Electronic Supplementary Information

Phosphine-catalyzed γ-addition of nitroacetates to allenoates for enantioselective creation of α,α-disubstituted α-amino acids precursors

Kaizhi Li^a and Yixin Lu*^{b,c}

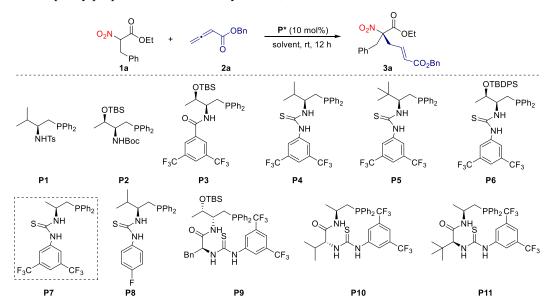
^aBiophamaceutical Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.

^bDepartment of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.

^cJoint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207, China.

*Email: chmlyx@nus.edu.sg

Table of contents


I. General remarks	2
II. Optimization of the reaction conditions	2
III. Representative procedure for the enantioselective phosphine-catalyzed	<i>γ</i> -addition
of nitroacetates with allenoates	5
IV. Experimental data for the described substances	5
V. Synthetic manipulation of the product.	53
VI. Determination of the absolute configuration of 5b	57
VII. References	
VIII. Copies of ¹ H and ¹³ C NMR spectra	60

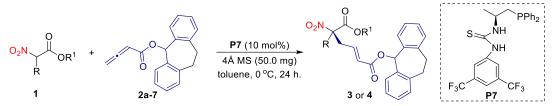
I. General remarks

Unless otherwise specified, all reactions were carried out under a nitrogen atmosphere. CHCl3 were used without further purification. All chemicals were used without further purification as commercially available unless otherwise noted. Thin-layer chromatography (TLC) was performed on silica gel plates (60F-254) using UV-light (254 and 365 nm). Flash chromatography was conducted on silica gel (300-400 mesh). NMR spectra were recorded on a Bruker AMX500 (500 MHz) spectrometer. Chemical shifts were reported in parts per million (ppm) The ¹H NMR (500 MHz) chemical shifts were measured relative to CDCl₃ as the internal reference (CDCl₃: δ = 7.26 ppm). The ¹³C NMR (125 MHz) chemical shifts were given using CDCl₃ as the internal standard (CDCl₃: δ = 77.16 ppm). All high resolution mass spectra (HRMS) were obtained on a Finnigan/MAT 95XL-T spectrometer. Optical rotations were measured using an Anton Paar MCP-100 polarimeter. Enantiomeric excesses were determined by HPLC analysis on a chiral stationary phase. The racemic sample was prepared by MePPh₂ catalysis. Catalysts were synthesized by following our previously reported procedures.¹ Nitroacetates were prepared according to the literatures.²

II. Optimization of the reaction conditions

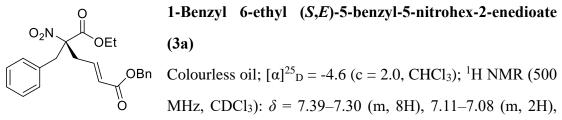
Table S1: Optimization of the phosphine-catalyzed enantioselective γ -addition of ethyl 2-nitro-3-phenylpropanoate **1a** with benzyl buta-2,3-dienoate **2a**^{*a*}

Entry	Cat. (mol%)	Solvent	Yield $(\%)^b$	<i>Ee</i> (%) ^{<i>c</i>}
1	MePPh ₂ (10)	toluene	90	
2	P1 (10)	toluene	91	27
3	P2 (10)	toluene	89	19
4	P3 (10)	toluene	75	7
5	P4 (10)	toluene	93	65
6	P5 (10)	toluene	87	17
7	P6 (10)	toluene	86	36
8	P7 (10)	toluene	94	77
9	P8 (10)	toluene	68	39
10	P9 (10)	toluene	65	9
11	P10 (10)	toluene	89	3
12	P11 (10)	toluene	trace	
13	P7 (10)	CH ₂ Cl ₂	90	66
14	P7 (10)	CHCl ₃	89	72
15	P7 (10)	THF	n.d.	
16	P7 (10)	Et ₂ O	90	73
17	P7 (10)	EtOAc	89	55
18	P7 (10)	CH ₃ CN	81	38
19	P7 (10)	PhCl	90	75
20	P7 (10)	dioxane	88	63
21	P7 (10)	PhCF ₃	88	72
22^d	P7 (10)	toluene	89	64
23 ^e	P7 (10)	toluene	91	68
24 ^f	P7 (10)	toluene	92	76
25 ^g	P7 (10)	toluene	91	75
26 ^{<i>h</i>}	P7 (10)	toluene	88	72


^{*a*} Reaction conditions: **1a** (0.05 mmol), **2a** (0.075 mmol, 1.5 equiv.) and cat. in solvent (1.0 mL) at room temperature for 12 h. ^{*b*} Yield of isolated **3a**. ^{*c*} The *ee* values of **3a** was determined by HPLC analysis on a chiral-stationary-phase column. ^{*d*} PhOH (0.5 equiv.) was used as the additive. ^{*e*} PhCOOH (0.1 equiv.) was used as the additive. ^{*f*} 0 °C for 24 h. ^{*g*} -10 °C for 72 h. ^{*h*} 4 Å MS (50.0 mg) was used as the additive. n.d. = not detected.

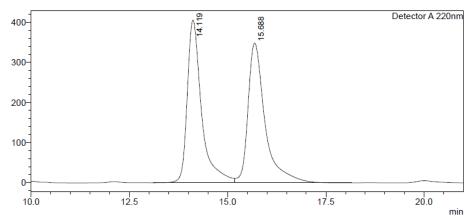
PPh₂ ÑН P7 (10 mol%) toluene, rt, 12 h F_3 1a 2 3 OCHPh₂ OBn O^tBu SBr || 0 2a-3 2a-4 2a 2a-1 2a-2 OBn ő ö 2a-7 2a-8 2a-5 2a-6 Yield $(\%)^b$ *Ee* (%)^c Allenoate (2) Product (3) Entry 1 94 2a 3a 77 2 2a-1 3a-1 96 68 3 2a-2 97 3a-2 66 4 2a-3 3a-3 90 63 5 2a-4 3a-4 93 80 6 2a-5 3a-5 91 83 7 2a-6 3a-6 91 83 8 2a-7 3a-7 92 80 9 2a-7 3a-8 n.d. -- 10^{d} 2a-6 3a-6 91 83 11^e 2a-7 3a-7 92 87 12^{*d,e*} 2a-7 3a-7 93 90 $13^{e,f}$ 2a-7 3a-7 91 85 14 2a-8 3a-8 n.d.

Table S2: Optimization of the phosphine-catalyzed enantioselective γ -addition of ethyl 2-nitro-3-phenylpropanoate **1a** with allenoates **2**^{*a*}

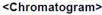

^{*a*} Reaction conditions: **1a** (0.05 mmol), **2** (0.075 mmol, 1.5 equiv.) and **P7** (10.0 mol%) in toluene (1.5 mL) at room temperature for 12 h. ^{*b*} Yield of isolated **3**. ^{*c*} The *ee* values of **3** was determined by HPLC analysis on a chiral-stationary-phase column. ^{*d*} 0 °C for 24 h. ^{*e*} 4 Å MS (50.0 mg) was used as the additive. ^{*f*}-10 °C for 72 h. n.d. = not detected.

III. Representative procedure for the enantioselective phosphine-catalyzed *y*-addition of nitroacetates with allenoates

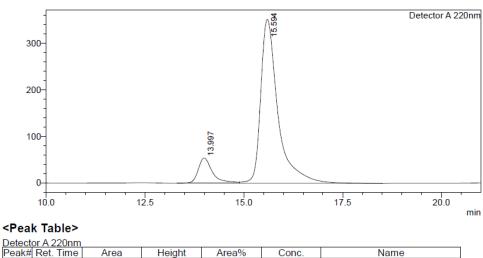
A dried tube with a magnetic stir bar was charged with nitroacetates **1** (0.05 mmol, 1.0 equiv.), catalyst **P7** (0.005 mmol, 10 mol%), 4 Å MS (50.0 mg), followed by the addition of toluene (1.0 mL). Then allenoate **2a-7** (0.075 mmol, 1.5 equiv.) was dissolved in toluene (0.5 mL) and dropwise added into the reaction mixture at 0 °C. The reaction mixture was then stirred at that temperature for 24 hours. Then the solvent was evaporated and the residue was purified by column chromatography on silica gel using hexane/ethyl acetate as the eluent to afford the γ -addition products **3** or **4**.


IV. Experimental data for the described substances

6.86 (dt, J = 15.0, 7.5 Hz, 1H), 5.99 (d, J = 16.0 Hz, 1H), 5.20 (s, 2H), 4.30–4.23 (m, 2H), 3.62 (d, J = 23.5 Hz, 1H), 3.50 (d, J = 24.0 Hz, 1H), 2.95 (d, J = 12.5 Hz, 2H), 1.25 (t, J = 12.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.78, 165.28, 139.82, 135.87, 132.62, 130.04, 129.04, 128.74, 128.48, 128.42, 128.30, 126.70, 95.42, 66.63, 63.35, 40.12, 36.13, 13.92 ppm. HRMS (ESI) m/z calcd for C₂₂H₂₃NNaO₆ [M+Na]⁺ 420.1418, found 420.1410. The$ *ee* $value was 77%, t_R (minor) = 13.997 min, t_R (major) = 15.594 min (Chiralpak IF, <math>\lambda = 220$ nm, 2.5% *i*PrOH/hexane, flow rate = 1.0 mL/min).

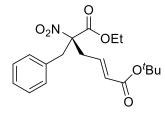

<Chromatogram>

m٧



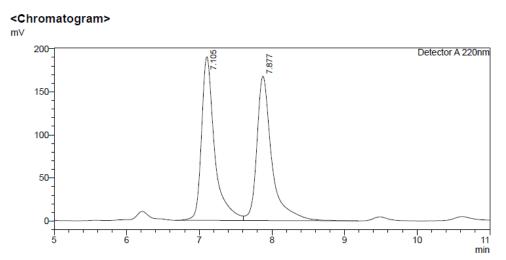
<Peak Table>

Detect	or A 220nm					
Peak#	Ret. Time	Area	Height	Area%	Conc.	Name
1	14.119	10289698	405641	49.493	49.493	
2	15.688	10500476	348450	50.507	50.507	
Total		20790174	754091	100.000		



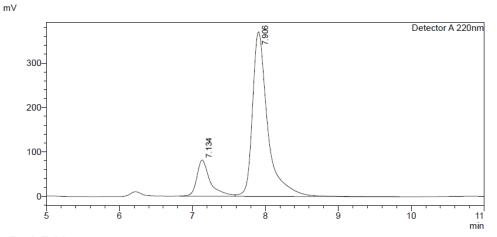
mV

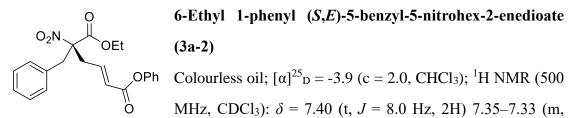
<٢	еак	lab	le>


Delecii						
Peak#	Ret. Time	Area	Height	Area%	Conc.	Name
1	13.997	1373174	54313	11.358	11.358	
2	15.594	10716939	352070	88.642	88.642	
Total		12090112	406383	100.000		

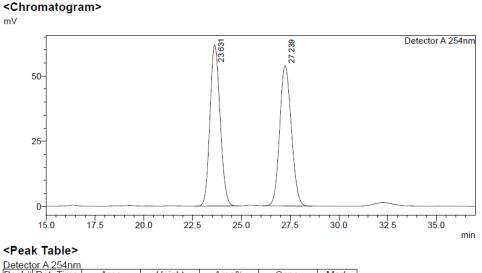
1-(*tert*-Butyl) 6-ethyl (S,E)-5-benzyl-5-nitrohex-2enedioate (3a-1)

Colourless oil; $[\alpha]^{25}_{D} = -3.1$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ = 7.32–7.30 (m, 3H), 7.10–7.09 (m,


2H), 6.70 (dt, J = 15.0, 7.5 Hz, 1H), 5.87 (dt, J = 15.5, 1.0 Hz, 1H), 4.31-4.24 (m, 2H), 3.61 (d, J = 14.0 Hz, 1H), 3.49 (d, J = 14.5 Hz, 1H), 2.91 (d, J = 7.5 Hz, 2H), 1.48 (s, 9H), 1.27 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.87$, 164.83, 137.75, 132.70, 130.04, 129.02, 128.85, 128.26, 95.50, 81.08, 63.29, 39.95, 35.88, 28.23, 13.95 ppm. HRMS (ESI) m/z calcd for $C_{19}H_{25}NNaO_6$ [M+Na]⁺ 386.1574, found 386.1574. The *ee* value was 68%, t_R (minor) = 7.134 min, t_R (major) = 7.906 min (Chiralpak IF, λ = 220 nm, 2.5% *i*PrOH/hexane, flow rate = 1.0 mL/min).

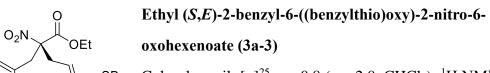

Detect	Detector A 220nm									
Peak#	Ret. Time	Area	Height	Area%	Conc.	Name				
1	7.105	2388026	190032	49.727	49.727					
2	7.877	2414250	167815	50.273	50.273					
Total		4802276	357846	100.000						

<Chromatogram>



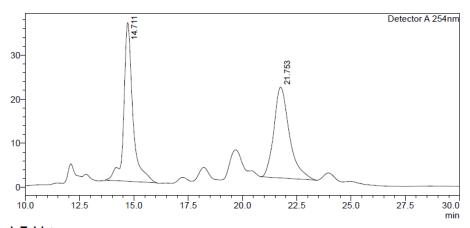
<Peak Table>


Detect	or A 220nm					
Peak#	Ret. Time	Area	Height	Area%	Conc.	Name
1	7.134	1028612	81419	16.093	16.093	
2	7.906	5363224	370656	83.907	83.907	
Total		6391836	452074	100.000		



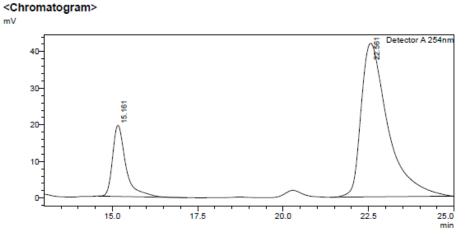
3H), 7.27–7.24 (m, 1H), 7.14–7.11 (m, 4H), 7.01 (dt, J = 15.0, 7.5 Hz, 1H), 6.14 (d, J = 15.5 Hz, 1H), 4.36–4.26 (m, 2H), 3.66 (d, J = 14.5 Hz, 1H), 3.55 (d, J = 14.0 Hz, 1H), 3.03 (dd, J = 7.5, 1.0 Hz, 2H), 1.30 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.76$, 163.82, 150.61, 141.43, 132.55, 130.05, 129.59, 129.10, 128.37, 126.23, 126.10, 121.61, 95.38, 63.45, 40.25, 36.30, 13.98 ppm. HRMS (ESI) m/z calcd for C₂₁H₂₁NNaO₆ [M+Na]⁺ 406.1261, found 406.1258. The *ee* value was 66%, t_R (major) = 25.602 min, t_R (minor) = 29.580 min (Chiralpak IC, $\lambda = 254$ nm, 2.5% *i*PrOH/hexane, flow rate = 1.0 mL/min).

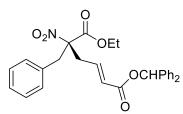
Peak#	Ret. Time	Area	Height	Area%	Conc.	Mark
1	23.631	2243691	61880	50.069	50.069	
2	27.239	2237474	53820	49.931	49.931	
Total		4481165	115700	100.000		



SBn Colourless oil; $[\alpha]^{25}_{D} = -0.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.34-7.22$ (m, 8H), 7.09–7.07 (m, 2H),

6.75 (dt, J = 15.0, 7.5 Hz, 1H), 6.19 (dt, J = 15.5, 1.0 Hz, 1H), 4.31–4.24 (m, 2H), 4.20 (s, 2H), 3.62 (d, J = 14.0 Hz, 1H), 3.50 (d, J = 14.5 Hz, 1H), 2.92–2.90 (m, 2H), 1.26 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 188.51$, 165.76, 137.29, 135.55, 133.09, 132.53, 130.03, 129.08, 129.05, 128.83, 128.35, 127.56, 95.38, 63.43, 40.24, 36.12, 33.35, 13.97 ppm. HRMS (ESI) m/z calcd for C₂₂H₂₃NNaO₆S [M+Na]⁺ 452.1138, found 452.1139. The *ee* value was 63%, t_R (minor) = 15.161 min, t_R (major) = 22.561 min (Chiralpak IF, $\lambda = 254$ nm, 2.5% *i*PrOH/hexane, flow rate = 1.0 mL/min).

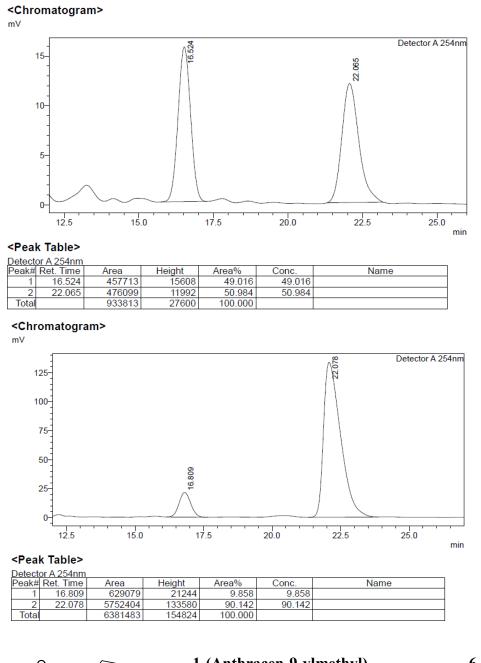

<Chromatogram>

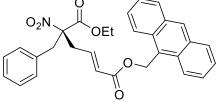

<Peak Table>

Detect	or a 254nm					
Peak#	Ret. Time	Area	Height	Area%	Conc.	Name
1	14.711	1041313	35976	50.355	50.355	
2	21.753	1026630	20624	49.645	49.645	
Total		2067942	56601	100.000		

<Peak Table>

Detect	or A 254nm					
Peak#	Ret. Time	Area	Height	Area%	Conc.	Name
1	15.161	526888	19416	18.675	18.675	
2	22.561	2294467	41953	81.325	81.325	
Total		2821356	61369	100.000		


1-Benzhydryl

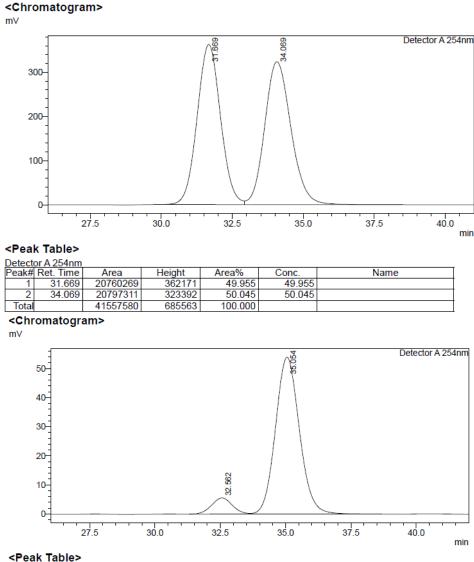

6-ethyl

(S,E)-5-benzyl-5-nitrohex-2-enedioate (3a-4)

h₂ Colourless oil; $[α]^{25}_D = -4.1$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.36-7.28$ (m, 13H), 7.10–7.09

(m, 2H), 6.95 (s, 1H), 6.91 (dt, J = 15.0, 7.5 Hz, 1H), 6.07 (d, J = 15.5 Hz, 1H), 4.28– 4.23 (m, 2H), 3.63 (d, J = 14.5 Hz, 1H), 3.51 (d, J = 14.5 Hz, 1H), 2.96 (d, J = 7.5 Hz, 2H), 1.23 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.80$, 164.49, 140.21, 140.10, 132.59, 130.04, 129.04, 128.68, 128.31, 128.15, 127.25, 127.24, 126.71, 95.40, 77.37, 63.36, 40.22, 36.18, 13.92 ppm. HRMS (ESI) m/z calcd for $C_{28}H_{27}NNaO_6 [M+Na]^+$ 496.1731, found 496.1728. The *ee* value was 80%, t_R (minor) = 16.809 min, t_R (major) = 22.078 min (Chiralpak IC, λ = 254 nm, 2.5% *i*PrOH/hexane, flow rate = 1.0 mL/min).

 1-(Anthracen-9-ylmethyl)
 6-ethyl

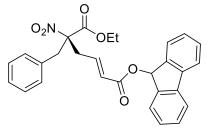

 (S,E)-5-benzyl-5-nitrohex-2-enedioate (3a-5)

 Pale yellow solid; $[\alpha]^{25}_{D} = -4.7$ (c = 2.0, CHCl₃);

 ¹H NMR (500 MHz, CDCl₃): $\delta = 8.53$ (s, 1H),

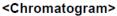
8.35 (d, J = 9 Hz, 2H), 8.04 (d, J = 8.5 Hz, 2H), 7.61–7.58 (m, 2H), 7.52–7.49 (m,

2H), 7.26–7.25 (m, 3H), 7.05–7.03 (m, 2H), 6.84 (dt, J = 15.0, 7.5 Hz, 1H), 6.24 (s, 2H), 5.95 (d, J = 15.5 Hz, 1H), 4.23–4.16 (m, 2H), 3.58 (d, J = 14.0 Hz, 1H), 3.45 (d, J = 14.5 Hz, 1H), 2.89 (d, J = 7.5 Hz, 2H), 1.15 (t, J = 7.5 Hz, 3H). ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.73$, 165.65, 139.97, 132.54, 131.52, 131.21, 129.98, 129.46, 129.27, 128.99, 128.24, 126.85, 126.59, 126.08, 125.28, 124.03, 95.32, 63.31, 59.24, 40.02, 36.01, 13.82 ppm. HRMS (ESI) m/z calcd for C₃₀H₂₇NNaO₆ [M+Na]⁺ 520.1731, found 520.1736. The *ee* value was 83%, t_R (major) = 35.054 min, t_R (minor) = 32.562 min (Chiralpak IC, $\lambda = 254$ nm, 2.5% *i*PrOH/hexane, flow rate = 1.0 mL/min).

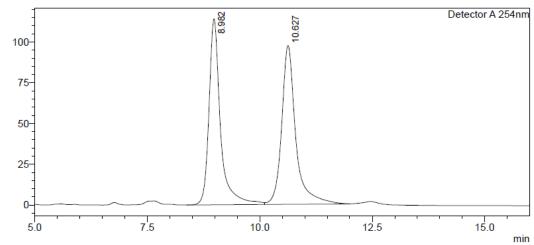


Detector A 254nm

Peak#	Ret. Time	Area	Height	Area%	Conc.	Name
1	32.562	307533	5556	8.220	8.220	
2	35.054	3433724	53907	91.780	91.780	
Total		3741257	59463	100.000		

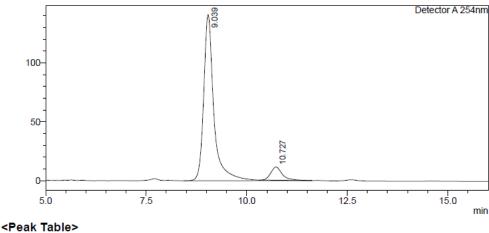

6-Ethyl

1-(9H-fluoren-9-yl)



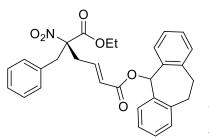
(*S,E*)-5-benzyl-5-nitrohex-2-enedioate (3a-6) Colourless oil; $[\alpha]^{25}_{D} = -5.5$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.68$ (d, J = 7.5 Hz, 2H), 7.56 (d, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz,

2H), 7.31–7.28 (m, 5H), 7.10–7.08 (m, 2H), 6.92 (dt, J = 15.0, 7.5 Hz, 1H), 6.86 (s, 1H), 6.04 (d, J = 15.5 Hz, 1H), 4.31–4.22 (m, 2H), 3.63 (d, J = 14.0 Hz, 1H), 3.51 (d, J = 14.0 Hz, 1H), 2.96 (d, J = 7.5 Hz, 2H), 1.24 (t, J = 7.5 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.18, 165.77, 142.00, 141.20, 140.39, 132.57, 130.04, 129.72, 129.05, 128.31, 128.03, 126.58, 126.11, 126.10, 120.20, 95.37, 75.55, 63.37, 40.17, 36.20, 13.94 ppm. HRMS (ESI) m/z calcd for C₂₈H₂₅NNaO₆ [M+Na]⁺ 494.1574, found 494.1577. The$ *ee* $value was 83%, t_R (major) = 9.039 min, t_R (minor) = 10.727 min (Chiralpak IA, <math>\lambda = 254$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

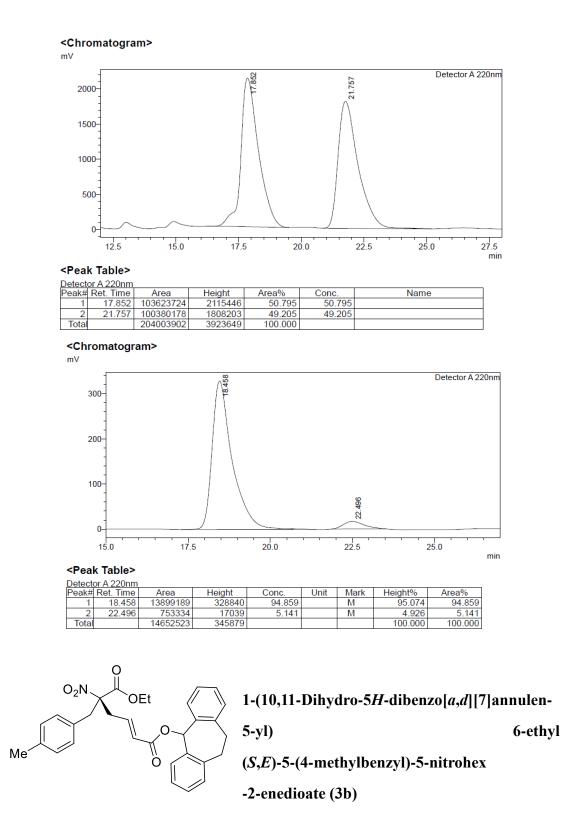


<Peak Table>

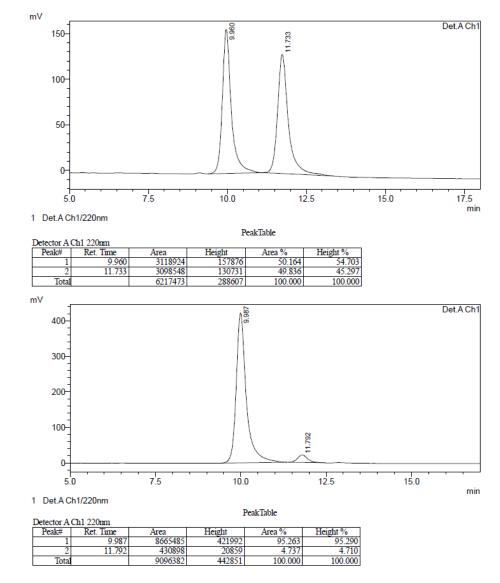
Detect	or A 254nm					
Peak#	Ret. Time	Area	Height	Area%	Conc.	Name
1	8.982	2029242	114076	49.001	49.001	
2	10.627	2111962	97395	50.999	50.999	
Total		4141203	211471	100.000		

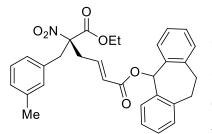

<Chromatogram>

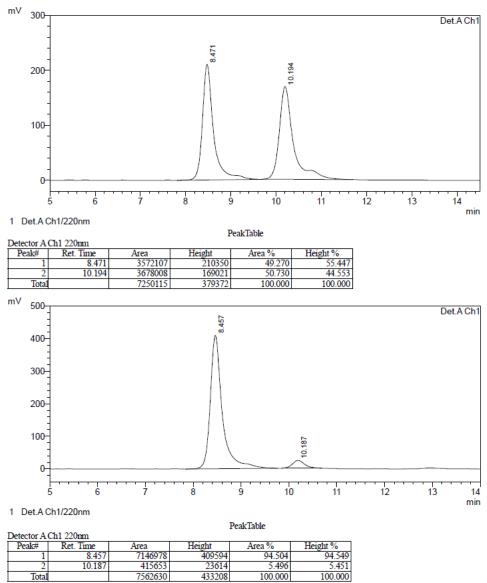
Detector A 254nm

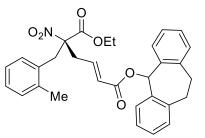

Dele	<u>=CII</u>	JEA 204000					
Pea	k#	Ret. Time	Area	Height	Area%	Conc.	Name
	1	9.039	2489900	140837	91.736	91.736	
	2	10.727	224315	11197	8.264	8.264	
To	tal		2714215	152034	100.000		

1-(10,11-Dihydro-5H-dibenzo[a,d][7]annulen-5-yl)6-ethyl(S,E)-5-benzyl-5-nitrohex-2-enedioate(3a-7)

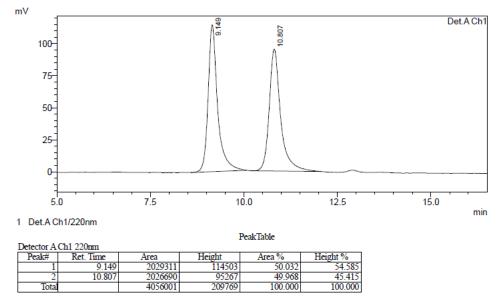

Colourless oil; $[\alpha]^{25}_{D} = -2.9$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.44-7.43$ (m, 2H),

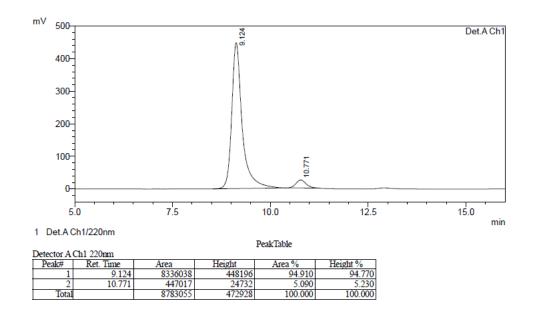

7.30–7.24 (m, 5H), 7.20–7.17 (m, 4H), 7.08–7.06 (m, 2H), 6.95 (s, 1H), 6.83 (dt, J = 15.0, 7.5 Hz, 1H), 5.98 (dt, J = 15.5, 1.0 Hz, 1H), 4.28–4.18 (m, 2H), 3.60 (d, J = 14.0 Hz, 1H), 3.60–3.54 (m, 2H), 3.47 (d, J = 14.5 Hz, 1H), 3.08–3.02 (m, 2H), 2.92 (dt, J = 8.0, 1.5 Hz, 2H), 1.19 (t, J = 7.0 Hz, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.79, 164.31, 140.25, 139.78, 136.49, 132.57, 130.49, 130.01, 129.97, 129.01, 128.27, 126.99, 126.31, 95.35, 79.68, 63.34, 40.12, 36.06, 32.52, 13.85 ppm. HRMS (ESI) m/z calcd for C₃₀H₂₉NNaO₆ [M+Na]⁺ 522.1887, found 522.1877. The$ *ee* $value was 90%, t_R (major) = 18.458 min, t_R (minor) = 22.496 min (Chiralpak IC, <math>\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

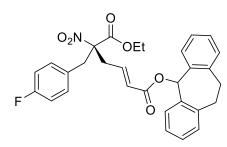

Colourless oil; $[\alpha]^{25}_{D} = -4.4$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.44$ (d, J = 7.5 Hz, 2H), 7.27–7.24 (m, 2H), 7.20–7.17 (m, 4H), 7.10 (d, J = 7.5 Hz, 2H), 6.96–6.94 (m, 3H), 6.83 (dt, J = 15.0, 7.5 Hz, 1H), 5.97 (d, J = 15.5 Hz, 1H), 4.26–4.20 (m, 2H), 3.60–3.54 (m, 2H), 3.57 (d, J = 14.5 Hz, 1H), 3.43 (d, J = 14.5 Hz, 1H), 3.08–3.02 (m, 2H), 2.92–2.90 (m, 2H), 2.31 (s, 3H), 1.20 (t, J = 7.0 Hz, 3H) ppm. ¹³C


NMR (125 MHz, CDCl₃): δ = 165.84, 164.33, 140.23, 139.90, 138.04, 136.49, 130.48, 129.96, 129.84, 129.70, 129.38, 128.99, 126.91, 126.30, 95.40, 79.64, 63.28, 39.73, 35.98, 32.51, 21.18, 13.86 ppm. HRMS (ESI) m/z calcd for C₃₁H₃₁NNaO₆ [M+Na]⁺ 536.2044, found 536.2036. The *ee* value was 90%, t_R (major) = 9.987 min, t_R (minor) = 11.792 min (Chiralpak IA, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-(3-methylbenzyl)-5-nitrohex-2enedioate (3c) Colourless oil; $[\alpha]^{25}_{D} = -5.3$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.40-7.43$ (m, 2H), 7.27–7.24 (m, 2H), 7.20–7.16 (m, 5H), 7.09 (d, J = 7.5 Hz, 1H), 6.95 (s, 1H), 6.87– 6.80 (m, 3H), 5.96 (d, J = 15.5 Hz, 1H), 4.26–4.20 (m, 2H), 3.60–3.53 (m, 2H), 3.56 (d, J = 14.5 Hz, 1H), 3.44 (d, J = 14.5 Hz, 1H), 3.08–3.02 (m, 2H), 2.91 (d, J = 7.5 Hz, 2H), 2.29 (s, 3H), 1.20 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.84$, 164.33, 140.23, 139.89, 138.69, 136.50, 132.45, 130.73, 130.49, 129.94, 129.01, 128.99, 128.87, 127.02, 126.96, 126.31, 95.39, 79.64, 63.30, 40.05, 36.09, 32.52, 21.45, 13.87 ppm. HRMS (ESI) m/z calcd for C₃₁H₃₁NNaO₆ [M+Na]⁺ 536.2044, found 536.2049. The *ee* value was 89%, t_R (major) = 8.457 min, t_R (minor) = 10.187 min (Chiralpak IA, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

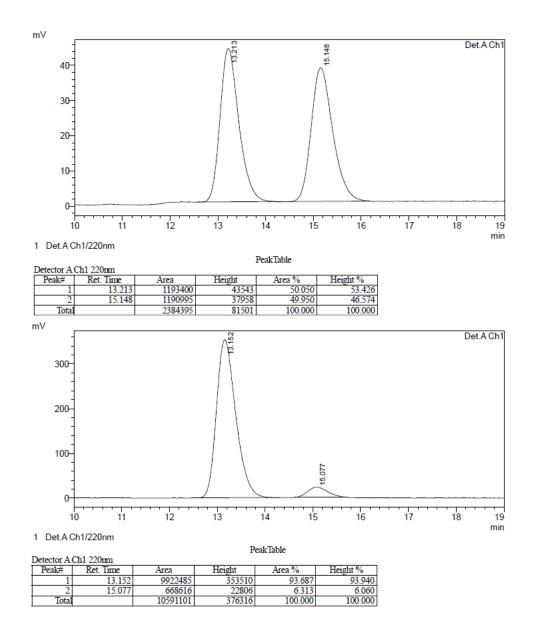


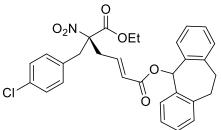



1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-(2-methylbenzyl)-5-nitrohex-2enedioate (3d)

Colourless oil; $[\alpha]^{25}_{D} = -6.9$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.5 Hz, 2H),

7.26–7.23 (m, 2H), 7.20–7.09 (m, 7H), 6.99 (d, J = 7.5 Hz, 1H), 6.94 (s, 1H), 6.83 (dt, J = 15.0, 7.5 Hz, 1H), 5.91 (d, J = 15.5 Hz, 1H), 4.25–4.14 (m, 2H), 3.69–3.61 (m, 2H), 3.58–3.52 (m, 2H), 3.07–3.01 (m, 2H), 2.99–2.90 (m, 2H), 2.26 (s, 3H), 1.15 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.12$, 164.27, 140.20, 140.06, 137.49, 136.52, 131.25, 131.20, 130.46, 130.10, 129.88, 128.95, 128.11, 126.67, 126.44, 126.29, 95.59, 79.50, 63.33, 36.81, 36.64, 32.52, 19.90, 13.76 ppm. HRMS (ESI) m/z calcd for C₃₁H₃₁NNaO₆ [M+Na]⁺ 536.2044, found 536.2041. The *ee* value was 90%, t_R (major) = 9.124 min, t_R (minor) = 10.771 min (Chiralpak IA, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

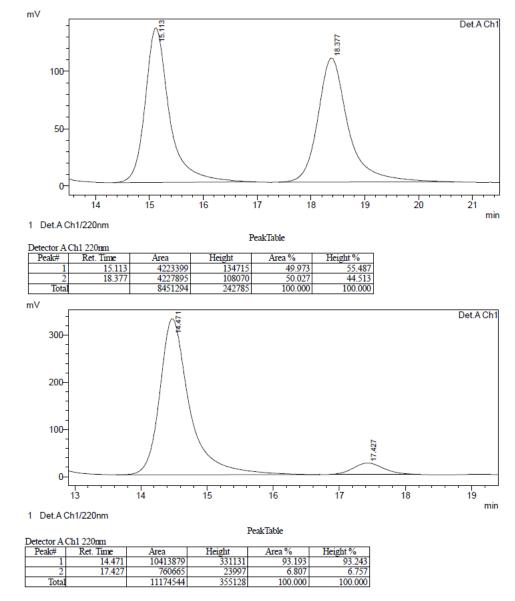


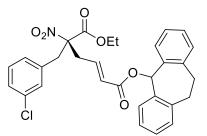


1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5yl) 6-ethyl (*S*,*E*)-5-(4-fluorobenzyl)-5-nitrohex-2-enedioate (3e)

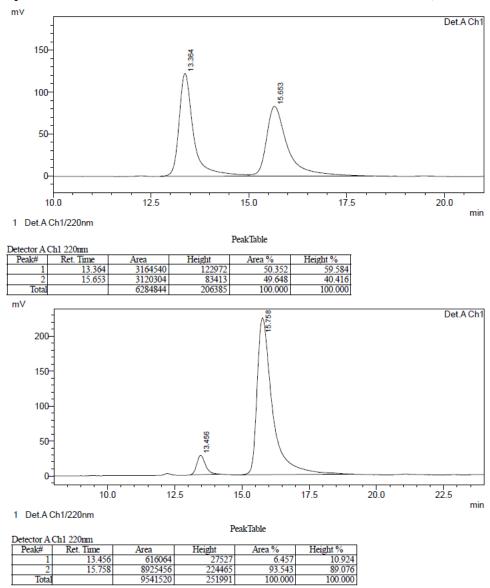
Colourless oil; $[\alpha]^{25}_{D} = -5.5$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.44-7.42$ (m, 2H),

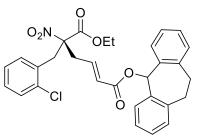
7.27–7.24 (m, 2H), 7.19 (d, J = 7.0 Hz, 4H), 7.06–7.03 (m, 2H), 7.00–6.96 (m, 2H), 6.94 (s, 1H), 6.80 (dt, J = 15.0, 7.5 Hz, 1H), 5.98 (d, J = 15.5 Hz, 1H), 4.26–4.19 (m, 2H), 3.60–3.65 (m, 2H), 3.56 (d, J = 14.5 Hz, 1H), 3.43 (d, J = 14.5 Hz, 1H), 3.07– 3.01 (m, 2H), 2.96–2.86 (m, 2H), 1.19 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.67$, 164.27, 162.29 (d, J = 246.3 Hz), 140.29, 139.51, 136.43, 131.66 (d, J = 8.8 Hz), 130.50, 130.05 (d, J = 1.3 Hz), 129.04, 128.08, 127.12, 126.33, 116.00 (d, J = 21.3 Hz), 95.21, 79.82, 63.43, 39.36, 36.09, 32.53, 13.86 ppm. HRMS (ESI) m/z calcd for C₃₀H₂₈FNNaO₆ [M+Na]⁺ 540.1793, found 540.1792. The *ee* value was 87%, t_R (major) = 13.152 min, t_R (minor) = 15.077 min (Chiralpak IC, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).



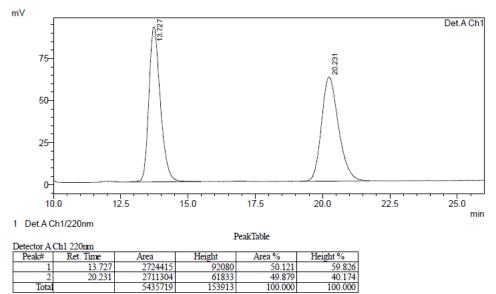

1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5 -yl) 6-ethyl (*S*,*E*)-5-(4-chlorobenzyl)-5nitrohex-2-enedioate (3f)

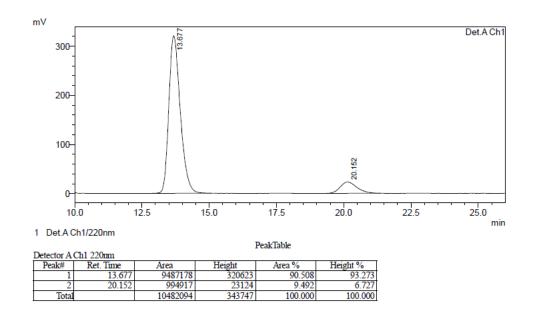
Colourless oil; $[\alpha]^{25}_{D} = -1.5$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.43$ (d, J = 7.5 Hz,

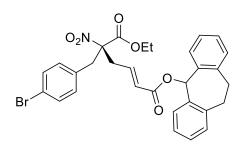

2H), 7.26–7.25 (m, 4H), 7.19 (d, J = 7.5 Hz, 4H), 7.00 (d, J = 8.5 Hz, 2H), 6.95 (s, 1H), 6.80 (dt, J = 15.0, 7.5 Hz, 1H), 5.98 (d, J = 15.5 Hz, 1H), 4.27–4.20 (m, 2H), 3.60–3.55 (m, 2H), 3.56 (d, J = 14.5 Hz, 1H), 3.43 (d, J = 14.5 Hz, 1H), 3.08–3.02 (m, 2H), 2.96–2.86 (m, 2H), 1.19 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.58$, 164.25, 140.29, 139.40, 136.42, 134.42, 131.34, 130.50, 130.05, 129.22,


129.04, 128.08, 127.18, 126.32, 95.08, 79.84, 63.48, 39.47, 36.10, 32.53, 13.86 ppm. HRMS (ESI) m/z calcd for $C_{30}H_{28}{}^{35}ClNNaO_6$ [M+Na]⁺ 556.1497, found 556.1487, $C_{30}H_{28}{}^{37}ClNNaO_6$ [M+Na]⁺ 557.1531, found 557.1538. The *ee* value was 86%, t_R (major) = 14.471 min, t_R (minor) = 17.427 min (Chiralpak IA, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-(3-chlorobenzyl)-5-nitrohex-2enedioate (3g) Colourless oil; $[\alpha]^{25}_{D} = -6.3$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.44-7.42$ (m, 2H), 7.27–7.22 (m, 4H), 7.19 (d, J = 7.0 Hz, 4H), 7.08 (s, 1H), 6.96 (d, J = 7.5 Hz, 1H), 6.94 (s, 1H), 6.79 (dt, J = 15.0, 7.5 Hz, 1H), 5.98 (d, J = 15.5 Hz, 1H), 4.28–4.19 (m, 2H), 3.60–3.55 (m, 2H), 3.55 (d, J = 14.5 Hz, 1H), 3.45 (d, J = 14.5 Hz, 1H), 3.07– 3.02 (m, 2H), 2.92 (d, J = 7.5 Hz, 2H), 1.20 (t, J = 7.0 Hz, 3H). ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.53$, 164.23, 140.27, 139.34, 136.45, 134.83, 134.59, 130.50, 130.26, 130.19, 130.00, 129.02, 128.55, 128.19, 127.25, 126.32, 95.05, 79.78, 63.53, 39.70, 36.24, 32.53, 13.86 ppm. HRMS (ESI) m/z calcd for C₃₀H₂₈³⁵ClNNaO₆ [M+Na]⁺ 556.1497, found 556.1501, C₃₀H₂₈³⁷ClNNaO₆ [M+Na]⁺ 557.1531, found 557.1528. The *ee* value was 87%, t_R (minor) = 13.456 min, t_R (major) = 15.758 min (Chiralpak IF, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

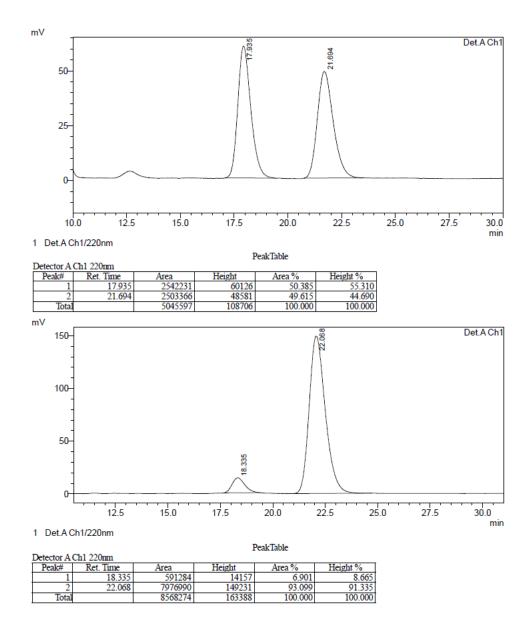


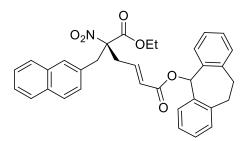



1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-(2-chlorobenzyl)-5-nitrohex-2enedioate (3h)

Colourless oil; $[\alpha]^{25}_{D} = -3.1$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.41$ (d, J = 8.0 Hz, 2H),

7.36–7.34 (m, 1H), 7.26–7.23 (m, 2H), 7.20–7.15 (m, 6H), 7.12–7.10 (m, 1H), 6.93 (s, 1H), 6.87 (dt, J = 15.0, 7.5 Hz, 1H), 5.92 (dt, J = 15.5, 1.5 Hz, 1H), 4.26–4.16 (m, 2H), 3.87 (d, J = 15.0 Hz, 1H), 3.74 (d, J = 15.0 Hz, 1H), 3.58–3.51 (m, 2H), 3.07–3.01 (m, 2H), 2.97 (dt, J = 7.5, 1.5 Hz, 2H), 1.15 (t, J = 7.0 Hz, 3H).ppm. ¹³C NMR (125 MHz, CDCI₃): $\delta = 165.71$, 164.27, 140.17, 140.10, 136.58, 135.36, 131.53, 131.05, 130.44, 130.13, 129.82, 129.67, 128.92, 127.47, 126.55, 126.28, 95.61, 79.37, 63.45, 37.07, 36.45, 32.52, 13.77 ppm. HRMS (ESI) m/z calcd for C₃₀H₂₈³⁵ClNNaO₆ [M+Na]⁺ 556.1497, found 556.1493, C₃₀H₂₈³⁷ClNNaO₆ [M+Na]⁺ 557.1531, found 557.1531. The *ee* value was 81%, t_R (major) = 13.677 min, t_R (minor) = 20.152 min (Chiralpak IC, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

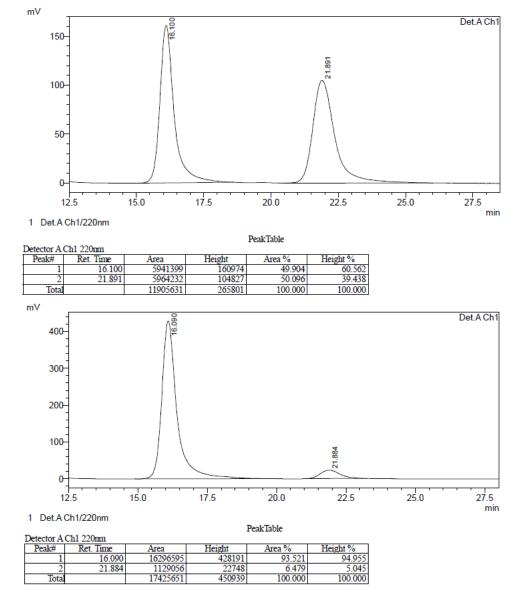


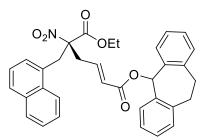


1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5 -yl) 6-ethyl (*S*,*E*)-5-(4-bromobenzyl)-5nitrohex-2-enedioate (3i)

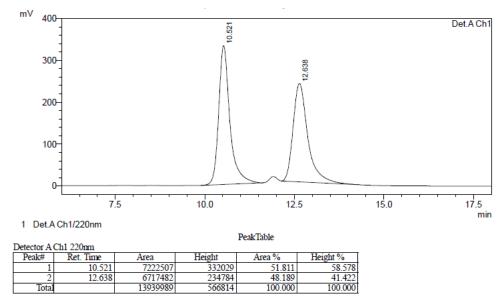
Colourless oil; $[\alpha]^{25}_{D} = -1.6$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.56-7.55$ (m, 1H),

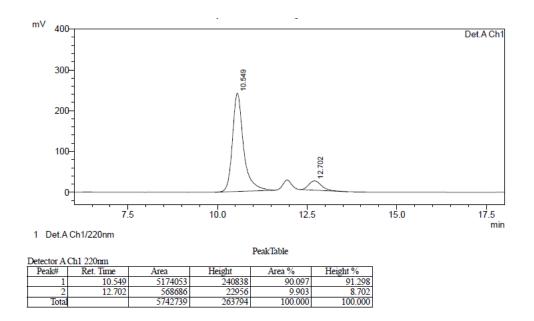
7.52–7.51 (m, 1H), 7.45–7.43 (m, 2H), 7.37–7.34 (m, 1H), 7.27–7.24 (m, 1H), 7.19 (d, J = 7.0 Hz, 4H), 7.14 (d, J = 8.0 Hz, 2H), 6.95 (s, 1H), 6.86 (dt, J = 15.5, 7.5 Hz, 1H), 6.00 (d, J = 16.0 Hz, 1H), 4.29–4.20 (m, 2H), 3.64 (d, J = 14.5 Hz, 1H), 3.60–3.55 (m, 2H), 3.51 (d, J = 14.5 Hz, 1H), 3.07–3.02 (m, 2H), 2.07–2.95 (m, 2H), 1.20 (t, J = 7.0 Hz, 3H).ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.81$, 164.33, 141.19, 140.26, 139.78, 136.50, 131.51, 130.60, 129.99, 128.96, 128.09, 127.69, 127.17, 126.33, 95.35, 79.73, 63.40, 39.81, 36.13, 32.53, 13.89 ppm. HRMS (ESI) m/z calcd for C₃₀H₂₈⁷⁹BrNNaO₆ [M+Na]⁺ 600.0992, found 600.0996, C₃₀H₂₈⁸¹BrNNaO₆ [M+Na]⁺ 602.0972, found 602.0979. The *ee* value was 86%, t_R (minor) = 18.335 min, t_R (major) = 22.068 min (Chiralpak IC, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

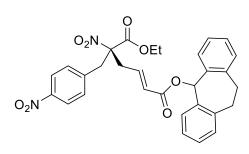



1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-(naphthalen-2-ylmethyl)-5-nitrohex-2-enedioate (3j)

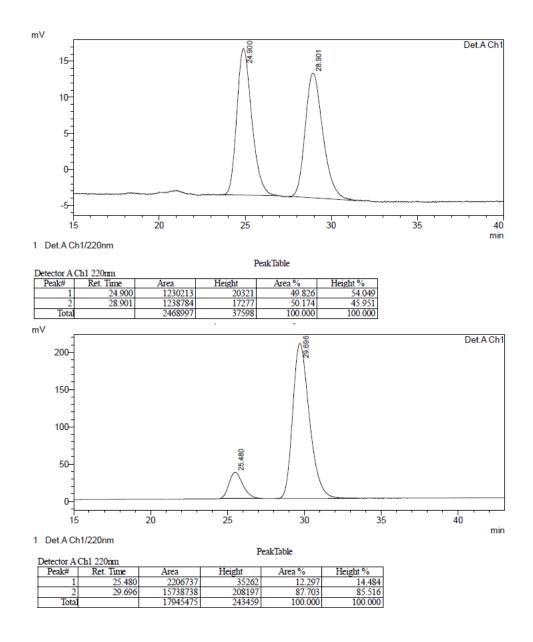
Colourless oil; $[\alpha]^{25}_{D} = -3.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.77$ (d, J = 8.0 Hz,

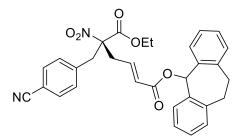

1H), 7.56 (s, 1H), 7.50–7.44 (m, 4H), 7.28–7.25 (m, 2H), 7.21–7.15 (m, 7H), 6.97 (s, 1H), 6.89 (dt, J = 15.0, 7.5 Hz, 1H), 5.99 (d, J = 14.5 Hz, 1H), 4.25 (q, J = 7.0 Hz, 2H), 3.78 (d, J = 14.5 Hz, 1H), 3.65 (d, J = 14.5 Hz, 1H), 3.61–3.56 (m, 2H), 3.08–3.03 (m, 2H), 2.95 (d, J = 7.5 Hz, 2H), 1.19 (t, J = 7.0 Hz, 3H).ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.83$, 164.33, 140.24, 139.78, 136.51, 133.40, 132.95, 130.50,


129.96, 129.39, 129.01, 128.78, 128.07, 127.86, 127.77, 127.38, 127.10, 126.63, 126.51, 126.32, 95.41, 79.69, 63.40, 40.28, 36.20, 32.53, 13.88 ppm. HRMS (ESI) m/z calcd for C₃₄H₃₁NNaO₆ [M+Na]⁺ 572.2044, found 572.2049. The *ee* value was 87%, t_R (major) = 16.090 min, t_R (minor) = 21.884 min (Chiralpak IA, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).



1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-(naphthalen-1-ylmethyl)-5nitrohex-2-enedioate (3k) Colourless oil; $[\alpha]^{25}_{D} = -2.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.94-7.92$ (m, 1H), 7.83–7.81 (m, 1H), 7.75 (d, J = 8.5 Hz, 1H), 7.48–7.40 (m, 3H), 7.37 (d, J = 8.0 Hz, 1H), 7.28–7.22 (m, 2H), 7.21–7.16 (m, 6H), 6.93 (s, 1H), 6.80 (dt, J = 15.0, 7.5 Hz, 1H), 5.79 (d, J = 15.5 Hz, 1H), 4.15 (d, J = 15.0 Hz, 1H), 4.15–4.06 (m, 2H), 4.02 (d, J = 15.0 Hz, 1H), 3.57–3.52 (m, 2H), 3.06–3.01 (m, 2H), 2.90 (d, J = 7.0 Hz, 2H), 1.08 (t, J = 7.0 Hz, 3H).ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.09$, 164.26, 140.24, 139.94, 136.56, 134.05, 132.61, 130.46, 130.31, 129.93, 128.97, 128.51, 128.09, 127.19, 126.70, 126.59, 126.30, 126.06, 125.43, 123.24, 95.90, 79.48, 63.37, 36.81, 35.88, 32.54, 13.66 ppm. HRMS (ESI) m/z calcd for C₃₄H₃₁NNaO₆ [M+Na]⁺ 572.2044, found 572.2038. The *ee* value was 80%, t_R (major) = 10.549 min, t_R (minor) = 12.702 min (Chiralpak IA, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

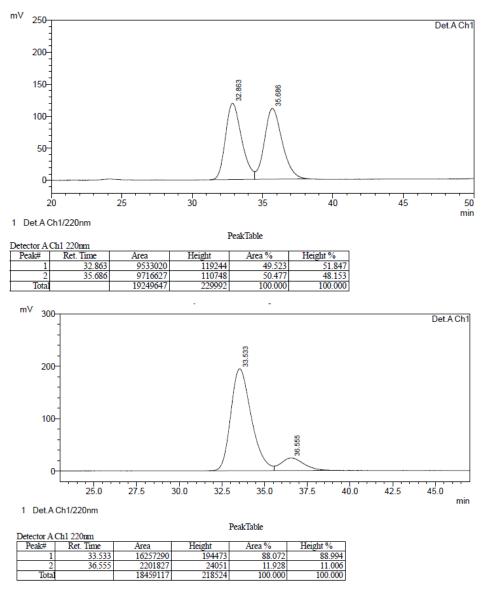


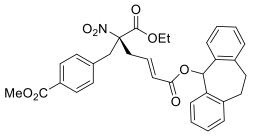


1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-nitro-5-(4-nitrobenzyl)hex-2-enedioate (3l) Colourless oil; $[\alpha]^{25}_{D} = -4.6$ (c = 2.0, CHCl₃);

¹H NMR (500 MHz, CDCl₃): δ = 8.15 (d, J =

9.0 Hz, 2H), 7.43 (d, J = 7.5 Hz, 2H), 7.28–7.24 (m, 4H), 7.20–7.17 (m, 4H), 6.94 (s, 1H), 6.78 (dt, J = 15.0, 7.5 Hz, 1H), 5.99 (d, J = 15.5 Hz, 1H), 4.27–4.20 (m, 2H), 3.67 (d, J = 14.5 Hz, 1H), 3.60–3.55 (m, 2H), 3.54 (d, J = 14.5 Hz, 1H), 3.06–3.01 (m, 2H), 2,99–2.88 (m, 2H), 1.19 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.25$, 164.15, 147.96, 140.35, 140.12, 138.78, 136.31, 131.10, 130.53, 130.16, 129.11, 127.56, 126.35, 124.08, 94.75, 80.07, 63.76, 39.79, 36.40, 32.54, 13.86 ppm. HRMS (ESI) m/z calcd for C₃₀H₂₈N₂NaO8 [M+Na]⁺ 567.1738, found 567.1731. The *ee* value was 75%, t_R (minor) = 25.480 min, t_R (major) = 29.696 min (Chiralpak IC, $\lambda = 220$ nm, 20.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).



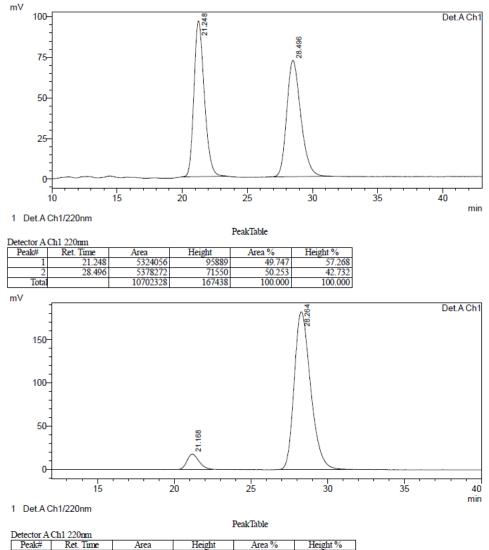

1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5 -yl) 6-ethyl (*S*,*E*)-5-(4-cyanobenzyl)-5nitrohex-2-enedioate (3m)

Colourless oil; $[\alpha]^{25}_{D} = -4.7$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.58$ (d, J = 8.5 Hz,

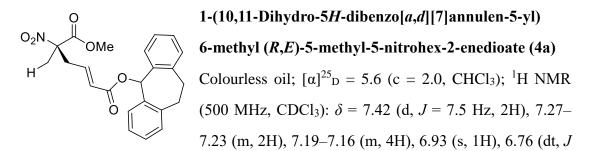
2H), 7.43 (d, J = 7.5 Hz, 2H), 7.28–7.24 (m, 2H), 7.21–7.17 (m, 6H), 6.94 (s, 1H), 6.77 (dt, J = 15.5, 7.5 Hz, 1H), 5.98 (dt, J = 15.5, 1.0 Hz, 1H), 4.27–4.18 (m, 2H), 3.63 (d, J = 14.5 Hz, 1H), 3.60–3.55 (m, 2H), 3.50 (d, J = 14.5 Hz, 1H), 3.07–3.01 (m, 2H), 2.97–2.86 (m, 2H), 1.18 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 165.29, 164.15, 140.34, 138.87, 138.13, 136.32, 132.67, 130.90, 130.52, 130.15,

129.10, 127.47, 126.33, 118.31, 112.48, 94.77, 80.03, 63.69, 40.06, 36.34, 32.53, 13.84 ppm. HRMS (ESI) m/z calcd for C₃₁H₂₈N₂NaO₆ [M+Na]⁺ 547.1840, found 547.1843. The *ee* value was 76%, t_R (major) = 33.533 min, t_R (minor) = 36.555 min (Chiralpak IC, $\lambda = 220$ nm, 20.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

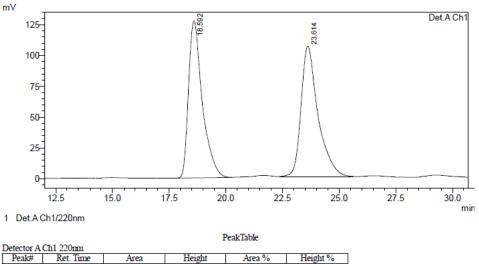
1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annul en-5-yl)

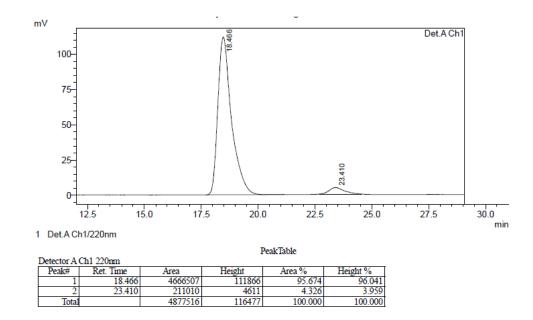

6-ethyl

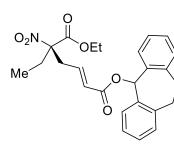
(S,E)-5-(4-(methoxycarbonyl)benzyl)-5-nit rohex-2-enedioate (3n)


Colourless oil; $[\alpha]^{25}_{D} = -3.4$ (c = 2.0, CHCl₃);

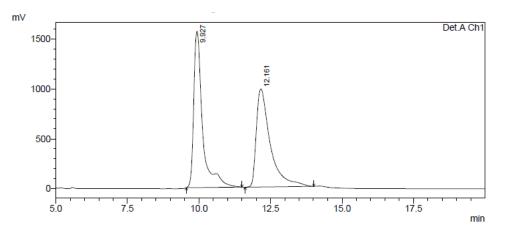
¹H NMR (500 MHz, CDCl₃): δ = 7.97 (d, J = 8.0 Hz, 2H), 7.44–7.42 (m, 2H), 7.27–

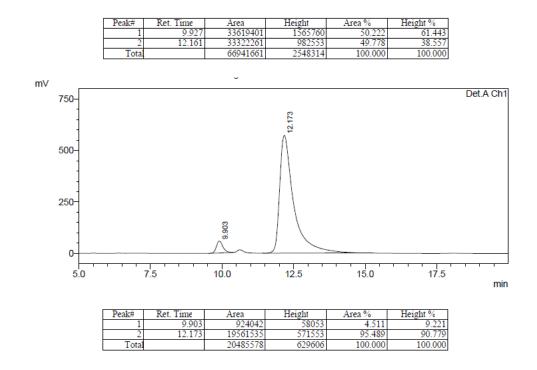

7.24 (m, 2H), 7.20–7.14 (m, 6H), 6.94 (s, 1H), 6.81 (dt, J = 15.0, 7.5 Hz, 1H), 5.98 (d, J = 15.5 Hz, 1H), 4.26–4.19 (m, 2H), 3.91 (s, 3H), 3.63 (d, J = 14.0 Hz, 1H), 3.60–3.55 (m, 2H), 3.51 (d, J = 14.5 Hz, 1H), 3.06–3.01 (m, 2H), 2.95–2.86 (m, 2H), 1.19 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.63$, 165.50, 164.23, 140.28, 139.31, 137.77, 136.41, 130.50, 130.19, 130.11, 130.03, 129.03, 127.28, 126.32, 95.02, 79.84, 63.52, 52.34, 39.97, 36.16, 32.52, 13.85 ppm. HRMS (ESI) m/z calcd for C₃₂H₃₁NNaO₈ [M+Na]⁺ 580.1942, found 580.1936. The *ee* value was 87%, t_R (minor) = 21.168 min, t_R (major) = 28.264 min (Chiralpak IC, $\lambda = 220$ nm, 20.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

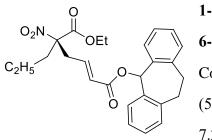

1	21.168	919434	17404	6.355	8.718
2	28.264	13548785	182230	93.645	91.282
Total		14468219	199634	100 000	100 000



= 15.5, 7.5 Hz, 1H), 5.99 (dt, J = 15.5, 1.0 Hz, 1H), 3.80 (s, 3H), 3.60–3.53 (m, 2H), 3.12–2.98 (m, 4H), 1.77 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 167.13, 164.30, 140.30, 139.40, 136.45, 130.50, 130.03, 129.02, 127.37, 126.32, 91.43, 79.73, 53.89, 39.18, 32.53, 21.50 ppm. HRMS (ESI) m/z calcd for C₂₃H₂₃NNaO₆ [M+Na]⁺ 432.1418, found 432.1421. The *ee* value was 91%, t_R (major) = 18.466 min, t_R (minor) = 23.410 min (Chiralpak IC, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

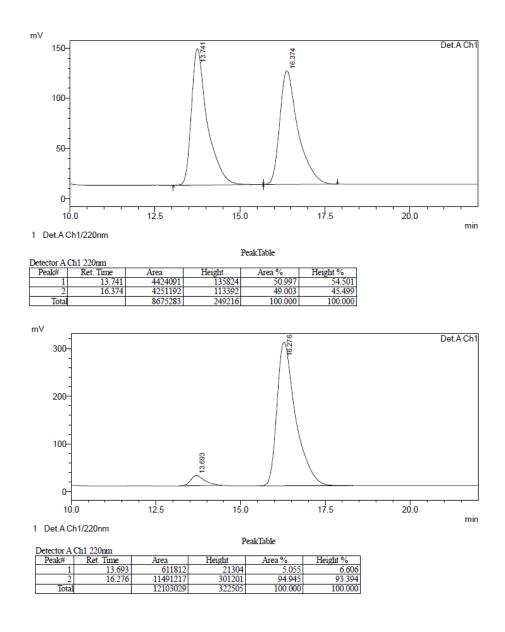

Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.592	5381460	127254	49.515	54.632
2	23.614	5486857	105673	50.485	45.368
Total		10868317	232927	100.000	100.000

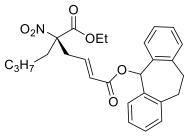




1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-ethyl-5-nitrohex-2-enedioate (4b) Colourless oil; $[\alpha]^{25}_{D} = 3.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, *J* = 7.0 Hz, 2H), 7.26– 7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H), 6.73 (dt, *J*

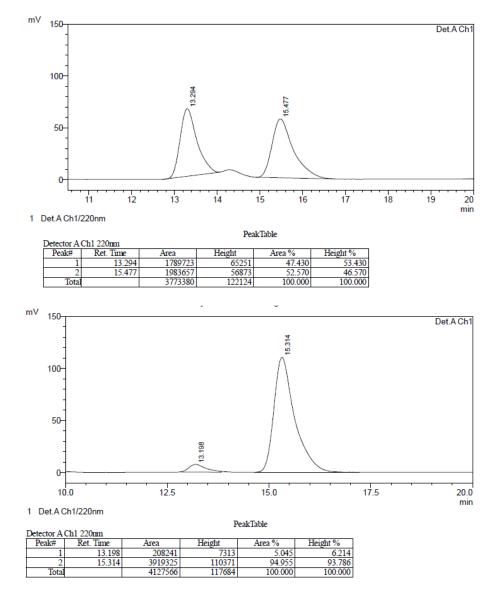
= 15.5, 7.5 Hz, 1H), 5.97 (d, *J* = 15.5 Hz, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 3.59–3.53 (m, 2H), 3.06 –3.01 (m, 4H), 2.30–2.14 (m, 2H), 1.23 (t, *J* = 7.0 Hz, 3H), 0.91 (t, *J* = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 166.06, 164.31, 140.27, 139.62, 136.47, 130.48, 130.00, 128.99, 126.89, 126.30, 95.38, 79.65, 63.13, 36.13, 32.51, 27.44, 13.93, 8.04 ppm. HRMS (ESI) m/z calcd for C₂₅H₂₇NNaO₆ [M+Na]⁺ 460.1731, found 460.1737. The *ee* value was 91%, t_R (minor) = 9.903 min, t_R (major) = 12.173 min (Chiralpak IF, λ = 220 nm, 10.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

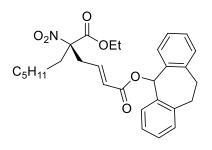




1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-nitro-5-propylhex-2-enedioate (4c) Colourless oil; $[\alpha]^{25}_{D} = 0.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, *J* = 7.5 Hz, 2H), 7.26– 7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H), 6.74 (dt,

J = 15.5, 7.5 Hz, 1H), 5.96 (dt, J = 15.5, 1.0 Hz, 1H), 4.24 (q, J = 7.0 Hz, 2H), 3.59– 3.53 (m, 2H), 3.06–3.00 (m, 4H), 2.21–2.07 (m, 2H), 1.33–1.19 (m, 2H), 1.22 (t, J = 7.0 Hz, 3H), 0.95 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.16$, 164.34, 140.26, 139.74, 136.51, 136.48, 130.49, 129.98, 128.99, 126.83, 126.31, 94.96, 79.65, 63.14, 36.70, 36.12, 32.52, 17.09, 14.00, 13.92 ppm. HRMS (ESI) m/z calcd for C₂₆H₂₉NNaO₆ [M+Na]⁺ 474.1887, found 474.1881. The *ee* value was 90%, t_R (minor) = 13.693 min, t_R (major) = 16.276 min (Chiralpak IC, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

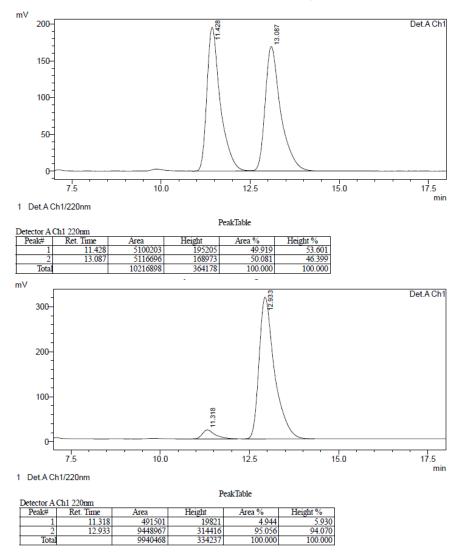


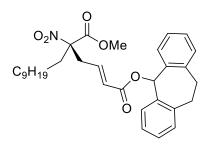


1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-butyl-5-nitrohex-2-enedioate (4d) Colourless oil; $[\alpha]^{25}_{D} = 3.3$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, *J* = 7.5 Hz, 2H), 7.26– 7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.94 (s, 1H), 6.74 (dt,

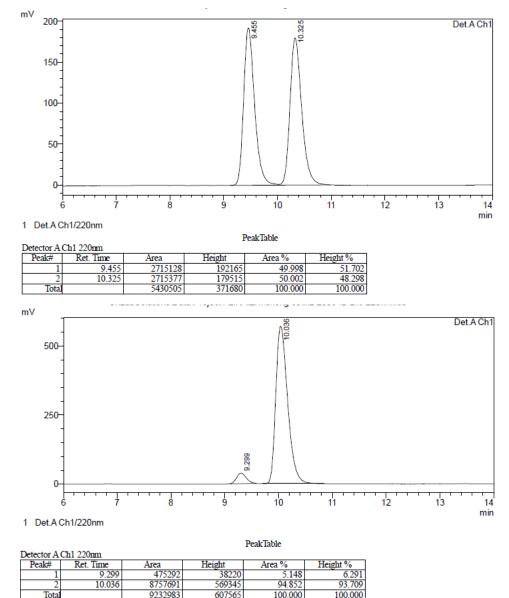
J = 15.5, 7.5 Hz, 1H), 5.96 (dt, J = 15.5, 1.0 Hz, 1H), 4.24 (q, J = 7.0 Hz, 2H), 3.58– 3.52 (m, 2H), 3.07–3.00 (m, 4H), 2.23–2.10 (m, 2H), 1.38–1.31 (m, 2H), 1.27–1.13 (m, 2H), 1.22 (t, J = 7.0 Hz, 3H), 0.89 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.16, 164.32, 140.24, 139.72, 136.49, 130.48, 129.94, 128.98, 126.83, 126.30, 95.01, 79.62, 63.13, 36.61, 33.77, 32.51, 25.61, 22.55, 13.92, 13.79$ ppm.

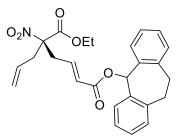
HRMS (ESI) m/z calcd for C₂₇H₃₁NNaO₆ [M+Na]⁺ 488.2044, found 488.2044. The *ee* value was 90%, t_R (minor) = 13.198 min, t_R (major) = 15.314 min (Chiralpak IC, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).



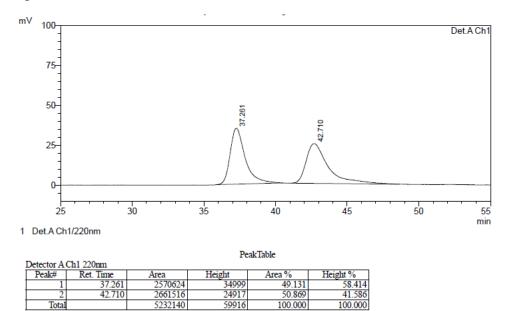

1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl)

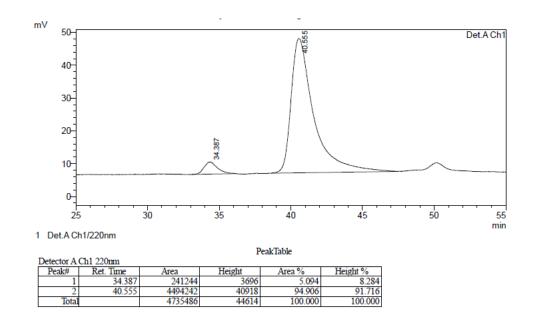
6-ethyl (*R*,*E*)-5-hexyl-5-nitrohex-2-enedioate (4e) Colourless oil; $[\alpha]^{25}_{D} = 1.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.0 Hz, 2H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H),

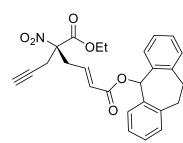

6.74 (dt, *J* = 15.5, 7.5 Hz, 1H), 5.96 (dt, *J* = 15.5, 1.0 Hz, 1H), 4.23 (q, *J* = 7.0 Hz, 2H), 3.58–3.52 (m, 2H), 3.09–3.99 (m, 4H), 2.22–2.09 (m, 2H), 1.34–1.15 (m, 8H),


1.22 (t, J = 7.0 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 166.17, 164.33, 140.25, 139.75, 136.50, 130.48, 129.96, 128.99, 126.83, 126.31, 95.03, 79.63, 63.13, 36.64, 34.05, 32.52, 31.40, 29.04, 23.47, 22.54, 14.07, 13.93 ppm. HRMS (ESI) m/z calcd for C₂₉H₃₅NNaO₆ [M+Na]⁺ 516.2357, found 516.2349. The *ee* value was 90%, t_R (minor) = 11.318 min, t_R (major) = 12.933 min (Chiralpak IC, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-methyl (*R*,*E*)-5-decyl-5-nitrohex-2-enedioate (4f) Colourless oil; $[\alpha]^{25}_{D} = 1.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.5 Hz, 2H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H), 6.72 (dt, J = 15.5, 7.5 Hz, 1H), 5.96 (dt, J = 15.5, 1.0 Hz, 1H), 3.77 (s, 3H), 3.59–3.52 (m, 2H), 3.10–3.00 (m, 4H), 2.22–2.09 (m, 2H), 1.31–1.13 (m, 16H), 0.88 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.73$, 164.34, 140.24, 139.59, 136.52, 136.49, 130.50, 129.95, 129.00, 126.90, 126.32, 95.06, 79.66, 53.66, 36.66, 34.06, 32.52, 32.00, 29.61, 29.54, 29.40, 29.28, 23.60, 22.80, 14.25 ppm. HRMS (ESI) m/z calcd for C₃₂H₄₁NNaO₆ [M+Na]⁺ 558.2826, found 558.2827. The *ee* value was 90%, t_R (minor) = 9.299 min, t_R (major) = 10.036 min (Chiralpak IB, $\lambda = 220$ nm, 2.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

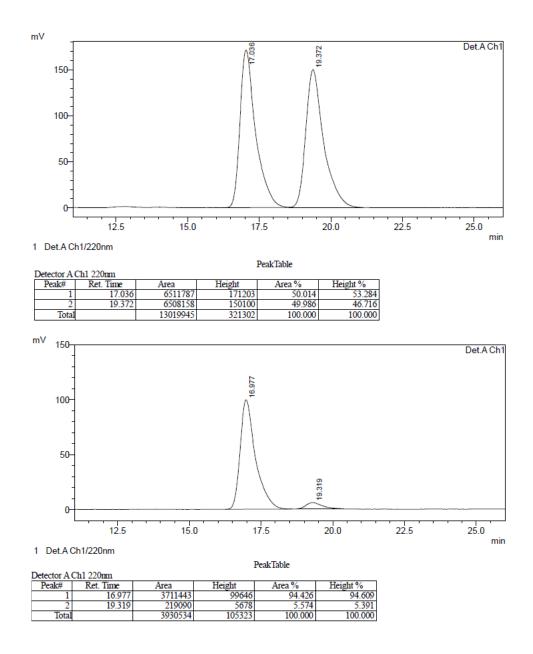


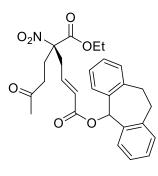



1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-allyl-5-nitrohex-2-enedioate (4g) Colourless oil; $[\alpha]^{25}_{D} = -4.1$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, *J* = 7.0 Hz, 2H), 7.26–

7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H), 6.75 (dt, J

= 15.5, 7.5 Hz, 1H), 5.97 (dt, J = 15.5, 1.0 Hz, 1H), 5.63–5.55 (m, 1H), 5.24–5.19 (m, 2H), 4.24 (q, J = 7.0 Hz, 2H), 3.59–3.54 (m, 2H), 3.06–3.01 (m, 4H), 2.97 (dd, J = 14.5, 7.5 Hz, 1H), 2.88 (dd, J = 14.5, 7.5 Hz, 1H), 1.22 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 165.62, 164.29, 140.25, 139.44, 136.47, 130.48, 129.97, 129.00, 128.08, 127.11, 126.31, 122.15, 94.23, 79.68, 63.30, 38.64, 36.46, 32.52, 13.94 ppm. HRMS (ESI) m/z calcd for C₂₆H₂₇NNaO₆ [M+Na]⁺ 472.1731, found 472.1738. The *ee* value was 90%, t_R (minor) = 34.387 min, t_R (major) = 40.555 min (Chiralpak IF, λ = 220 nm, 1,0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

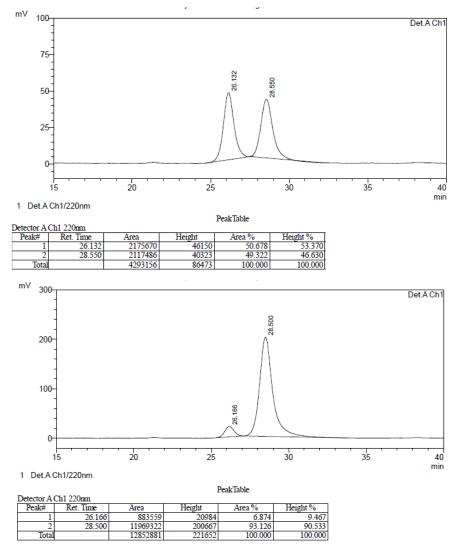


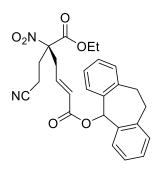


1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*S*,*E*)-5-nitro-5-(prop-2-yn-1-yl)hex-2-enedioate (4h)

Colourless oil; $[\alpha]^{25}_{D} = -0.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.43$ (d, J = 7.5 Hz, 2H), 7.27–

7.24 (m, 2H), 7.19–7.16 (m, 4H), 6.94 (s, 1H), 6.74 (dt, J = 15.5, 7.5 Hz, 1H), 6.04 (d, J = 15.5 Hz, 1H), 4.27 (q, J = 7.0 Hz, 2H), 3.59–3.53 (m, 2H), 3.23–3.18 (m, 3H), 3.08–3.01 (m, 3H), 2.14 (t, J = 2.5 Hz, 1H), 1.24 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 164.64$, 164.23, 140.30, 138.80, 136.45, 136.43, 130.49, 130.05, 129.03, 127.63, 126.31, 92.60, 79.78, 75.37, 74.05, 63.75, 36.02, 32.53, 25.10, 13.87 ppm. HRMS (ESI) m/z calcd for C₂₆H₂₅NNaO₆ [M+Na]⁺ 470.1574, found 470.1577. The *ee* value was 89%, t_R (major) = 16.977 min, t_R (minor) = 19.319 min (Chiralpak IC, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

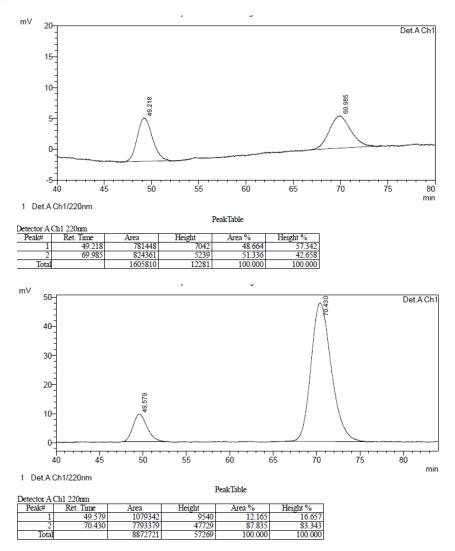


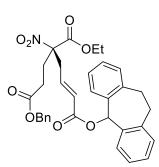


1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-nitro-5-(3-oxobutyl)hex-2-enedioate (4i) Colourless oil; $[\alpha]^{25}_{D} = 0.6$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.43$ (d, J = 8.0 Hz, 2H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.92 (s, 1H), 6.74 (dt, J = 15.5, 7.5 Hz, 1H), 5.97 (d, J = 15.5 Hz, 1H), 4.26–4.20 (m, 2H),

3.58–3.52 (m, 2H), 3.06–2.99 (m, 4H), 2.55–2.52 (m, 2H), 2.45–2.41 (m, 2H), 2.13 (s, 3H), 1.23 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 205.40, 165.75, 164.18, 140.28, 139.13, 136.44, 130.48, 130.03, 129.00, 127.23, 126.30, 94.09, 79.75,

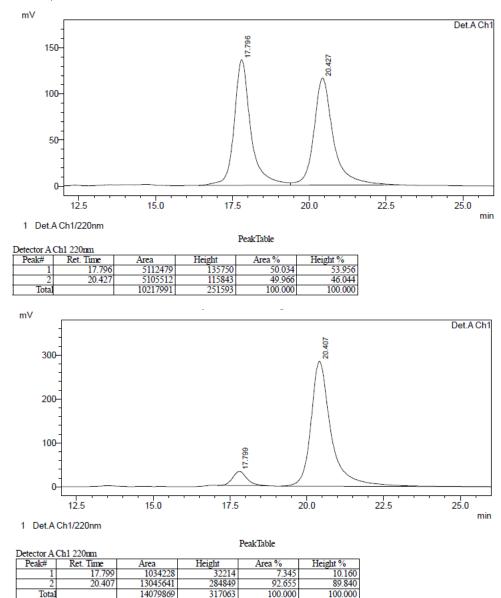
63.41, 38.01, 37.78, 32.52, 30.00, 28.33, 13.89 ppm. HRMS (ESI) m/z calcd for $C_{27}H_{29}NNaO_7 [M+Na]^+$ 502.1836, found 502.1826. The *ee* value was 86%, t_R (minor) = 26.166 min, t_R (major) = 28.500 min (Chiralpak IA, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

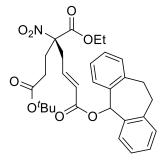



1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-(2-cyanoethyl)-5-nitrohex-2-enedioate (4j)

Colourless oil; $[\alpha]^{25}_{D} = 3.9$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.5 Hz, 2H), 7.27–7.24 (m, 2H), 7.20–7.17 (m, 4H), 6.93 (s, 1H), 6.69 (dt, J = 15.5, 7.5 Hz, 1H), 6.02 (d, J = 15.5 Hz, 1H), 4.32–4.27 (m, 2H), 3.60–

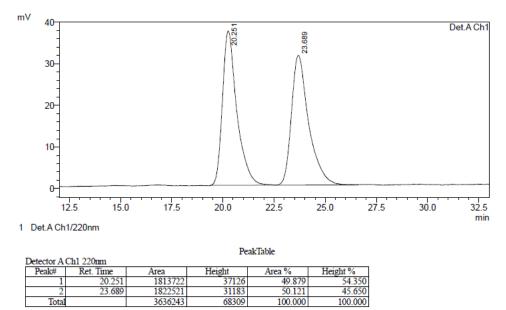
3.54 (m, 2H), 3.14–3.00 (m, 4H), 2.55–2.44 (m, 4H), 1.26 (t, J = 7.0 Hz, 3H) ppm.

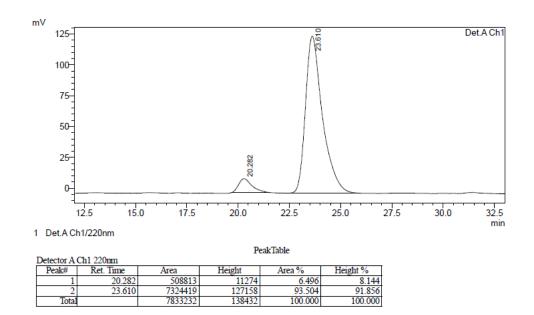

¹³C NMR (125 MHz, CDCl₃): δ = 164.77, 163.98, 140.35, 137.95, 136.28, 136.25, 130.52, 130.17, 129.09, 128.04, 126.32, 117.62, 92.97, 80.09, 64.04, 37.69, 32.52, 30.33, 13.85, 12.81 ppm. HRMS (ESI) m/z calcd for C₂₆H₂₆N₂NaO₆ [M+Na]⁺ 485.1683, found 485.1687. The *ee* value was 76%, t_R (minor) = 49.579 min, t_R (major) = 70.430 min (Chiralpak IC, λ = 220 nm, 20.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

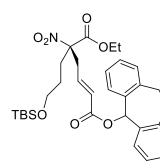


1-Benzyl

6-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 3-ethyl (*R*,*E*)-3-nitrohex-5-ene-1,3,6-tricarboxylate (4k) Colourless oil; $[\alpha]^{25}_{D} = 1.3$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.5 Hz, 2H), 7.36–7.33 (m, 5H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H), 6.74 (dt, J = 15.5, 7.5 Hz, 1H), 5.97 (d, J = 15.5 Hz, 1H), 5.11 (s, 2H), 4.25–4.20 (m, 2H), 3.59–3.54 (m, 2H), 3.05–3.02 (m, 4H), 2.55–2.42 (m, 4H), 1.21 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 171.31$, 165.55, 164.17, 140.28, 139.00, 136.42, 135.54, 130.49, 130.02, 129.00, 128.75, 128.57, 128.52, 127.31, 126.30, 93.93, 79.75, 67.00, 63.48, 37.59, 32.52, 29.49, 28.88, 13.87 ppm. HRMS (ESI) m/z calcd for C₃₃H₃₃NNaO₈ [M+Na]⁺ 594.2098, found 594.2089. The *ee* value was 85%, t_R (minor) = 17.799 min, t_R (major) = 20.407 min (Chiralpak IA, $\lambda = 220$ nm, 10.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

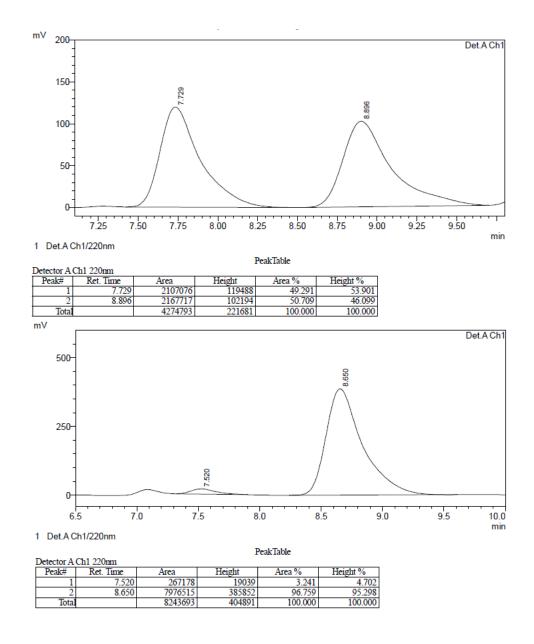


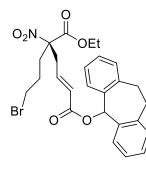

1-(tert-Butyl)



6-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 3-ethyl (*R*,*E*)-3-nitrohex-5-ene-1,3,6-tricarboxylate (4l) Colourless oil; [α]²⁵_D = 1.6 (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): δ = 7.42 (d, *J* = 7.5 Hz, 2H), 7.26–7.23 (m, 2H), 7.18–7.16 (m, 4H), 6.93 (s, 1H), 6.75 (dt, *J* = 15.5, 7.5

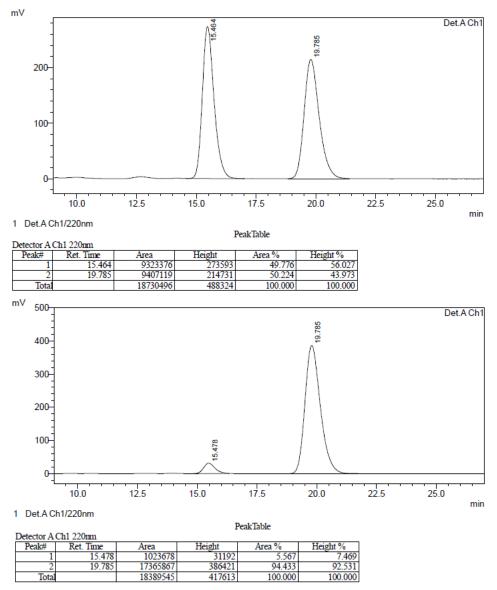
Hz, 1H), 5.97 (d, J = 15.5 Hz, 1H), 4.26–4.22 (m, 2H), 3.58–3.54 (m, 2H), 3.04–3.02 (m, 4H), 2.48–2.44 (m, 2H), 2.30–2.26 (m, 2H), 1.42 (s, 9H), 1.23 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 170.65$, 165.68, 164.21, 140.27, 139.19, 136.47, 130.49, 130.01, 129.00, 127.22, 126.30, 94.09, 81.49, 79.72, 63.40, 37.45, 32.53, 29.92, 29.56, 28.14, 13.90 ppm. HRMS (ESI) m/z calcd for C₃₀H₃₅NNaO₈ [M+Na]⁺ 560.2255, found 560.2257. The *ee* value was 87%, t_R (minor) = 20.282 min, t_R (major) = 23.610 min (Chiralpak IC, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

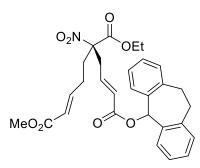




1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-(3-((*tert*-butyldimethylsilyl)oxy) propyl)-5-nitrohex-2-enedioate (4m)

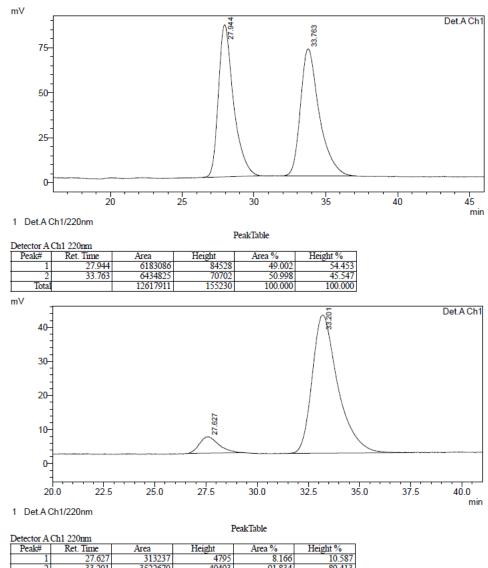
Colourless oil; $[\alpha]^{25}_{D} = 4.9$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.5 Hz, 2H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H), 6.74 (dt, J

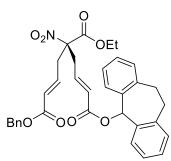

= 15.5, 7.5 Hz, 1H), 5.97 (d, *J* = 15.5 Hz, 1H), 4.24 (q, *J* = 7.0 Hz, 2H), 3.61–3.52 (m, 4H), 3.06–2.99 (m, 4H), 2.29–2.18 (m, 2H), 1.51–1.36 (m, 2H), 1.22 (t, *J* = 7.0 Hz, 3H), 0.85 (s, 9H), 0.01 (s, 6H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 166.08, 164.26, 140.27, 139.58, 136.49, 130.47, 130.01, 128.98, 126.94, 126.29, 94.84, 79.62, 63.17, 62.07, 36.83, 32.53, 30.97, 27.00, 25.96, 18.35, 13.92, -5.27 ppm. HRMS (ESI) m/z calcd for C₃₂H₄₃NNaO₇Si [M+Na]⁺ 604.2701, found 604.2706. The *ee* value was 93%, t_R (minor) = 7.520 min, t_R (major) = 8.650 min (Chiralpak IC, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).



1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 6-ethyl (*R*,*E*)-5-(3-bromopropyl)-5-nitrohex-2-enedioate (4n) Colourless oil; $[\alpha]^{25}_{D} = -1.9$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.5 Hz, 2H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 4H), 6.93 (s, 1H), 6.73 (dt, J = 15.5, 7.5 Hz, 1H), 5.99 (d, J = 15.5 Hz, 1H), 4.26 (q, J = 7.0 Hz, 2H),

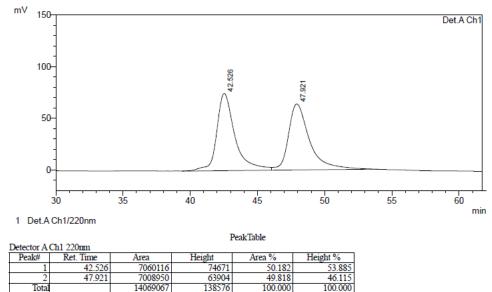
3.58–3.52 (m, 2H), 3.41–3.34 (m, 2H), 3.10–3.00 (m, 4H), 2.37–2.27 (m, 2H), 1.89– 1.76 (m, 2H), 1.24 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 165.73, 164.19, 140.28, 138.98, 136.44, 130.50, 130.00, 129.01, 127.34, 126.32, 94.23, 79.76, 63.45, 36.99, 32.97, 32.55, 31.96, 26.95, 13.94 ppm. HRMS (ESI) m/z calcd for $C_{26}H_{28}^{79}BrNNaO_6 [M+Na]^+ 552.0992$, found 552.0997, $C_{26}H_{28}^{81}BrNNaO_6 [M+Na]^+$ 554.0972, found 554.0968. The *ee* value was 89%, t_R (minor) = 15.478 min, t_R (major) = 19.785 min (Chiralpak IC, λ = 220 nm, 10.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

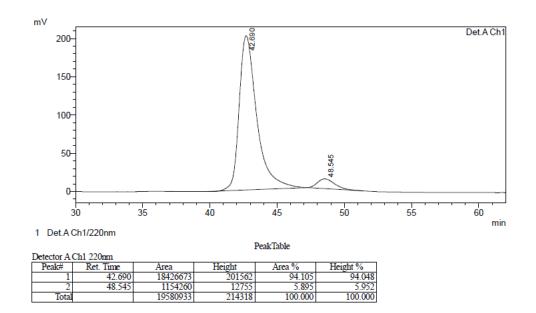


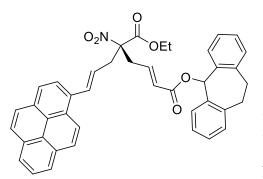

1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 4-ethyl 8-methyl (*R*,1*E*,7*E*)-4-nitroocta-1,7diene-1,4,8-tricarboxylate (40) Colourless oil; $[\alpha]^{25}_{D} = 1.5$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.41$ (d, J = 7.5 Hz, 2H),

7.26-7.23 (m, 2H), 7.19-7.16 (m, 4H), 6.92 (s, 1H),

6.85 (dt, J = 15.5, 6.5 Hz, 1H), 6.71 (dt, J = 15.5, 7.5 Hz, 1H), 5.98 (d, J = 15.5 Hz, 1H), 5.84 (dt, J = 15.5, 1.5 Hz, 1H), 4.25 (q, J = 7.0 Hz, 2H), 3.73 (s, 3H), 3.58–3.52 (m, 2H), 3.07–3.00 (m, 4H), 2.37–2.16 (m, 4H), 1.23 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 166.54$, 165.62, 164.17, 145.44, 140.30, 138.99, 136.38, 130.50, 130.07, 129.03, 127.30, 126.31, 122.72, 94.15, 79.86, 63.48, 51.73, 37.06, 32.56, 32.52, 26.35, 13.91 ppm. HRMS (ESI) m/z calcd for C₂₉H₃₁NNaO₈ [M+Na]⁺ 544.1942, found 544.1947. The *ee* value was 84%, t_R (minor) = 27.627 min, t_R (major) = 33.201 min (Chiralpak IC, $\lambda = 220$ nm, 20.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).


2	33.201	3522670	40493	91.834	89.413	
Total		3835907	45288	100.000	100.000	

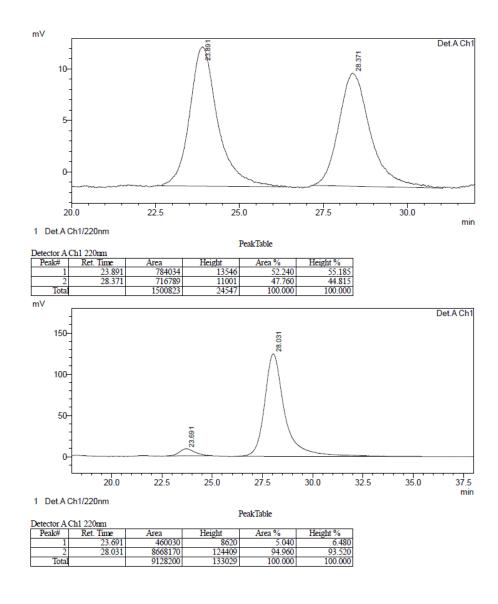



1-Benzyl 7-(10,11-dihydro-5*H*-dibenzo[*a*,*d*][7]annulen-5-yl) 4-ethyl (*R*,1*E*,6*E*)-4-nitrohepta-1,6-diene-1,4,7tricarboxylate (4p)

Colourless oil; $[\alpha]^{25}_{D} = -1.2$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.42$ (d, J = 7.0 Hz, 2H), 7.39– 7.32 (m, 5H), 7.27–7.24 (m, 2H), 7.19–7.16 (m, 4H), 6.93

(s, 1H), 6.77–6.69 (m, 2H), 6.01–5.97 (m, 2H), 5.17 (s, 2H), 4.25 (q, J = 7.0 Hz, 2H), 3.58–3.52 (m, 2H), 3.10–2.99 (m, 6H), 1.21 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.12$, 165.08, 164.12, 140.29, 138.75, 138.65, 136.37, 135.73, 130.50, 130.04, 129.03, 128.72, 128.49, 128.43, 127.57, 127.17, 126.30, 93.57, 79.85, 66.68, 63.68, 36.89, 36.83, 32.50, 13.88 ppm. HRMS (ESI) m/z calcd for C₃₄H₃₃NNaO₈ [M+Na]⁺ 606.2098, found 606.2091. The *ee* value was 88%, t_R (major) = 42.690 min, t_R (minor) = 48.545 min (Chiralpak IF, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

 1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annule

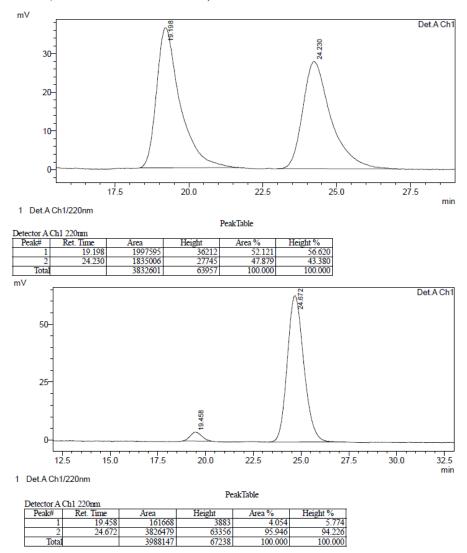

 n-5-yl)
 6-ethyl

 (*R*,*E*)-5-nitro-5-((*E*)-3-(pyren-1-yl)allyl)hex

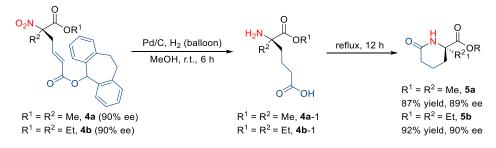
 2-enedioate (4q)

Yellow oil; $[\alpha]^{25}_{D} = 1.0$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 8.23$ (d, J = 9.0

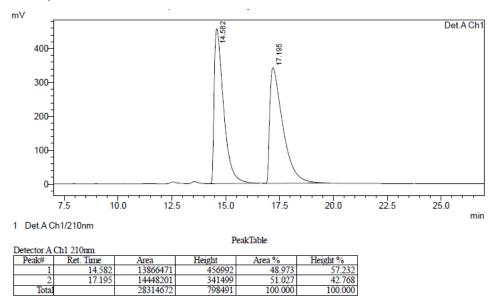
Hz, 1H), 8.18 (t, J = 8.5 Hz, 2H), 8.10 (d, J = 8.0 Hz, 1H), 8.07–7.99 (m, 5H), 7.55 (d, J = 15.5 Hz, 1H), 7.46 (d, J = 7.5 Hz, 2H), 7.28–7.24 (m, 2H), 7.19–7.18 (m, 4H), 6.98 (s, 1H), 6.92–6.84 (m, 1H), 6.15 (dt, J = 15.0, 7.5 Hz, 1H), 6.08 (d, J = 15.5 Hz, 1H), 4.30 (q, J = 7.0 Hz, 2H), 3.59–3.54 (m, 2H), 3.36–3.24 (m, 2H), 3.20 (d, J = 7.5 Hz, 2H), 3.05–3.00 (m, 2H), 1.25 (t, J = 7.0 Hz, 3H). ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 165.77$, 164.35, 140.28, 139.52, 136.50, 134.22, 131.55, 131.30, 130.96, 130.88, 130.51, 130.50, 130.03, 129.02, 128.22, 128.02, 127.65, 127.50, 127.26, 126.33, 126.18, 125.56, 125.32, 125.12, 124.93, 124.25, 123.43, 122.83, 94.61, 79.80, 63.45, 38.63, 36.87, 32.53, 14.00 ppm. HRMS (ESI) m/z calcd for C₄₂H₃₅NNaO₆ [M+Na]⁺ 672.2357, found 672.2348. The *ee* value was 90%, t_R (minor) = 23.691 min, t_R (major) = 28.031 min (Chiralpak IA, $\lambda = 220$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

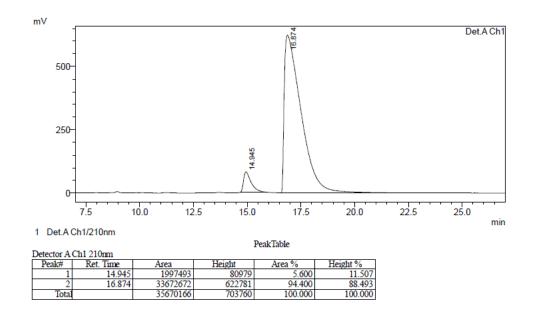


1-(10,11-Dihydro-5*H*-dibenzo[*a*,*d*][7]annulen -5-yl) 6-ethyl (*R*,*E*)-5-nitro-5-(3-(oleoyloxy) propyl)hex-2-enedioate (4r) Colourless oil; $[\alpha]^{25}_{D} = 1.4$ (c = 2.0, CHCl₃); ¹H

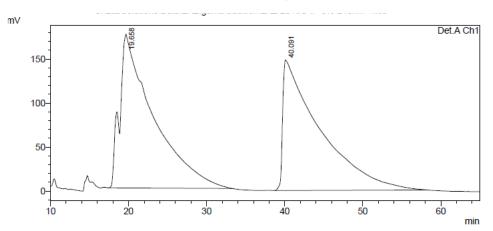

NMR (500 MHz, CDCl₃): δ = 7.41 (d, J = 7.5 Hz, 2H), 7.26–7.23 (m, 2H), 7.19–7.16 (m, 4H),

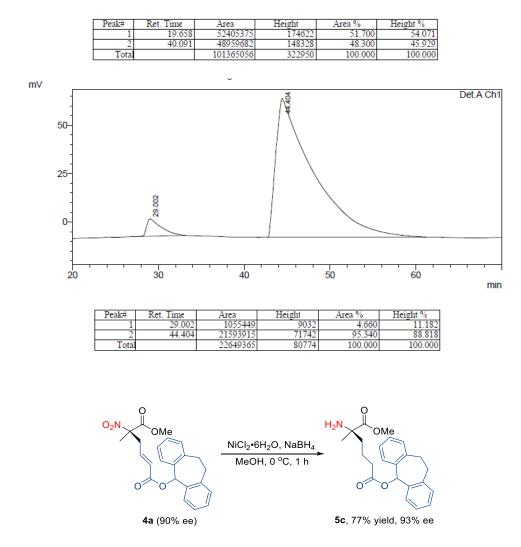
6.93 (s, 1H), 6.73 (dt, J = 15.5, 7.5 Hz, 1H), 5.98 (d, J = 15.5 Hz, 1H), 5.36–5.34 (m, 2H), 4.25 (q, J = 7.0 Hz, 2H), 4.05 (t, J = 6.5 Hz, 2H), 3.58–3.52 (m, 2H), 3.06–3.00 (m, 4H), 2.30–2.17 (m, 4H), 2.04–2.00 (m, 4H), 1.65–1.51 (m, 5H), 1.33–1.27 (m, 19H), 1.23 (t, J = 7.0 Hz, 3H), 0.88 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 173.78$, 165.80, 164.21, 140.26, 139.23, 136.46, 136.43, 130.49, 130.14,

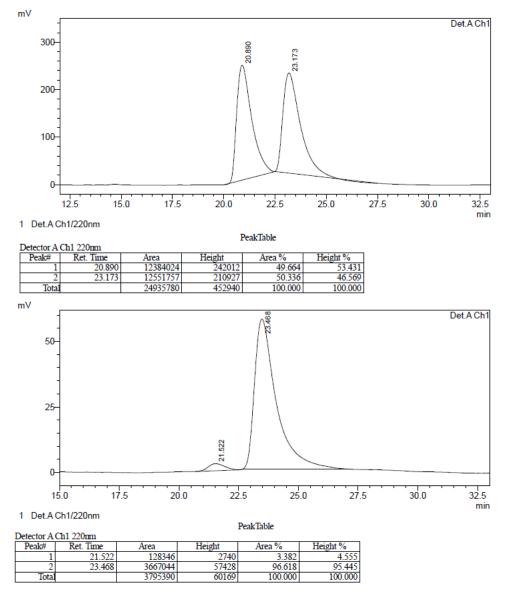

130.00, 129.89, 129.02, 127.14, 126.31, 94.44, 79.73, 63.36, 63.03, 36.86, 34.25, 32.52, 32.04, 31.02, 29.91, 29.85, 29.66, 29.46, 29.45, 29.31, 29.26, 29.24, 27.36, 27.32, 25.01, 23.19, 22.81, 14.25, 13.92 ppm. HRMS (ESI) m/z calcd for $C_{44}H_{61}NNaO_8 [M+Na]^+$ 754.4289, found 754.4283. The *ee* value was 92%, t_R (minor) = 19.458 min, t_R (major) = 24.672 min (Chiralpak IC, λ = 220 nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).



V. Synthetic manipulation of the product.




A stirred solution of **4a** (40.9 mg, 0.1 mmol) in MeOH (2 mL) was added Pd/C (10 mg) under the H₂ balloon. The mixture was stirred at room temperature for 6 h, and then the mixture was refluxed directly at 70 °C for 12 h. After completion of the reaction indicated by TLC, the mixture to a silica gel chromatography column (silica gel, PE/EtOAc = 1/1) to afford the desired product **5a** as colorless oil (14.9 mg, 87% yield); $[\alpha]^{25}_{D} = 3.3$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 3.81$ (s, 3H), 2.47–2.37 (m, 2H), 2.32–2.25 (m, 1H), 2.23–2.17 (m, 1H), 1.80 (s, 3H), 1.73–1.64 (m, 1H), 1.61–1.52 (m, 1H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 178.52$, 167.86, 92.41, 53.70, 35.80, 33.39, 21.35, 19.01 ppm. HRMS (ESI) m/z calcd for C₈H₁₃NNaO₃ [M+Na]⁺ 194.0788, found 194.0787. The *ee* value was 89%, t_R (minor) = 14.945 min, t_R (major) = 16.874 min (Chiralpak ID, $\lambda = 210$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).


A stirred solution of **4b** (50.0 mg, 0.11 mmol) in MeOH (2 mL) was added Pd/C (10 mg) under the H₂ balloon. The mixture was stirred at room temperature for 6 h, and then the mixture was refluxed directly at 70 °C for 12 h. After completion of the reaction indicated by TLC, the mixture to a silica gel chromatography column (silica gel, PE/EtOAc = 1/1) to afford the desired product **5b** as colorless oil (21.1 mg, 92% yield); $[\alpha]^{25}_{D} = -2.5$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 4.27$ (q, J = 7.0 Hz, 2H), 2.42 (td, J = 7.0, 2.0 Hz, 2H), 2.35–2.18 (m, 4H), 1.65–1.47 (m, 2H), 1.29 (t, J = 7.0 Hz, 3H), 0.91 (t, J = 7.0 Hz, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 177.87$, 166.83, 96.36, 62.87, 33.29, 32.44, 27.07, 18.76, 14.00, 8.01 ppm. HRMS (ESI) m/z calcd for C₁₀H₁₇NNaO₃ [M+Na]⁺ 222.1101, found 222.1110. The *ee* value was 90%, t_R (minor) = 29.002 min, t_R (major) = 44.404 min (Chiralpak IF, $\lambda = 210$ nm, 5.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

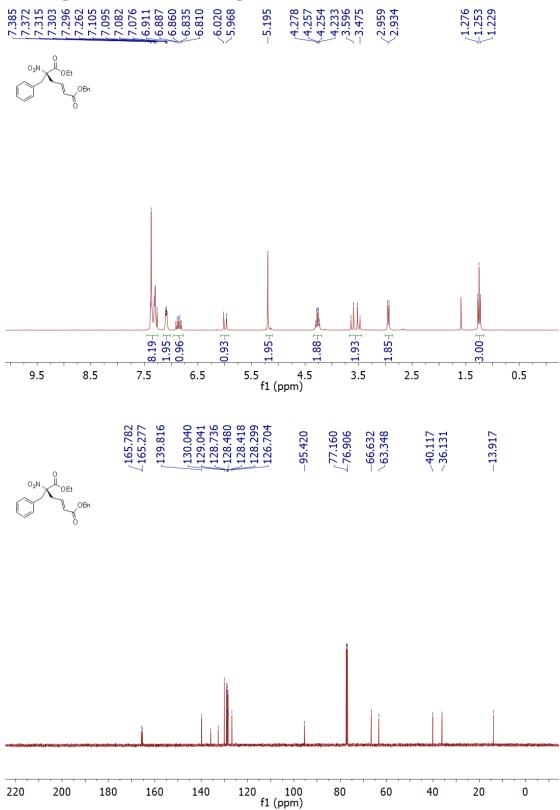
To a solution of **4a** (40.9 mg, 0.1 mmol) in MeOH (2.0 mL), NiCl₂·6H₂O (23.8 mg, 0.1 mmol) and NaBH₄ (19.0 mg, 0.5 mmol) was added at 0 °C. The reaction mixture was stirred at 0 °C for 90 min. Then, NaHCO₃ was added dropwise until the solution attained pH 9. Methanol was removed by evaporation, and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with brine, dried over MgSO₄, After evaporation under reduced pressure, the residue was purified by silica gel flash column chromatography (hexane/ ethyl acetate = 2/1) to give **5c** as colorless oil (29.4 mg, 77% yield). $[\alpha]^{25}_{D} = -1.8$ (c = 2.0, CHCl₃); ¹H NMR (500 MHz, CDCl₃): $\delta = 7.40$ (d, J = 8.0 Hz, 2H), 7.25–7.22 (m, 2H), 7.18–7.15 (m, 4H), 6.90 (s, 1H), 3.66 (s, 3H), 3.59–3.52 (m, 2H), 3.05–2.99 (m, 2H), 2.34 (t, J = 6.0 Hz, 2H), 1.66–1.62 (m, 2H), 1.53–1.49 (m, 2H), 1.27 (s, 3H) ppm. ¹³C NMR (125 MHz, CDCl₃): $\delta = 177.58$, 172.08, 140.20, 136.76, 130.41, 129.84, 128.86, 126.28, 79.10, 57.78, 52.37, 40.17, 34.62, 32.53, 26.12, 19.76 ppm. HRMS (ESI) m/z calcd for

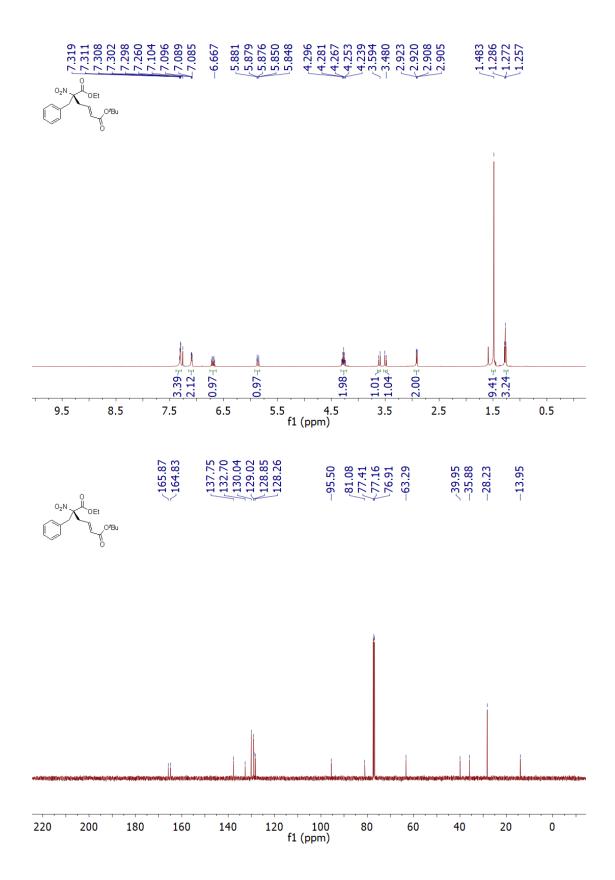
 $C_{23}H_{27}NNaO_4 [M+Na]^+ 404.1832$, found 404.1830. The *ee* value was 93%, t_R (minor) = 21.522 min, t_R (major) = 23.468 min (Chiralpak IF, λ = 220 nm, 10.0% *i*PrOH/hexane, flow rate = 1.0 mL/min).

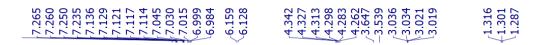
VI. Determination of the absolute configuration of 5b.

The absolute configuration of products 5b was established through the comparison of its value of specific rotation with that of a known compound reported in the literature.³

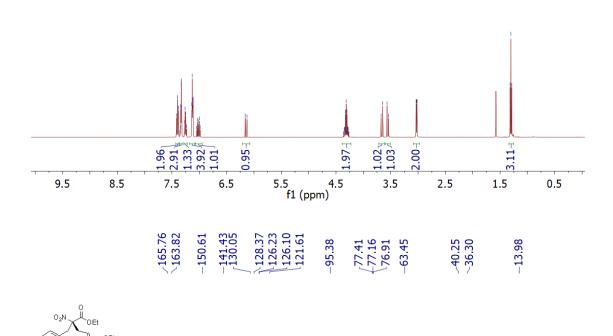
(R)-product in this work	(<i>R</i>)-product in literature		
O H O OEt	O H OEt		
ethyl (<i>R</i>)-2-ethyl-6-	ethyl (<i>R</i>)-2-ethyl-6-		
oxopiperidine-2-carboxylate	oxopiperidine-2-carboxylate		
Specific rotation:	Reported specific rotation:		
$[\alpha]D^{20} = -2.5 (c = 1.9, CHCl_3)$	$[\alpha]D^{20} = -8.3$ (c = 1.9, CHCl ₃)		

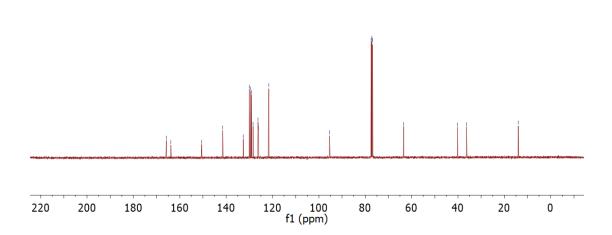

VII. References

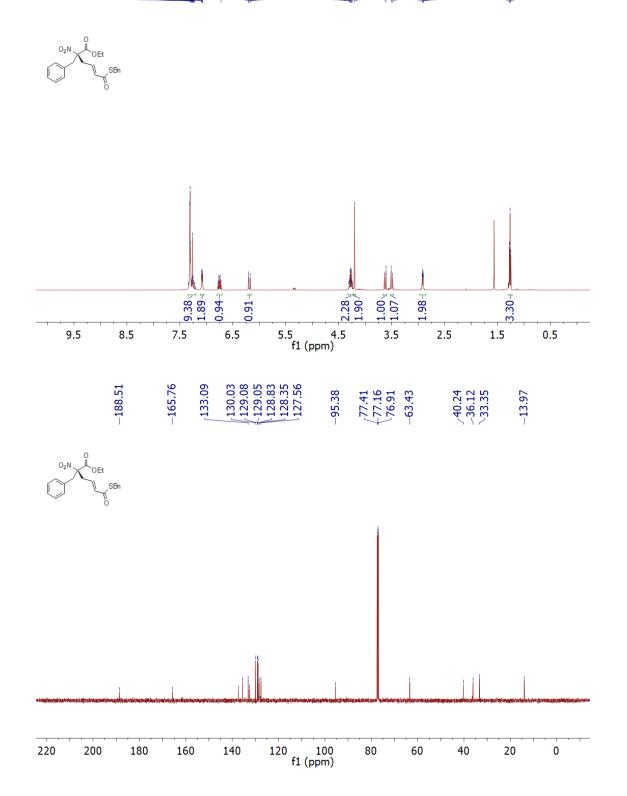

1 (a) X. Han, Y. Wang, F. Zhong and Y. Lu, Enantioselective [3 + 2] Cycloaddition of Allenes to Acrylates Catalyzed by Dipeptide-Derived Phosphines: Facile Creation of Functionalized Cyclopentenes Containing Quaternary Stereogenic Centers, J. Am. Chem. Soc., 2011, 133, 1726-1728; (b) F. Zhong, X. Han, Y. Wang and Y. Lu, Highly Enantioselective [3 + 2] Annulation of Morita-Baylis-Hillman Adducts Mediated by L-Threonine-Derived Phosphines: Synthesis of 3-Spirocyclopentene-2-oxindoles having Two Contiguous Quaternary Centers, Angew. Chem., Int. Ed., 2011, 50, 7837–7841; (c) F. Zhong, X. Han, Y. Wang and Y. Lu, Highly enantioselective [4+ 2] annulations catalyzed by amino acid-based phosphines: Synthesis of functionalized cyclohexenes and 3-spirocyclohexene-2-oxindoles, Chem. Sci., 2012, 3, 1231-1234; (d) X. Han, F. Zhong, Y. Wang and Y. Lu, Versatile Enantioselective [3 + 2] Cyclization between Imines and Allenoates Catalyzed by Dipeptide-Based Phosphines, Angew. Chem., Int. Ed., 2012, 51, 767-770; (e) F. Zhong, J. Luo, G.-Y. Chen, X. Dou and Y. Lu, Highly Enantioselective Regiodivergent Allylic Alkylations of MBH Carbonates with Phthalides, J. Am. Chem. Soc., 2012, 134, 10222-10227; (f) F. Zhong, X. Dou, X. Han, W. Yao, Q. Zhu, Y. Meng and Y. Lu, Chiral Phosphine Catalyzed Asymmetric Michael Addition of Oxindoles, Angew. Chem., Int. Ed., 2013, 52, 943–947; (g) X. Han, W. Yao, T. Wang, Y. R. Tan, Z. Yan, J. Kwiatkowski and Y. Lu, Asymmetric Synthesis of Spiropyrazolones through Phosphine-Catalyzed [4 + 1] Annulation, Angew. Chem., Int. Ed., 2014, 53, 5643-5647; (h) W. Yao, X. Dou and Y. Lu, Highly Enantioselective Synthesis of 3,4-Dihydropyrans through a Phosphine-Catalyzed [4 + 2] Annulation of Allenones and β,γ -Unsaturated α -Keto Esters, J. Am. Chem. Soc., 2015, 137, 54– 57; (i) T. Wang, Z. Yu, D. L. Hoon, C. Y. Phee, Y. Lan and Y. Lu, Regiodivergent


Enantioselective γ -Additions of Oxazolones to 2,3-Butadienoates Catalyzed by Phosphines: Synthesis of α,α -Disubstituted α -Amino Acids and *N*,*O*-Acetal Derivatives, *J. Am. Chem. Soc.*, 2016, **138**, 265–271.

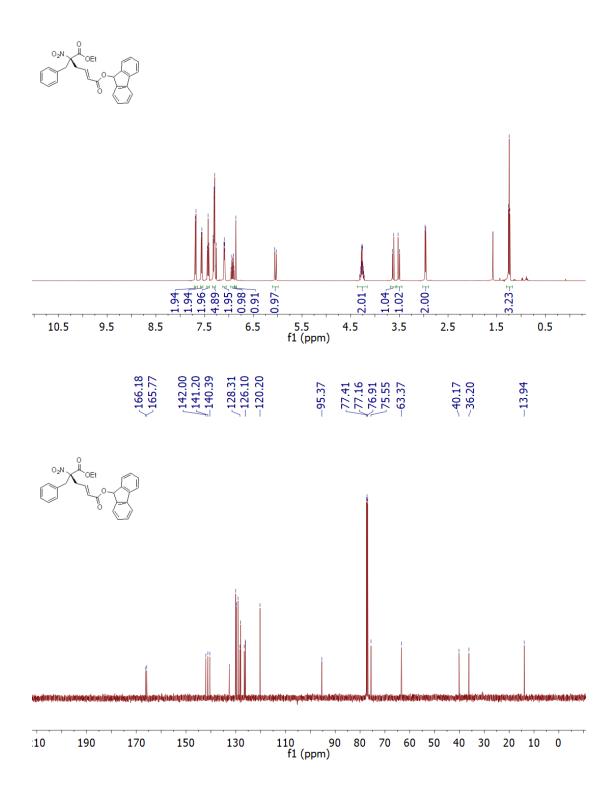
- 2 D. F. González, J. P. Brand and J. Waser, Ethynyl-1,2-benziodoxol-3(1 *H*)-one (EBX): An Exceptional Reagent for the Ethynylation of Keto, Cyano, and Nitro Esters, *Chem. –Eur. J.*, 2010, 16, 9457–9461.
- 3 B. Westermann and I. Gedrath, Facile Synthesis of Completely Protected Enantiomerically Pure α, α -Disubstituted α -Amino Acids, *Synlett*, 1996, 665–666.


VIII. Copies of ¹H and ¹³C NMR spectra

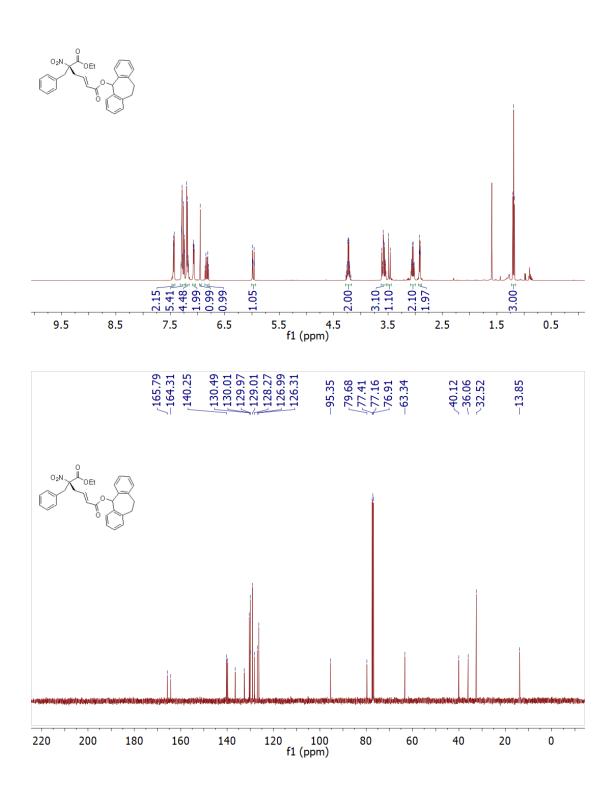




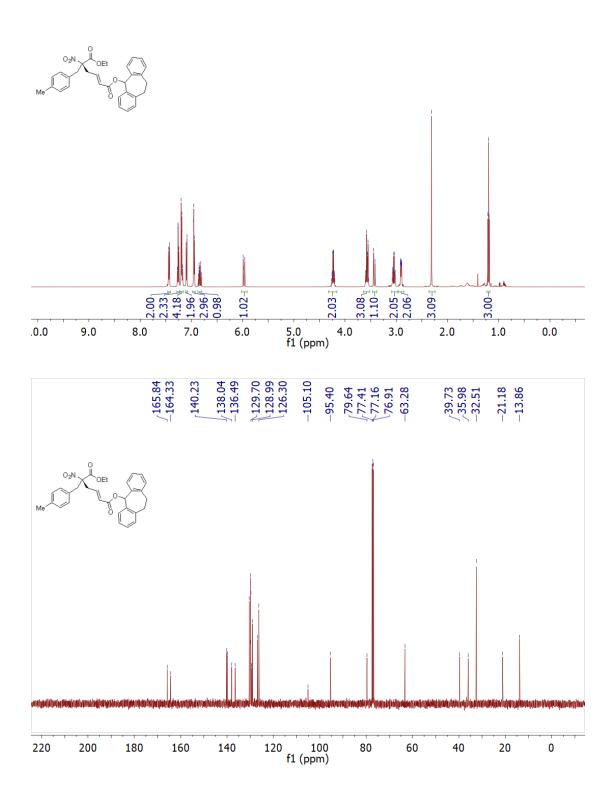
7.205 7.205 7.278 7.278 7.278 7.279 7.27119 7.2719



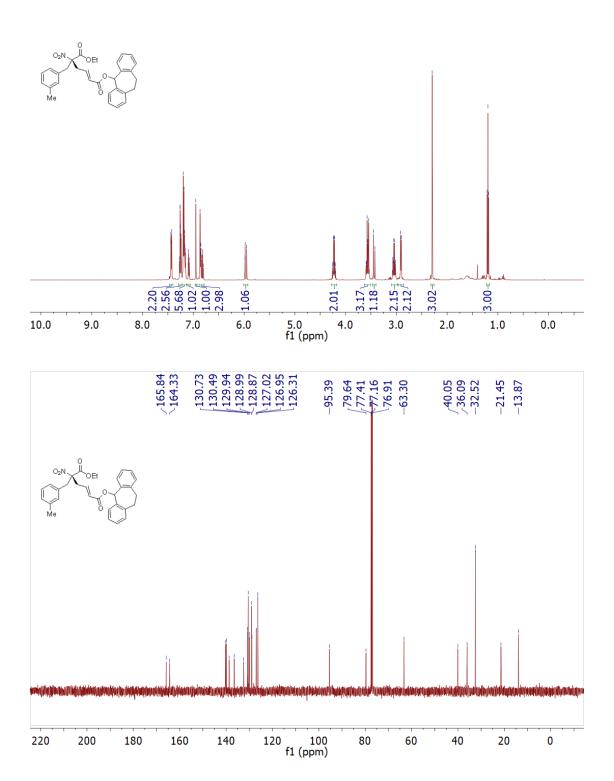
$\begin{array}{c} 8.527\\ 8.345\\ 8.345\\ 8.345\\ 8.345\\ 8.345\\ 8.345\\ 8.345\\ 8.345\\ 8.345\\ 7.7047\\ 7.7993\\ 7.7047\\ 7.198\\ 6.808$

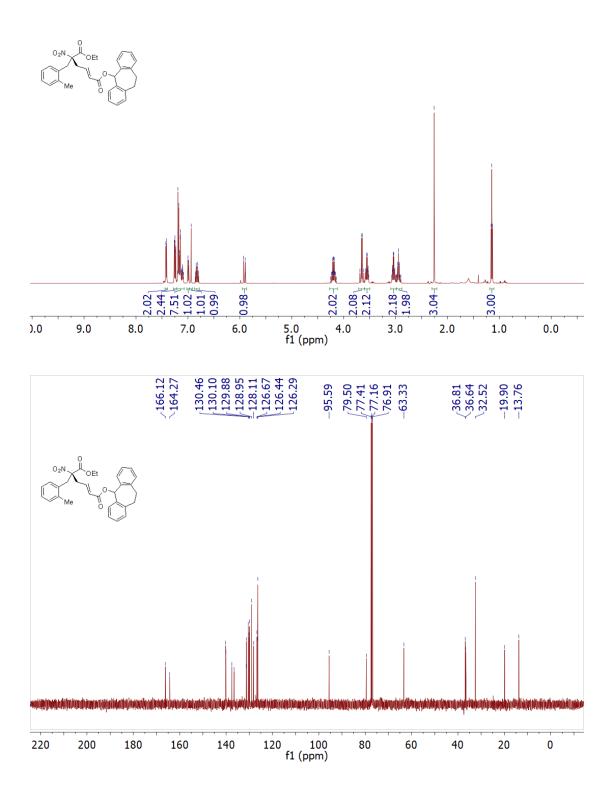


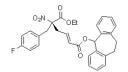
7.307 7.295 7.295 7.295 7.292 7.294 7.294 7.097 7.087 7.087 7.087 7.087 6.955 6.955 6.955 6.955 6.959 6.925 6.028 7.2956 6.028 7.2956 7.2956 7.2956 7.2956 7.2956 7.2956 7.2956 7.2956

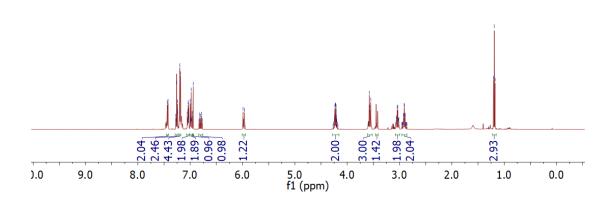


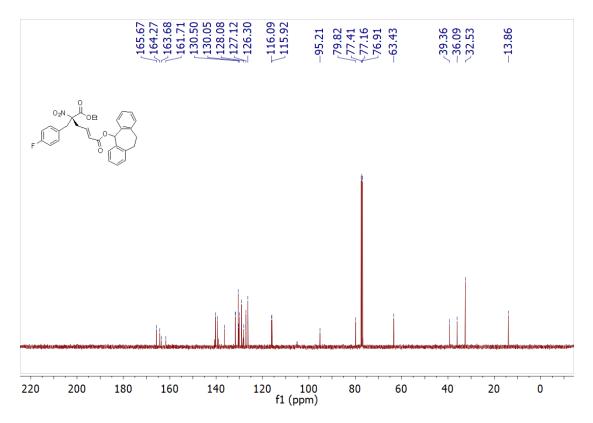
S66

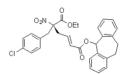


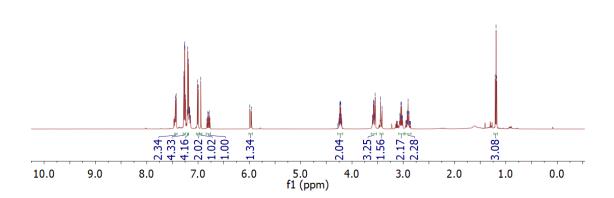

7,200 7,175 7,175 7,175 7,175 7,175 7,175 7,175 7,103 7,175 6,953 6,942 6,942 6,856 6,856 6,856 6,856 6,856 6,856 6,826 7,226 2,837 7,226 2,837 7,226 2,837 7,226 2,837 2,2313 2,2313 1,11851,1185

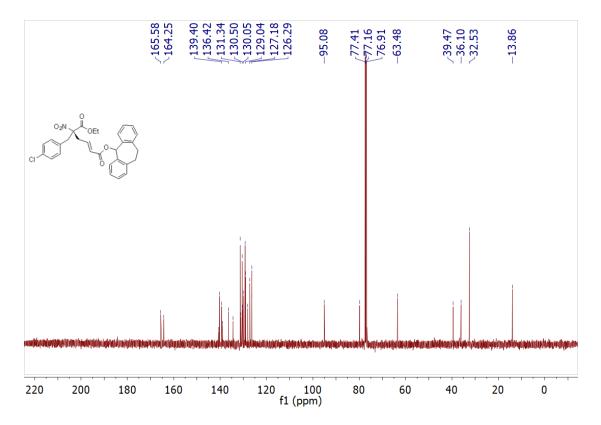

7,1197 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 7,1157 6,834 6,834 6,834 6,834 6,834 6,834 6,834 6,833 6,5348 6,5328 6,5

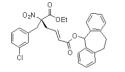


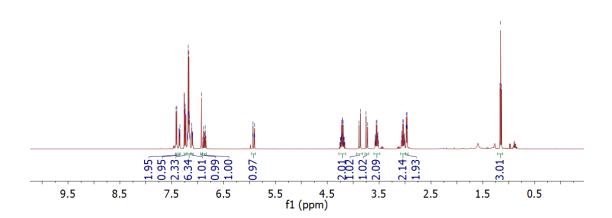

-3.5116 -7.115 -7.104 -7.092 -7.087 -6.999 -6.984 -6.937 -6.937 -6.841 -6.825 -6.810 -6.795 -6.795 -6.795 -6.795 -6.1123 -4.1122 -4.1122 -4.1122 -4.1122 -3.516 -2.257 -2.257 -2.257 -2.257 -2.257 -1.161-1.161

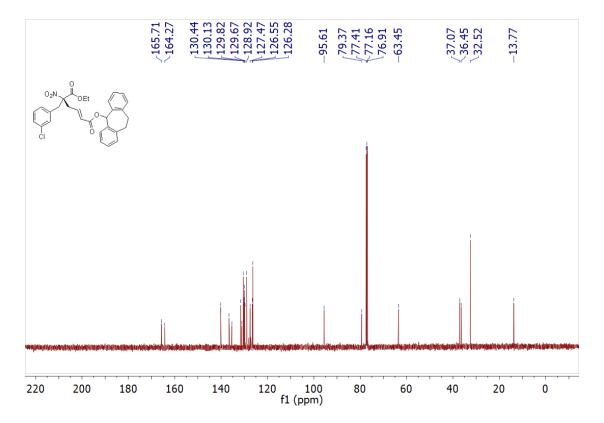

(11.175) (11

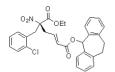


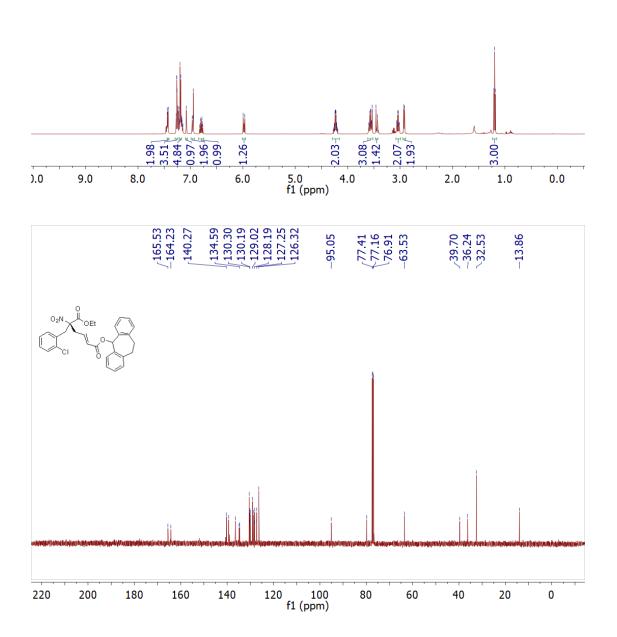


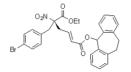

7.175 7.176 7.175 7.155 7.155 7.155 7.155 7.155 7.155 7.155 6.0996 6.0996 6.0995 6.0995 6.0787 6.0797 6.0797 6.0797 6.0797 7.013 7.010 7.013 7.0

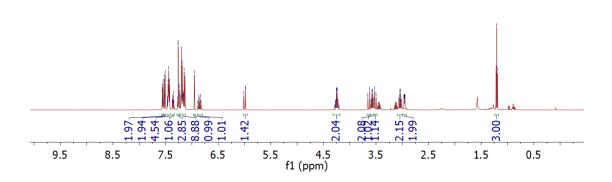


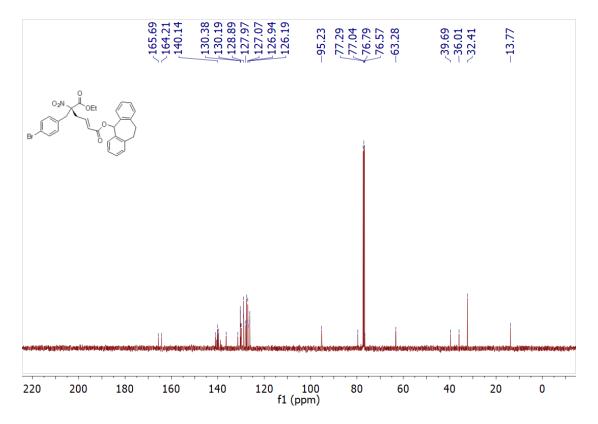


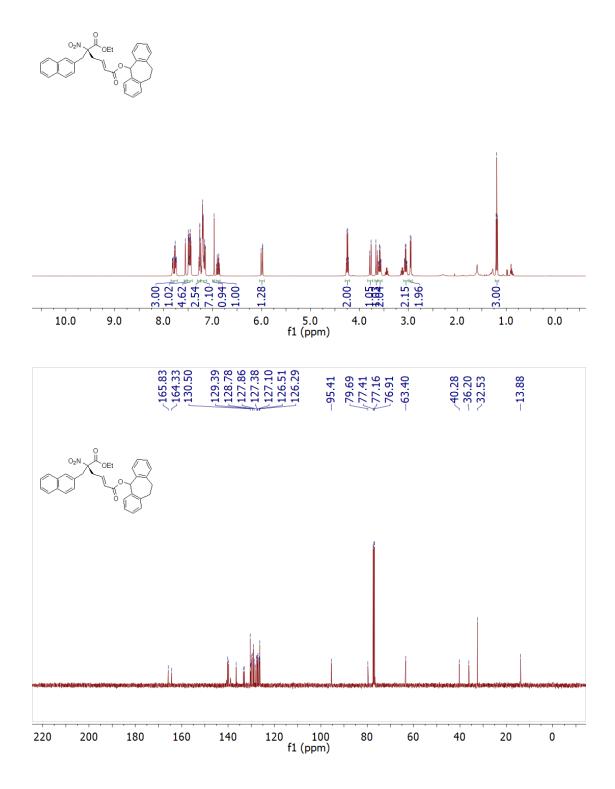


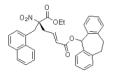

7.230 7.194 7.115 7.172 7.115 7.115 7.115 7.115 6.870 6.870 6.870 6.870 6.870 6.870 6.870 6.870 6.870 6.870 6.870 6.870 7.096 6.870 6.870 7.096 6.870 7.096 6.870 7.096 6.870 7.096 7.097 7.096 7.097 7.096 7.097 7.096 7.097 7.096 7.097 7.096 7.097 7.096 7.097 7.096 7.097 7.097 7.096 7.097 7.0070

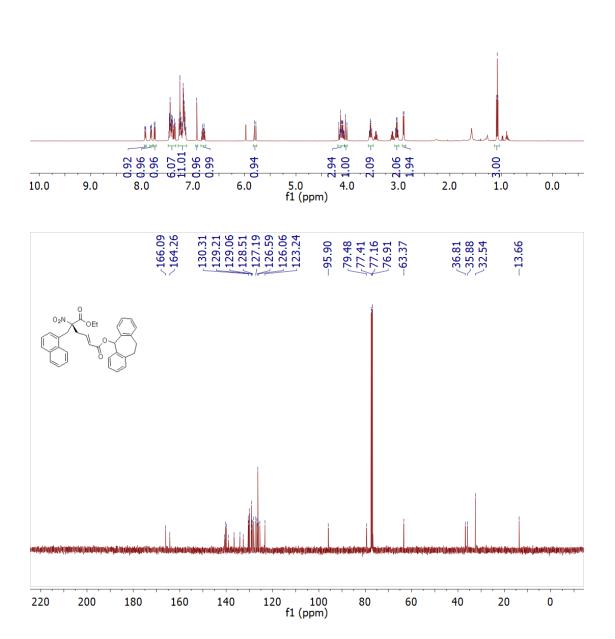




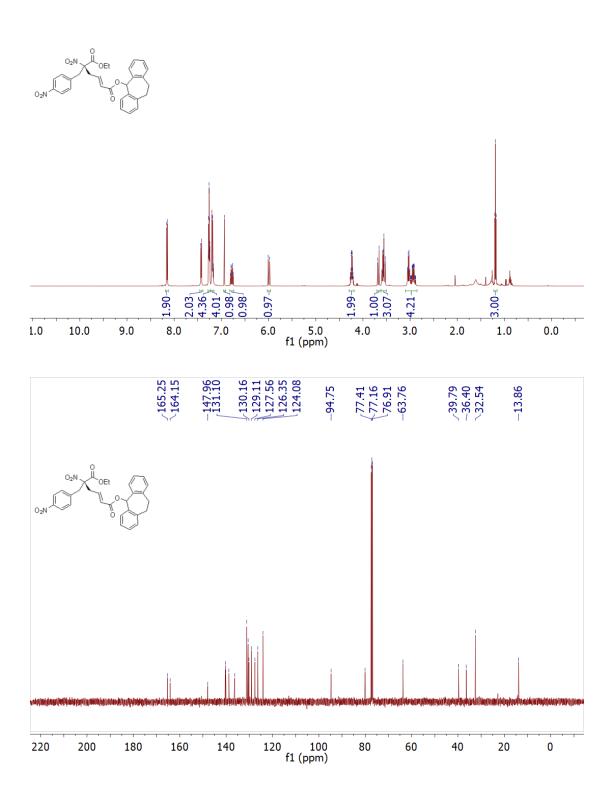



7.546 7.519 7.519 7.555 7.255 7.255 7.255 7.213

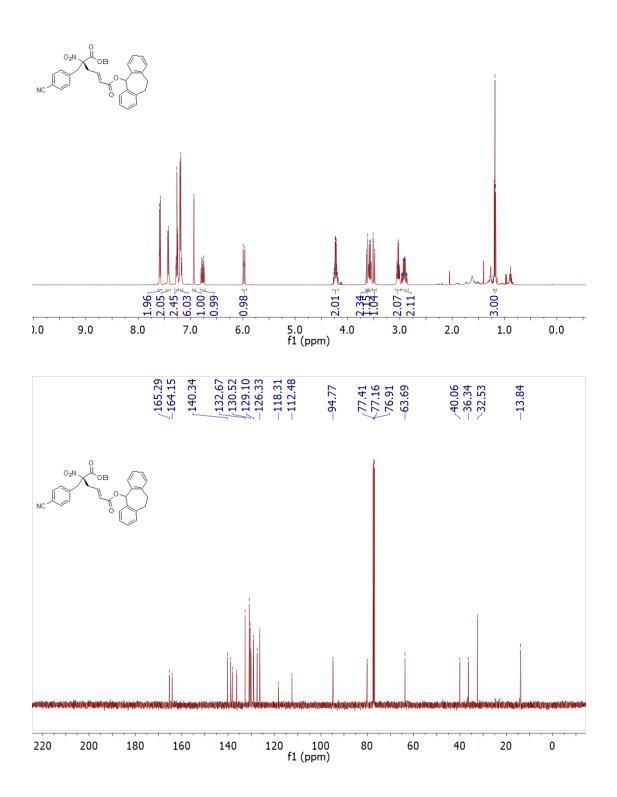


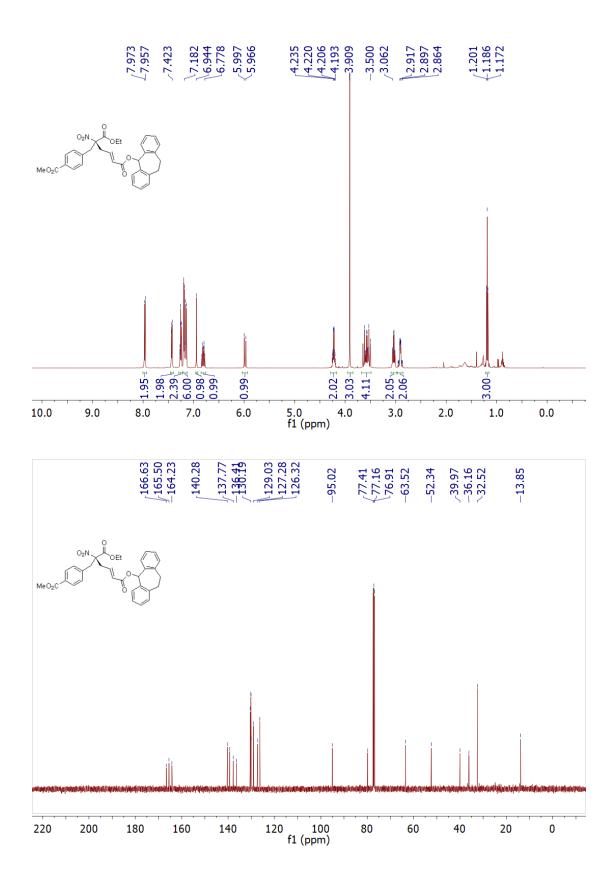


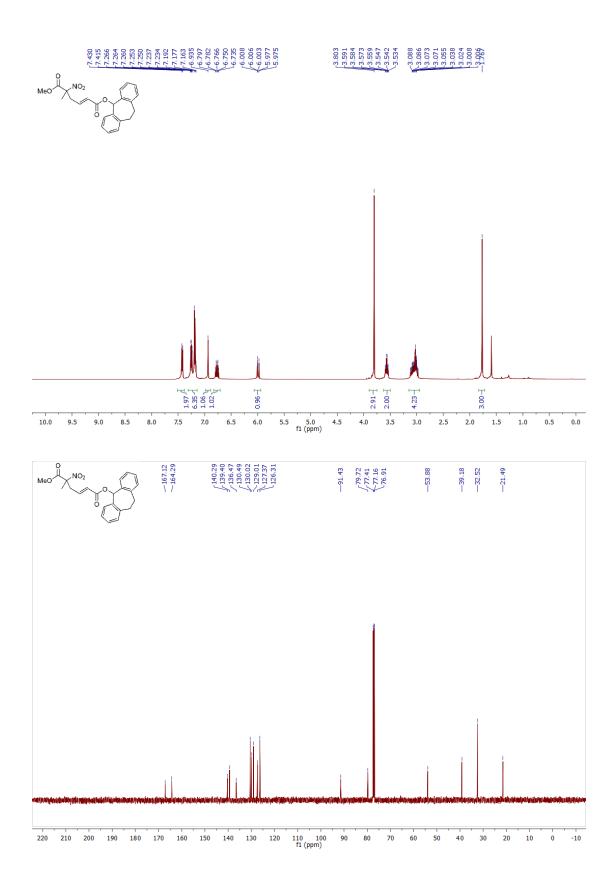
S75

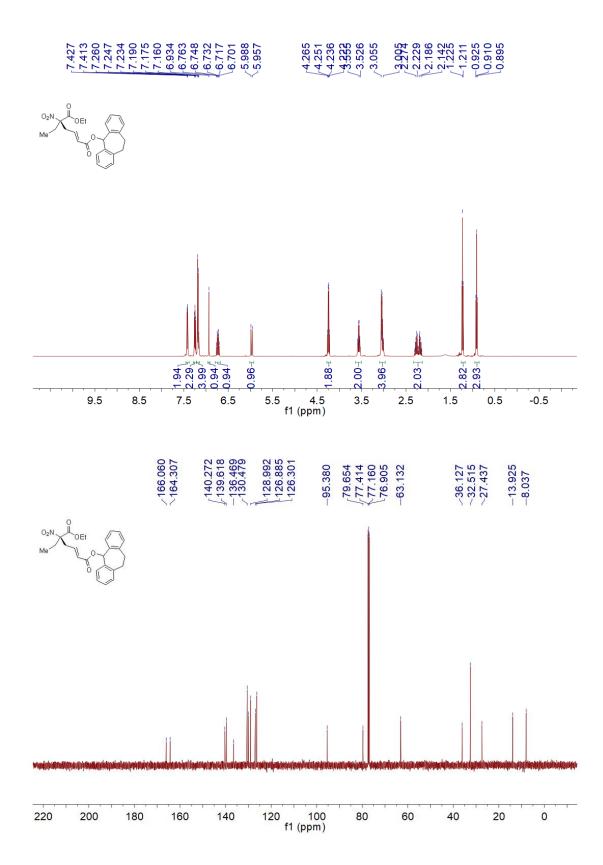


7.943 7.929 7.928 7.928 7.928 7.928 7.928 7.928 7.928 7.158 6.779 7.1158 6.779 7.1158 6.779 7.1158 6.779 7.1158 6.779 7.1158 6.779 7.1158 6.779 7.1158 6.779 7.1158 7.11097 7.11093 7.11003 7.110005 7.11005 7.11005 7.11005 7.11005 7.11005 7

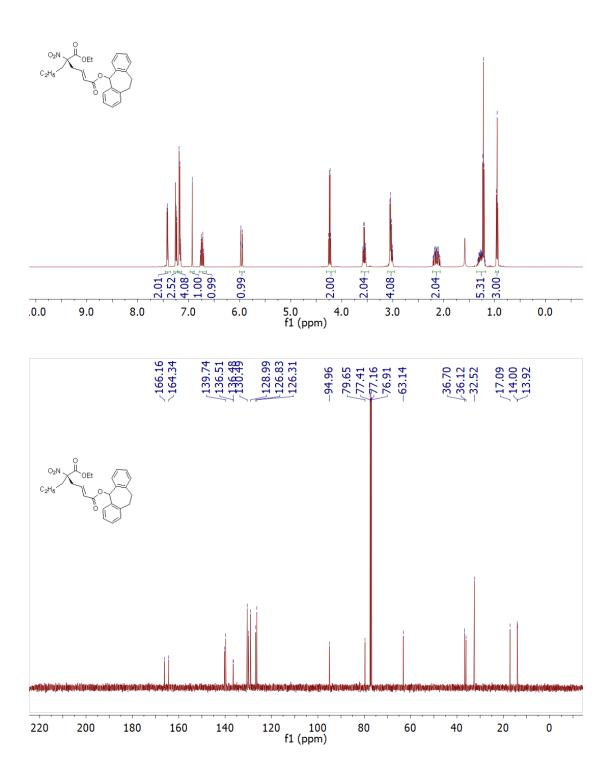


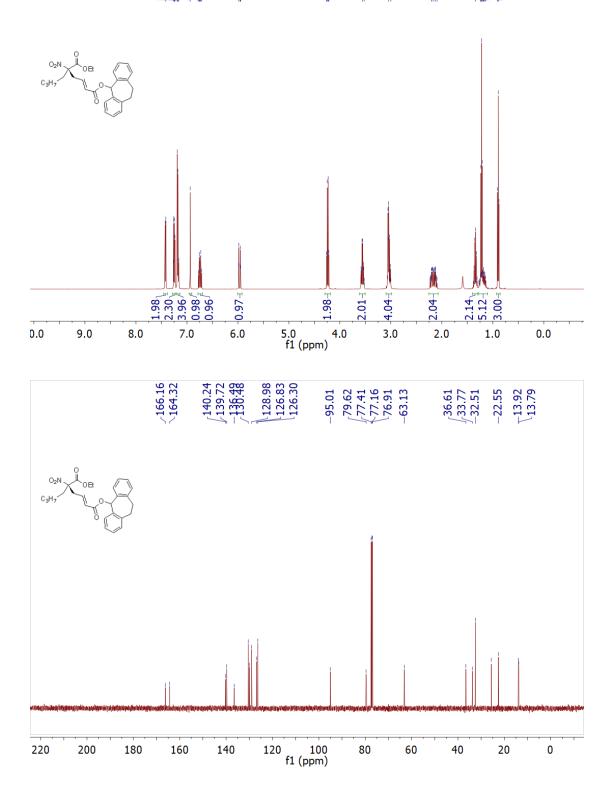


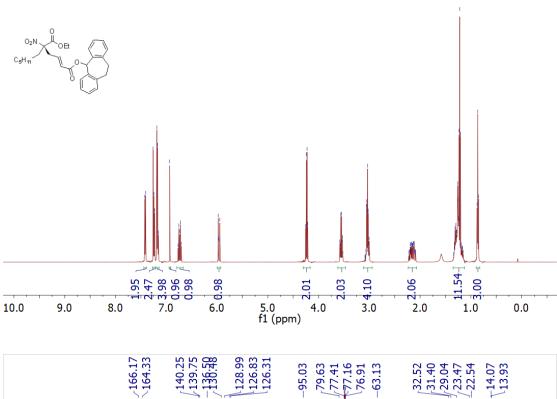

$\begin{array}{c} & 8.160 \\ & 8.142 \\ & 7.436 \\ & 7.249 \\ & 7.249 \\ & 6.748 \\ & 6.748 \\ & 6.748 \\ & 6.724 \\ & 6.007 \\ & 6.2976 \\ & 6.2976 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2076 \\ & 6.2016 \\ &$

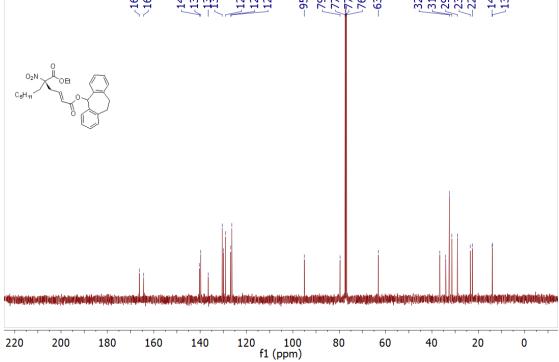


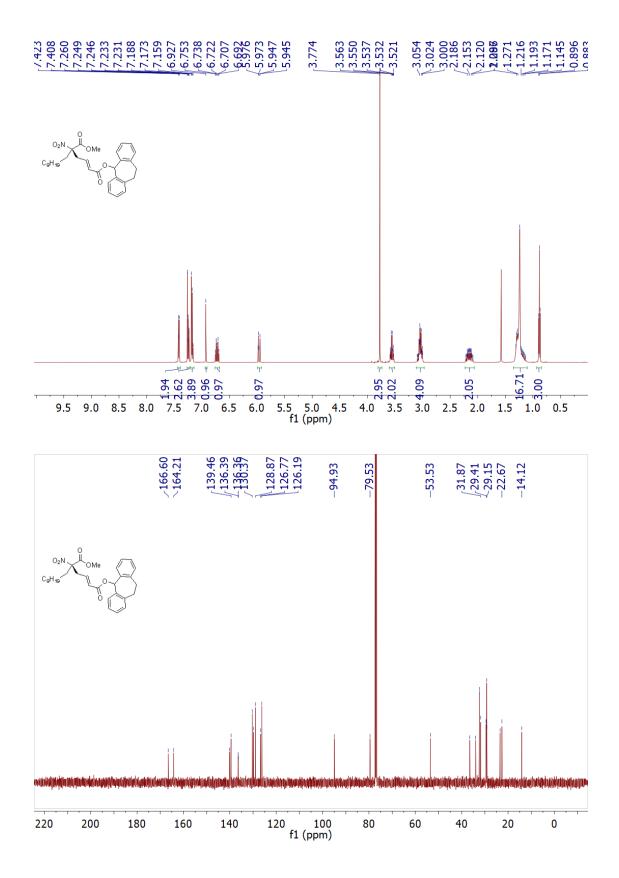
7.243 7.205 7.173 7.173 7.173 7.173 7.170 7.173 7.170 6.936 6.739 6.739 6.739 6.739 6.739 6.7339 6.770 6.7339 6.770 6.7339 7.167 6.7339 6.770 6.7339 7.167 6.7339 7.1733 7.177 7.1773 7.1713 7.17147 7.17147 7.17147 7.17147 7.171

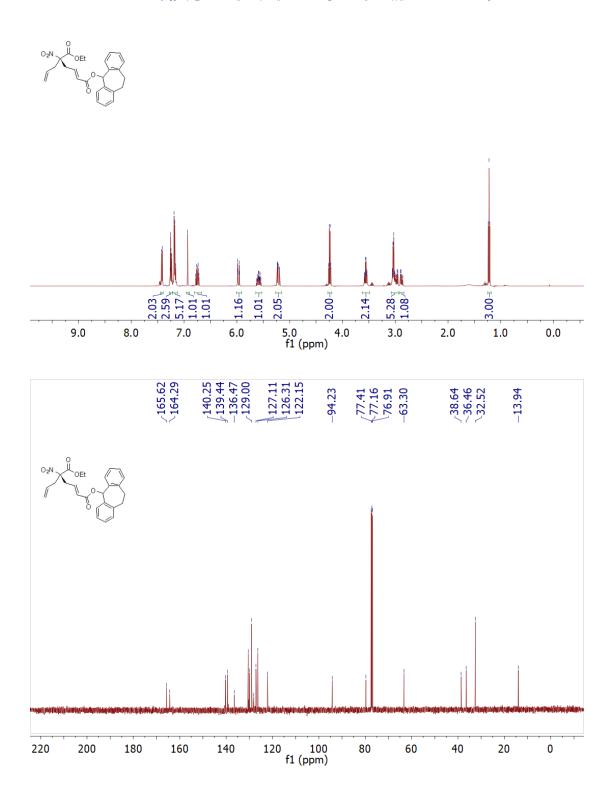


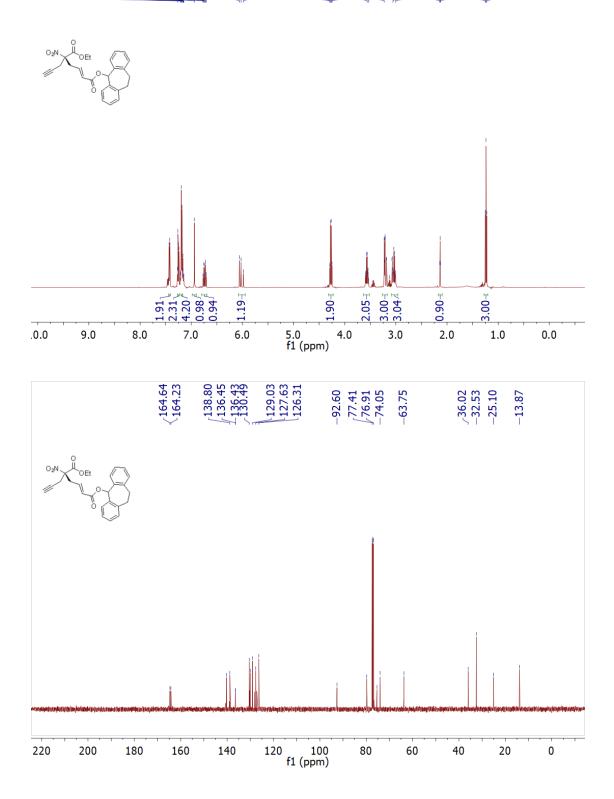


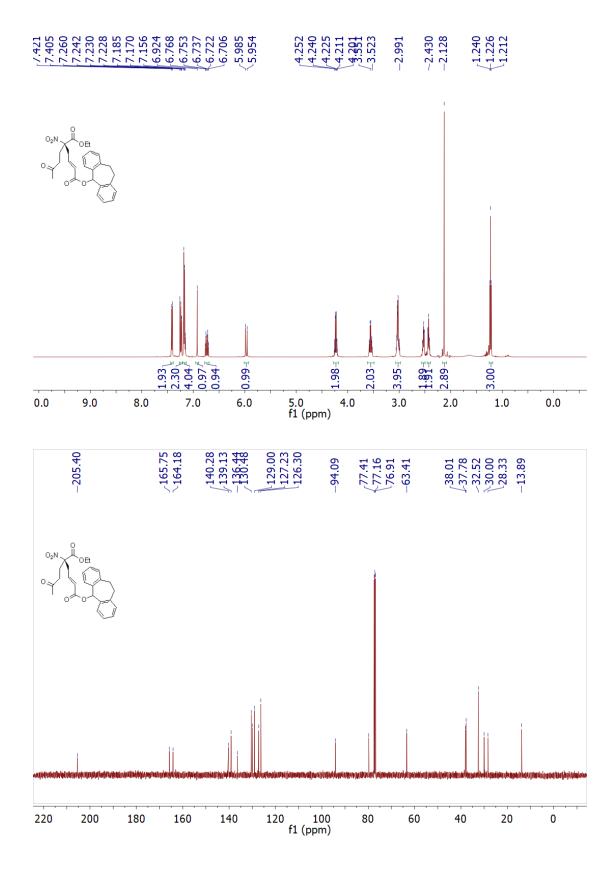


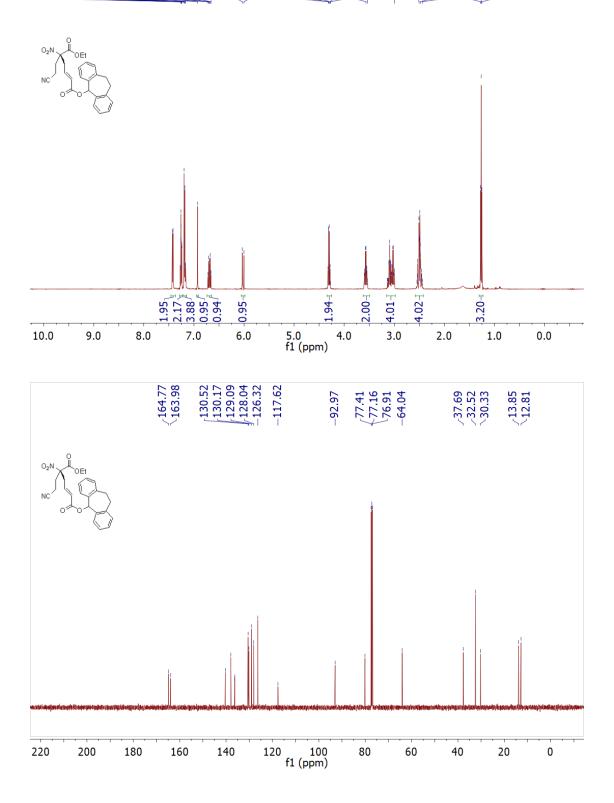

S82

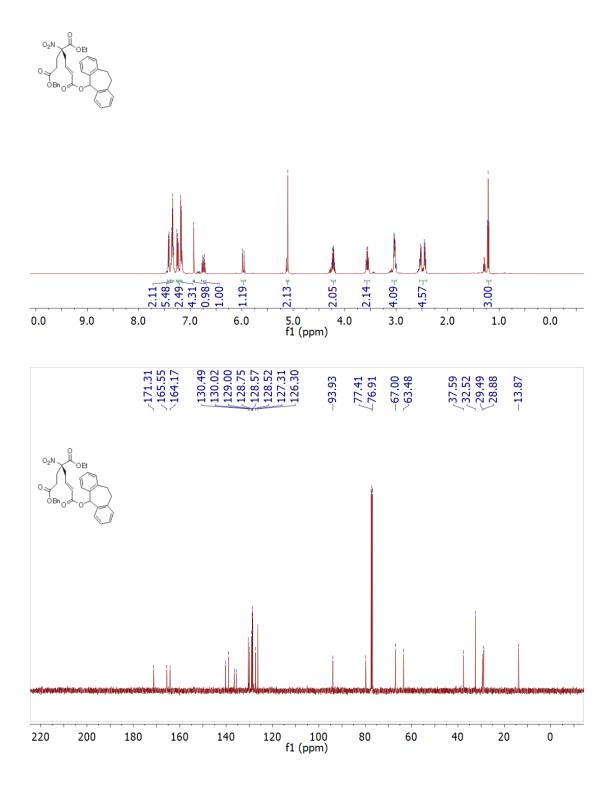


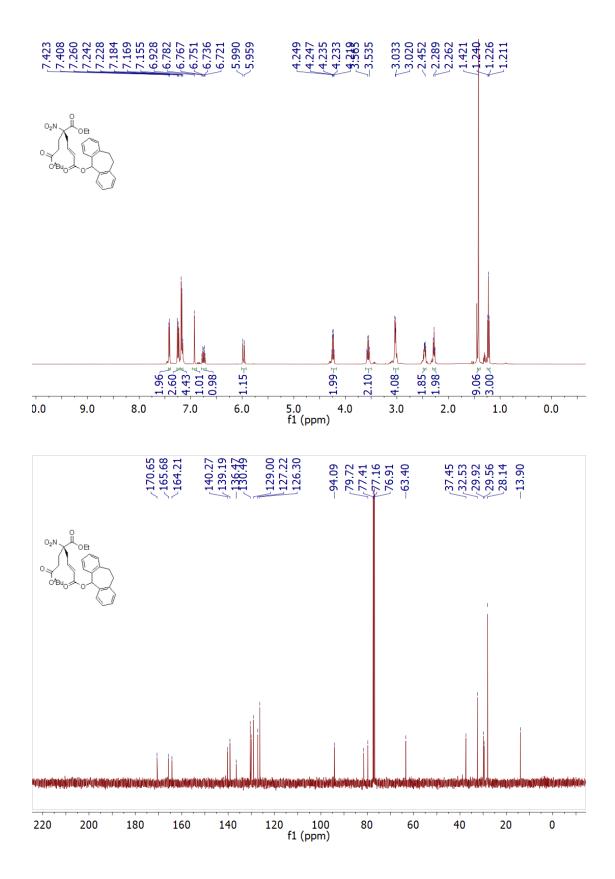


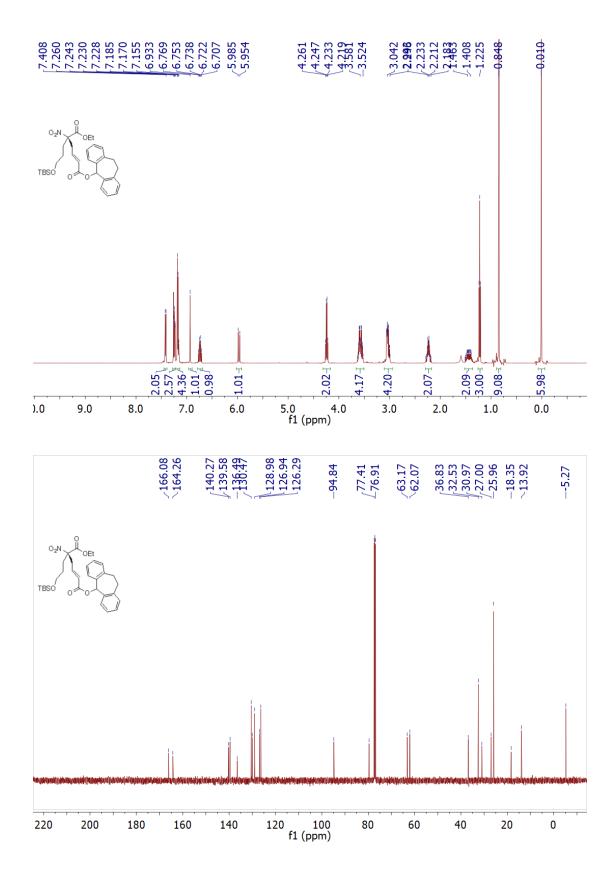




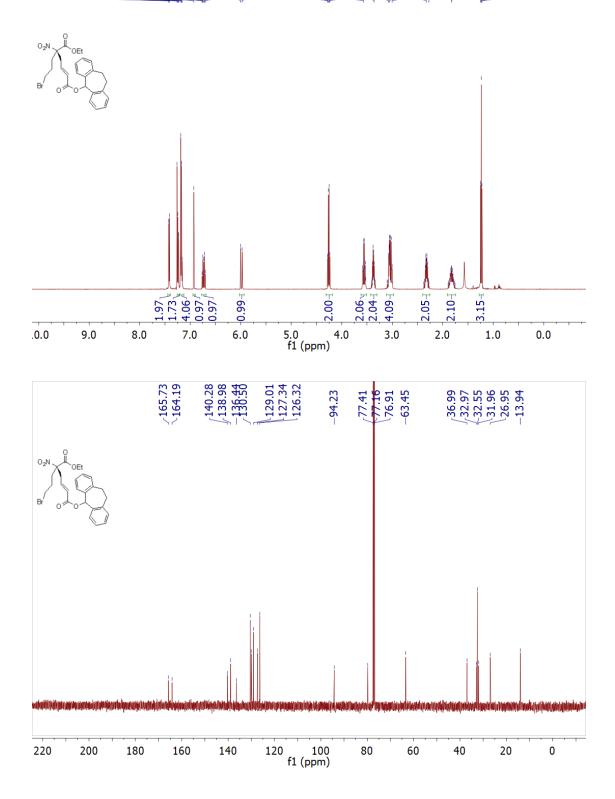


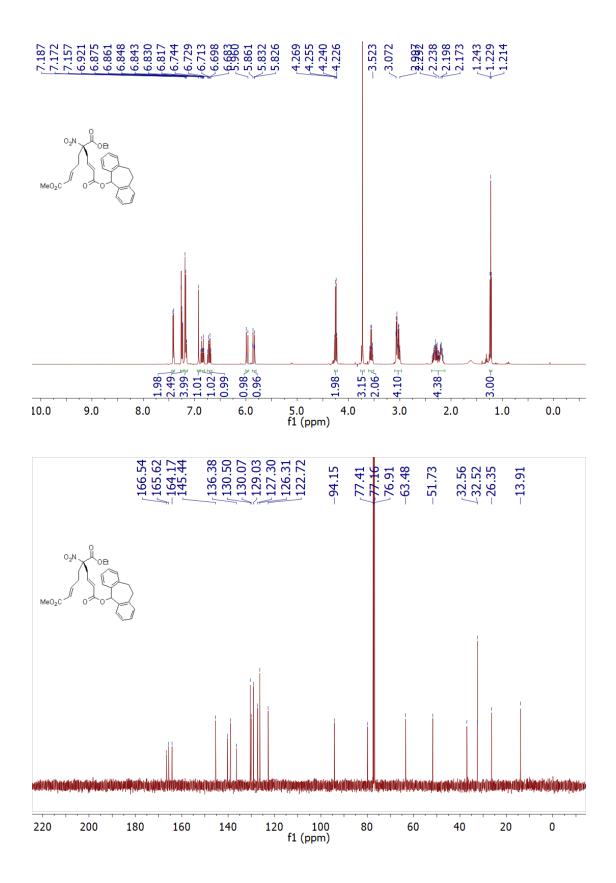


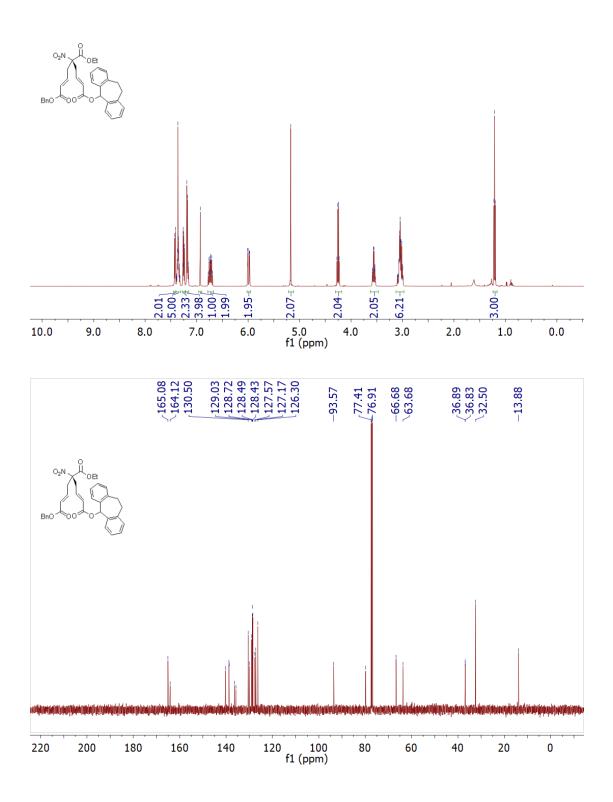


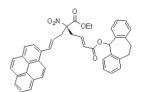


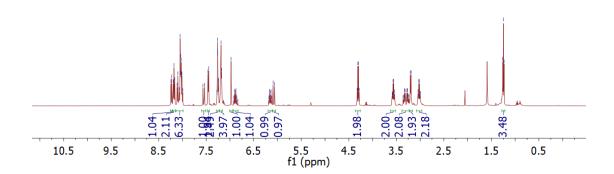
S89










7.125 7.1260 7.1260 7.1260 7.1233 7.1233 7.1251 7.1233 7.1251 7.1233 7.1251 7.1233 7.1251 7.1253 7.1251 7.1253 7.1251 7.1251 7.1253 7.12517 7.12517 7.12517 7.12517 7.12517 7.12517 7.12517 7.12517 7.

