyl-2,2-dimethyl-1,2-dihydro-3H-pyrazolo*[*1,2-a*]*cinnolin-3-one* (**3***oo*). Yellow solid (63 mg, 71% yield), ethyl acetate/petroleum ether = 1:4. mp 103-104 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.04-7.00 (m, 1H), 6.82-6.79 (m, 2H), 6.43 (d, *J* = 7.6 Hz, 1H), 5.66 (s, 1H), 3.39 (s, 2H), 3.30 (t, *J* = 11.4 Hz, 1H), 1.92 (d, *J* = 12.0 Hz, 2H), 1.80-1.70 (m, 3H), 1.44-1.33 (m, 2H), 1.28 (s, 6H), 1.26-1.16 (m, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 170.77, 146.8, 145.4, 128.3, 124.8, 124.0, 122.6, 110.9, 109.1, 60.3, 41.3, 36.6, 31. 9, 26.5, 26.4, 23.4. HRMS (ESI) m/z: [M + Na]⁺ calcd for C₁₉H₂₄N₂NaO 319.1786; found 319.1775.

5-*Isopropyl-2,2-dimethyl-1,2-dihydro-3H-pyrazolo*[*1,2-a*]*cinnolin-3-one* (**3op**). Yellow oli (56 mg, 73% yield), ethyl acetate/petroleum ether = 1:4. ¹H NMR (400 MHz, CDCl₃) δ 7.04-7.44 (m, 1H), 6.80-6.77 (m, 2H), 6.44 (d, *J* = 8.0 Hz, 1H), 5.71 (s, 1H), 3.70-3.62 (m, 1H), 3.40 (s, 2H), 1.29 (s, 6H), 1.15 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 146.9, 146.3, 128.5, 124.9, 123.9, 122.6, 110.9, 109.1, 60.3, 41.3, 29.8, 27.0, 23.4, 21.0. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₆H₂₁N₂O 257.1654; found 257.1642.

3. Gram-Scale Synthesis of 3aa. To a solution of compound 1a (324 mg, 2.0 mmol) and compound 2a (588 mg, 3.0 mmol) in DCE (14 mL) were added [RuCl₂(*p*-cymene)]₂ (122.5 mg, 0.2 mmol) and Zn(OTf)₂ (727 mg, 2.0 mmol). The reaction mixture was stirred at 100 °C on a heating block for 10 min. After cooling to room temperature, the solvent was removed in vacuo and the residue was purified using column chromatography to afford the compound **3aa** as a yellow solid (417 mg, 80% yield).

4. Procedure for the Synthesis of Compound **4.** To a solution of compound **3aa** (52.4 mg, 0.2 mmol) in toluene (2 mL) was added Lawesson's reagent (162 mg, 0.4 mmol). The

reaction mixture was stirred at 100 °C for 2 h. After cooling to room temperature, water (5 mL) was added and the mixture was extracted with ethyl acetate (3×5 mL). The combined organic layers were dried and concentrated under reduced pressure. The residue was purified using preparative TLC to afford the compound **4**.

5-Phenyl-1,2-dihydro-3H-pyrazolo[1,2-a]cinnoline-3-thione (4). Yellow solid (30 mg, 54% yield), dichloromethane/petroleum ether = 1:2. mp 224-225 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.43 (d, *J* = 7.2 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.33 (t, *J* = 6.8 Hz, 1H), 7.22 (t, *J* = 7.8 Hz, 1H), 7.14 (d, *J* = 7.6 Hz, 1H), 6.96 (t, *J* = 7.4 Hz, 1H), 6.72 (d, *J* = 8.0 Hz, 1H), 6.64 (s, 1H), 4.00 (t, *J* = 8.2 Hz, 2H), 3.29 (t, *J* = 8.4 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 189.3, 146.3, 138.2, 132.8, 129.9, 128.6, 128.4, 127.2, 126.3, 123.7, 122.9, 121.0, 110.8, 47.4, 44.2. HRMS (ESI) m/z: [M + H]⁺ calcd for C₁₇H₁₅N₂S 279.0956; found 279.0968.

5. Procedure for the Synthesis of Compound 5. To a solution of 3da (68 mg, 0.2 mmol) in THF/H₂O (5 mL) was added Pd(PPh₃)₄ (185 mg, 0.16 mmol), and K₂CO₃ (248 mg, 1.8 mmol). After 1 h at 45 $^{\circ}$ C in an oil bath, phenylboronic acid (30 mg, 0.24 mmol) was added. The resulting mixture was stirred at 65 $^{\circ}$ C in an oil bath for 8 h under N₂. After cooling to room temperature, water (5 mL) was added and the mixture was extracted with ethyl acetate (3 × 5 mL). The combined organic layers were dried and concentrated under reduced pressure followed by silica gel column chromatography purification to give the coupling product **5**.

5,8-Diphenyl-1,2-dihydro-3H-pyrazolo[1,2-a]cinnolin-3-one (**5**). Yellow solid (55 mg, 81% yield), ethyl acetate/petroleum ether = 1:4. mp 191-192 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.55-7.52 (m, 4H), 7.45-7.32 (m, 7H), 7.30 (s, 1H), 6.79 (d, *J* = 8.4 Hz, 1H), 6.51 (s, 1H), 4.02 (t, *J* = 7.8 Hz, 2H), 2.72 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 170.2, 145.9, 140.2,

```
137.7, 135.8, 133.1, 129.1, 128.9, 128.5, 127.9, 127.3, 126.7, 126.3, 125.5, 125.4, 115.5, 111.7,
45.8, 30.9. HRMS (ESI) m/z: [M + H]<sup>+</sup> calcd for C<sub>23</sub>H<sub>19</sub>N<sub>2</sub>O 339.1497; found 339.1487.
```

6. H/D Exchange Experiments

To a solution of *N*-phenylpyrazolidin-3-one **1a** (49 mg, 0.3 mmol) in DCE (2 mL) and CD₃OD (0.122 mL, 3 mmol) were added [RuCl₂(*p*-cymene)]₂ (18.4 mg, 0.03 mmol) and Zn(OTf)₂ (109 mg, 0.3 mmol). The reaction mixture was stirred at 100 °C on a heating block for 3 min. After cooling to room temperature, the solvent was removed in vacuo and the residue was purified using column chromatography (ethyl acetate/petroleum ether = 1:2) to afford **1a**- d_n in 80% yield. Upon analyzing the ¹H NMR spectrum of the product, the deuteration percentage was determined as 52%.

To a solution of pheylpyrazolidin-3-one **1a** (49 mg, 0.3 mmol) and sulfoxonium ylides **2** (88 mg, 0.45 mmol) in DCE (2 mL) and CD₃OD (0.122 mL, 3 mmol) were added [RuCl₂(*p*-cymene)]₂ (18.4 mg, 0.03 mmol) and Zn(OTf)₂ (109 mg, 0.3 mmol). The reaction mixture was stirred at 100 $^{\circ}$ C on a heating block for 10 min. After cooling to room temperature, the solvent was removed in vacuo and the residue was purified using column chromatography (ethyl acetate/petroleum ether = 1:4) to afford **3aa**-*d*_n in 92% yield. Upon analyzing the ¹H NMR spectrum of the product, the deuteration percentage was determined as 65%.

7. References

- (1) Zhang, Z.; Jiang, H.; Huang, Y. Org. Lett. 2014, 16, 5976-5979.
- (2) Zhu, S.; Shi, K.; Zhu, H.; Jia, Z.-K.; Xia, X.-F.; Wang, D.; Zou, L.-H. Org. Lett. 2020, 22,

1504-1509.

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ca

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ea

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3fa**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ga**

7.487 7.487 7.467 7.467 7.409 7.3388 7.3381 7.3351 7.372 7.325 7.255 7.255 7.2559 7.2559 7.2559 7.25597.2559

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ia**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ja**

7.496 7.493 7.475 7.475 7.397 7.397 7.3243 7.3243 7.3243 7.3243 7.3265 6.9588 6.880 6.880 6.880 6.880 6.880 6.880 6.880 6.880 6.880 6.880 6.880 6.880 6.800 6.2000 6.2000-1.612

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ka

--0.000

7,4577,3397,33487,3237,3237,3117,3117,3117,3117,3227,3217,3227,3227,3227,3227,3227,3217,3227,3227,2231,6502,27012,26012,2701

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ma**

--0.000

S34

7.4897.4767.4767.4757.2477.1407.1407.1407.10397.10397.0047.0397.00607.0397-0.0002.686 2.667 2.647 -1.655

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ab**

7.637 7.615 7.604 7.582 7.582 7.7209 7.7209 7.7200

--0.000

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ae

7.5647.5727.5727.5727.5727.5007.5007.5007.5007.5007.0077.0077.0077.0076.9416.5226.57366.57366.57366.57366.57366.57367.566.57367.0077.07097.0077.00007.0000

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3af**

$\begin{array}{c} 8.232\\ 8.210\\ 7.643\\ 7.621\\ 7.621\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.107\\ 7.108\\ 6.942\\ 6.942\\ 6.942\\ 6.946\\ 6.631\\ 6.631\\ 6.631\\ 6.631\\ 6.631\\ 6.631\\ 7.106\\ 7.126\\ 7.$

--0.000

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ag**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ah**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ai**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3aj**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 3ak

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3al**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3am**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3an**

7.2647.0627.0627.0617.0517.0517.0517.0517.0517.0517.0517.0517.0517.0206.4876.4876.4876.4876.4876.4875.7125.7125.7125.7123.5683.5683.5687.57387.57387.57387.57387.57387.57387.57387.57387.57387.57387.57387.57387.57387.57387.57387.77041.72221.72321.725521.72562

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ap**

S50

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3dk**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3ld**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3lk**

S57

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3on**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 300

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound **3op**

¹³C NMR Spectrum (100 MHz, CDCl₃) of Compound 4

Figure S1. Crystal structure of 3la (35% probability level for the thermal ellipsoids).

Formula	$C_{18}H_{16}N_2O$		
Formula weight	276.33		
Temperature	293 (2) K		
Wavelength	0.71000 Å		
Crystal system	triclinic		
Space group	P1		
Unit cell dimensions	a = 5.8988(4) Å, $a = 106.781(6)$ deg.		
	$b = 11.1914(8)$ Å, $\beta = 101.292(6)$ deg.		
	$c = 11.6421(8)$ Å, $\gamma = 96.496(6)$ deg.		
Volume	709.71(9) Å ³		
Ζ	4		
Density (calculated)	1.293 g / cm ³		
Absorption coefficient	0.081 mm ⁻¹		
<i>F</i> (000)	292.0		
Crystal	0.27 x 0.19 x 0.15 mm		
Theta range for data collection	7.154 to 58.19 deg		
Limiting indices	-7<=h<=7, -13<=k<=9, -13<=l<=15		
Reflections collected	5511		
Independent reflections	4066 [R(int) = 0.0241]		
Data / restraints / parameters	4066 / 3 / 381		
Goodness-of-fit on F^2	1.045		
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.0450, wR_2 = 0.0992$		
<i>R</i> indices (all data)	$R_1 = 0.0529, wR_2 = 0.1046$		
Largest diff. peak and hole	0.18 and -0.23 e. $Å^{-3}$		

Table S1.	Crystal Data	ι for Com	pound 3la
-----------	--------------	-----------	------------------