Supporting Information

Organocatalytic Enantioselective Diels-Alder Reaction between Hydroxymaleimides and in situ Generated Nitrosoalkenes for Direct Preparation of Chiral Hemiketals with 1,2-Oxazine Skeleton

Min Xiang^{a,b}, Chen-Yi Li^{a,b}, Jian zhang^{a,b}, Ying Zou^{a,b}, Wen-Sheng Li^{a,b}, Fang Tian^a, Wen-Juan Wan^{*,a}, Li-Xin Wang^{*,a}

a Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province, Chengdu Institute of Organic Chemistry Chinese Academy of Sciences, Chengdu 610041, China. b University of Chinese Academy of Sciences, Beijing 100049, China.

Table of Contents

1 General remarks	2
2 General procedures for the syntheses of compounds 1a-1s	2
3 X-ray crystallographic data of compound 3aa, 3an'	4
4 Procedures and characterization data	7
5 HPLC, NMR and HRMS spectra of products	25

1 General remarks

Chemicals were purchased from commercial suppliers and used without further purification unless otherwise stated. Reactions were monitored by TLC and visualized with ultraviolet light. Flash column chromatography was performed on silica gels (300-400 mesh) eluting with ethyl acetate, dichloromethane and petroleum ether. ¹H NMR and ¹³C NMR spectra were recorded in DMSO-d₆ on a Bruker Avance instrument (600 MHz for ¹H NMR,150 MHz for ¹³C NMR; 300 MHz for ¹H NMR, 75 MHz for ¹³C NMR). ¹H NMR chemical shifts are reported in ppm relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (DMSO-d₆ at 2.50 ppm), chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet), coupling constants (Hz) and integration. ¹³C NMR chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard (DMSO-d₆ at 39.52 ppm). High-resolution mass spectra (HRMS) analyses were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer and 1290 Infinity LC/6460 QQQMS. Enantiomeric excess was determined by HPLC analysis on chiralpak AD-H, IC, AY-H. Optical rotations were measured on a Perkin-Elmer 241 Polarimeter. Melting points were recorded on a Buchi Melting Point B-545.

2 General procedures for the syntheses of compounds 1a-1s

2.1 Hydroxymaleimides:1a-1u and characterization data

1a-1r were prepared according to the literature. [1]

Typical preparation for 3-ethyl-4-hydroxy-1-phenyl-1H-pyrrole-2,5-dione 1a.

Step-1: A solution of aniline (1.06 g, 10 mmol, 1 equiv.) and triethylamine (1.21 g, 12 mmol, 1.2 equiv.) in 30 mL THF was placed in a round-bottomed flask which was stirred at 25 °C for 10 min, N-butyryl chloride (1.16 g, 11 mmol, 1.1 equiv.) is injected into the sealed bottle by a syringe and stirred at 25 °C for 3 h.

Step-2: Potassium tert-butoxide (2.80 g, 25 mmol, 2.5 equiv.) was slowly added to the reaction flask and stirred at 25 °C for 10 minutes, diethyl oxalate was added (3.65 g, 25 mmol, 2.5 equiv.) and stirred for 10 minutes. The reaction temperature was raised to 70 °C and stirred for another 12 h. After full consumption of the intermediate monitored by TLC. 2 M HCl (25 mL) was added to neutralize the residue to pH = 1. The aqueous solution was extracted with CH_2Cl_2 (3×50 mL). The organic phases were combined, washed with brine and dried over anhydrous Na₂SO₄. After evaporation of solvent under reduced pressure, the crude product was purified by flash column chromatography petroleum ether/ethyl acetate (v(PE/EA) = 15/1 to 4/1) to afford product **1a** (Yellow solid, 1.35g, 67% yield). ¹H NMR (300 MHz, DMSO-d6) δ 13.63 (s, 1H), 7.49-7.40 (m, 2H), 7.37-7.28 (m, 3H), 2.30 (q, J = 7.5 Hz, 2H), 1.08 (t, J = 7.5 Hz, 3H); ¹³C NMR (75 MHz, DMSO-d6) δ 171.0, 166.1, 152.5, 131.8, 128.8, 127.2, 126.5, 111.2, 14.3, 12.6. Consistent with previous reports in the literature.^[1] Substrates **1b-1p** were prepared by the same procedures. 2-Chloroacetyl chloride is substituted for the preparation of **1s** with similar procedures as for **1a**.

2.1 α-bromoketoxime 2a-2o

α-bromoketoxime were prepared according to the reported methods described in the literatures.^[2]

2.3 Catalysts 4a-4d

Catalysts 4 were prepared according to the reported methods described in the literatures.^[3]

References:

[1] a) Yang, Y.; Ren, H. X.; Chen, F.; Zhang, Z. B.; Zou, Y.; Chen, C.; Song, X. J.; Tian, F.; Peng, L.; Wang, L. X. Organocatalytic Asymmetric Annulation between Hydroxymaleimides and Nitrosoarenes: Stereoselective Preparation of Chiral Quaternary N-Hydroxyindolines. *Org. Lett.* 2017, *19*, 2805-2808.; (b) Tantray, M. A.; Khan, I.; Hamid, H.; Alam, M. S. Synthesis of aryl anilinomaleimide based derivatives as glycogen synthase kinase-3β inhibitors with potential role as antidepressant agents. *New J. Chem.* 2016, *40*, 6109-6119.

[2] Wabnitz, T. C.; Saaby, S. Jøgensen, K. A. The first catalytic inverse-electron demand hetero-Diels-Alder reaction of nitrosoalkenes using pyrrolidine as an organocatalyst. *Org. Biomol. Chem.* **2004**, *2*, 828-834.

[3] a) Vakulya, B.; Varga, S.; Csámpai, A. Soós, T. Highly Enantioselective Conjugate Addition of Nitromethane to Chalcones Using Bifunctional Cinchona Organocatalysts. Org. Lett. 2005, 7, 1967; (b) Zhu, Q.; Lu, Y. Stereocontrolled Creation of All-Carbon Quaternary Stereocenters by Organocatalytic Conjugate Addition of Oxindoles to Vinyl Sulfone. Angew. Chem. Int. Ed. 2010, 49, 7753-7756; Angew. Chem. 2010, 122, 7919-7922; (c) Badiola, E.; Fiser, B.; Gomez-Bengoa, E. Enantioselective Construction of Tetrasubstituted Stereogenic Carbons through Brønsted Base Catalyzed Michael Reactions: α'-Hydroxy Enones as Key Enoate Equivalent. J. Am. Chem. Soc. 2014, 136, 17869-17881.

3 X-ray crystallographic data of compound 3aa, 3an'

Ph Et O	
3aa	CCDC 2075420
Identification code	20200668
Empirical formula	C20H18N2O4
Formula weight	350.36
Temperature/K	293(2)
Crystal system	orthorhombic
Space group	P212121
a/Å	7.69091(15)
b/Å	11.2958(2)
c/Å	20.0933(5)
a/°	90
β/°	90
γ/°	90
Volume/Å3	1745.61(6)
Z	4
pcalcg/cm3	1.333
μ/mm-1	0.773
F(000)	736.0
Crystal size/mm3	$0.14\times0.12\times0.09$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.802 to 134.09
Index ranges	$-9 \le h \le 6, -13 \le k \le 13, -24 \le l \le 22$
Reflections collected	12539
Independent reflections	3119 [Rint = 0.0347, Rsigma = 0.0271]
Data/restraints/parameters	3119/0/237
Goodness-of-fit on F2	1.068
Final R indexes [I>=2σ (I)]	R1 = 0.0355, $wR2 = 0.0882$

Final R indexes [all data]	R1 = 0.0383, wR2 = 0.0913
Largest diff. peak/hole / e Å-3	0.16/-0.25
Flack parameter	-0.04(11)

Single crystal of **3aa** was obtained by slow evaporation from CH_3OH at 25 °C. ORTEP diagram of compound **3aa**, the ellipsoid contour probability levels: 50%.

Index ranges	$-16 \le h \le 16, -16 \le k \le 15, -31 \le l \le 35$
Reflections collected	56519
Independent reflections	11190 [Rint = 0.0423, Rsigma = 0.0281]
Data/restraints/parameters	11190/21/689
Goodness-of-fit on F2	1.073
Final R indexes [I>=2σ (I)]	R1 = 0.0670, $wR2 = 0.1940$
Final R indexes [all data]	R1 = 0.0745, wR2 = 0.2057
Largest diff. peak/hole / e Å-3	0.46/-0.26
Flack parameter	0.22(11)

Single crystal of **3an'** was obtained by slow evaporation from CH₃CH₂OH at 25 °C. ORTEP diagram of compound **3an'**, the ellipsoid contour probability levels: 50%.

4 Procedures and characterization data

4.1 Typical procedures for the organocatalytic and enantioselective Diels–Alder reaction between hydroxymaleimides 1a and in situ generated nitrosoalkenes from α-bromoketoxime 2a

A solution of hydroxymaleimide **1a** (21.7 mg, 0.1 mmol, 1.0 equiv.), α -bromoketoxime **2a** (26.0 mg, 0.12 mmol, 1.2 equiv.), and Cat **4b** (3 mg, 5 mol%), Na₂CO₃ (6.4 mg, 0.6 eq) in DCM (2mL, 0.1 M) was stirred at 25 °C. After **1a** was consumed by TLC (24 h, R_f = 0.3, V(PE: EA) = 5:1), the solvent was evaporated and the mixture was directly purified by flash column chromatography petroleum ether/ethyl acetate(V(PE/EA = 10/1 to 5/1) to afford products **3aa** (33.0 mg). Other reactants were operated by the same procedures.

4.2 Scale-up preparation and representative transformation of product 3aa and control experiments.

4.2.1 Scale-up (Scheme S1 a).

3aa: A solution of hydroxymaleimide **1a** (1.1 g, 5.0 mmol, 1.0 equiv.), α -bromoketoxime **2a** (1.28 g, 6 mmol, 1.2 equiv.), and Cat **4b** (0.15 g, 5 mol%), Na₂CO₃ (0.32 g, 0.6 eq) in DCM (50 mL, 0.1 M) was stirred at 25 °C. After **1a** was consumed by TLC (24 h, R_f = 0.3, V(PE: EA) = 5:1), the solvent was evaporated and the mixture was directly purified by flash column chromatography petroleum ether/ethyl acetate(V(PE/EA = 10/1 to 5/1) to afford products **3aa** (1.6 g, 90% yield, 97 % ee).

4.2.2 control experiments (Scheme S1 b-d)

Scheme S1 b:

A solution of product **3aa** (35 mg, 0.1 mmol, 1.0 equiv.), α -bromoketoxime **2a** (26.0 mg, 0.12 mmol, 1.2 equiv.), and Na₂CO₃ (6.4 mg, 0.6mmol) in DCM (1mL, 0.1 M) was stirred at 25 °C. The reaction was monitored by TLC, and no new product was detected

Scheme S1 c:

A solution of product **3aa** (35 mg, 0.1 mmol, 1 equiv.), α -bromoketoxime **2m** (24.0 mg, 0.12 mmol, 1.2 equiv.), and Na₂CO₃ (6.4 mg, 0.6mmol) in DCM (1mL, 0.1 M) was stirred at 25 °C. The reaction was monitored by TLC, and no new product was detected.

Scheme S1 d:

A solution of product **3am** (34 mg, 0.1 mmol, 1 equiv.), α -bromoketoxime **2a** (26.0 mg, 0.12 mmol, 1.2 equiv.), and Na₂CO₃ (6.4 mg, 0.6 mmol) in DCM (1mL, 0.1 M) was stirred at 25 °C. After **3am** was consumed by TLC (24 h, R_f = 0.2, V(PE: EA) = 5:1), the solvent was evaporated and the mixture was directly purified by column chromatography petroleum ether/ethyl acetate(V(PE/EA = 5/1) to afford products **3ama** (45mg, 95% yield, 87 % ee).

4.2.3 Representative transformations (Scheme S1 e)

A solution of product **3aa** (105 mg, 0.3 mmol, 1.0 equiv.), Cerium Ammonium Nitrate (986 mg, 1.8 mmol, 6.0 equiv.) in 8 mL solvent (V(CH₃CN:H₂O)= 1:1) was stirred at 0 °C. After **3aa** was consumed by TLC (10 min, $R_f = 0.4$, V(PE: EA) = 6:1). The reaction solution was extracted with DCM (8 mL×3), concentrated under reduced pressure, and column chromatography to obtain the target product **5a**. (99.5 mg,99% yield, 93% ee).

Scheme S 1 Scaled-up preparation, control experiments and representative transformation of the product 3aa.

4.3 Characterization data

(**3aa**):

(4aR,7aS)-4a-ethyl-7a-hydroxy-3,6-diphenyl-4a,7a-dihydropyrrolo[3,4-e][1,2]oxazine-5,7(4H,6H)-dione

It was purified by flash chromatography [V(PE/EA)= 10/1 to 5/1] to afford white solid, 94% yield, 97% ee; mp = 176.1-176.9 °C; [α] D²⁰ = +257.8 (c 0.50, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 15 min, t_{minor} = 17 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.85 (s, 1H), 7.86-7.70 (m, 2H), 7.57-7.43 (m, 6H), 7.30-7.18 (m, 2H), 3.17 (d, *J* = 16.5 Hz, 1H), 2.83 (d, *J* = 16.5 Hz, 1H), 2.07-1.78 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.3, 171.8, 164.2, 133.2, 131.0, 130.9, 129.4, 129.1, 128.9, 126.6, 126.1, 96.7, 50.2, 27.4, 26.6, 9.2.

 $\label{eq:HRMS} \text{(ESI)} \ \text{m/z:} \ [\text{M}+\text{H}]^{+} \ \text{calcd for} \ \text{C}_{20}\text{H}_{18}\text{N}_{2}\text{O}_{4}\text{H}^{+} \ 351.1339, \ \text{found} \ 351.1346.$

(**3ba**):

(4a*R*,7a*S*)-4a-ethyl-6-(2-fluorophenyl)-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA)= 10/1 to 5/1] to afford white solid, 92% yield, 96% ee; mp = 182.7-183.5 °C; [α] D²⁰ = +201.9 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 17 min, t_{major} = 20 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.96 (s, 1H), 7.80 (d, *J* = 7.1 Hz, 2H), 7.61-7.28 (m, 7H), 3.18 (d, *J* = 16.4 Hz, 1H), 2.85 (d, *J* = 16.4 Hz, 1H), 2.07-1.75 (m, 2H), 1.00 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 175.6, 171.3, 164.6, 156.7 (d, *J* = 251.0 Hz), 133.2, 131.9 (d, *J* = 8.0 Hz), 130.9, 129.6, 128.9, 126.1, 125.4, 118.6 (d, *J* = 13.6 Hz), 116.7 (d, *J* = 19.1 Hz), 97.0, 50.9, 27.3, 26.8, 9.1.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{20}H_{17}FN_2O_4H^+$ 369.1245, found 369.1250.

(3ca):

(4a*R*,7a*S*)-6-(2,6-dimethylphenyl)-4a-ethyl-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 99% yield, 96% ee; mp = 198.8-200.1 °C; [α] D²⁰ = +166.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 24 min, t_{minor} = 28 min);

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.94 (s, 1H), 7.91-7.73 (m, 2H), 7.60-7.43 (m, 3H), 7.33-7.08 (m, 3H), 3.22 (d, *J* = 16.2 Hz, 1H), 2.82 (d, *J* = 16.3 Hz, 1H), 2.05 (s, 3H), 2.02-1.85 (m, 2H), 1.81 (s, 3H), 1.06 (t, *J* = 7.3 Hz, 3H).
¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.0, 171.8, 165.1, 135.7, 135.4, 132.9, 131.0, 129.5, 128.8, 128.5, 128.5, 126.1, 97.7, 50.9, 27.0, 26.5, 17.4, 17.1, 9.3.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₂N₂O₄H⁺ 379.1652, found 379.1660

(3da):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-3-phenyl-6-(o-tolyl)-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 96% yield, 99% ee; mp = 154.6-155.2 °C; [α] D²⁰ = +186.7 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 25 min, t_{major} = 27 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.84 (s, 1H), 7.89-7.67 (m, 2H), 7.57-7.34 (m, 4H), 7.28 (d, *J* = 7.6 Hz, 1H), 7.02 (d, *J* = 9.9 Hz, 1H), 3.16 (d, *J* = 16.5 Hz, 1H), 2.82 (d, *J* = 16.5 Hz, 1H), 2.33 (s, 3H), 2.03-1.79 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.1, 171.6, 163.8, 138.8, 133.0, 130.7, 130.6, 129.5, 128.9, 128.6, 126.7, 125.8, 123.4, 96.4, 49.9, 27.2, 26.3, 20.4, 9.0.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₁H₂₀N₂O₄H⁺ 365.1496, found 365.1531

(3ea):

(4a*R*,7a*S*)-6-(3-chlorophenyl)-4a-ethyl-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 97% yield, 96% ee; mp = 165.8-166.7 °C; [α] D²⁰ = +221.6 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak IC, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 5 min, t_{major} = 6 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.87 (s, 1H), 7.93-7.70 (m, 2H), 7.63-7.39 (m, 6H), 7.33-7.22 (m, 1H), 3.16 (d, *J* = 16.6 Hz, 1H), 2.86 (d, *J* = 16.6 Hz, 1H), 2.03-1.75 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.3, 171.7, 164.4, 133.7, 133.5, 132.5, 131.3, 131.2, 129.4, 129.2, 126.9, 126.3, 125.8, 96.9, 50.4, 27.6, 26.6, 9.5.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₇ClN₂O₄H⁺ 385.0950, found 385.0951

(**3fa**):

(4a*R*,7a*S*)-6-(3,5-dimethylphenyl)-4a-ethyl-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione3,5

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 99% yield, 95% ee; mp =177.5-179.1 °C; [α] D²⁰ = +201.6 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 24 min, t_{minor} = 25 min);

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.82 (s, 1H), 7.80 (d, *J* = 5.7 Hz, 2H), 7.59-7.43 (m, 3H), 7.09 (s, 1H), 6.82 (s, 2H), 3.14 (d, *J* = 16.6 Hz, 1H), 2.81 (d, *J* = 16.6 Hz, 1H), 2.28 (s, 6H), 2.00-1.81 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H).
¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.4, 171.9, 164.0, 138.8, 133.3, 131.0, 130.9, 130.5, 128.9, 126.1, 124.2, 96.7, 50.1, 27.5, 26.6, 20.6, 9.3.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₂H₂₂N₂O₄H⁺ 379.1652, found 379.1661

(3ga):

(4a*R*,7a*S*)-6-(3,5-difluorophenyl)-4a-ethyl-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 99% yield, 94% ee; mp = 150.7-151.9 °C; [α] D²⁰= +192.2 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 11 min, t_{major} = 24 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.86 (s, 1H), 7.89-7.73 (m, 2H), 7.56-7.39 (m, 4H), 7.27-7.11 (m, 2H), 3.14 (d, *J* = 16.6 Hz, 1H), 2.87 (d, *J* = 16.7 Hz, 1H), 1.99-1.78 (m, 2H), 0.95 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 175.7, 171.0, 163.7, 162.2 (dd, *J* = 246.8, 14.5 Hz), 133.2, 133.1 (d, *J* = 12.6 Hz), 133.0 (d, *J* = 17.4 Hz), 130.9, 128.9, 126.1, 110.7 (d, *J* = 27.8 Hz), 110.7 (d, *J* = 9.3 Hz), 105.3, 105.0, 104.6, 96.4, 50.0, 27.4, 26.1, 9.1.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₆F₂N₂O₄H⁺ 387.1151, found 387.1160

(3ha):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-3-phenyl-6-(p-tolyl)-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 92% yield, 96% ee; mp = 163.7-165.6 °C; [α] D²⁰ = +208.3 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 14min, t_{minor} = 18 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.81 (s, 1H), 7.86-7.73 (m, 2H), 7.57-7.42 (m, 3H), 7.32 (d, *J* = 8.1 Hz, 2H), 7.10 (d, *J* = 8.3 Hz, 2H), 3.15 (d, *J* = 16.5 Hz, 1H), 2.82 (d, *J* = 16.5 Hz, 1H), 2.34 (s, 3H), 2.01-1.78 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.4, 171.9, 164.2, 138.7, 133.2, 130.9, 129.8, 128.9, 128.4, 126.4, 126.0, 96.7, 50.1, 27.4, 26.6, 20.7, 9.2.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₁ H₂₀N₂O₄H⁺ 365.1496, found 365.1505

(**3ia**):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-6-(4-methoxyphenyl)-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 95% yield, 96% ee; mp = 142.7-143.8 °C; [α] D²⁰ = +180.8 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 19 min, t_{minor} = 26 min);

¹**H** NMR (300 MHz, DMSO-*d*₆) δ 8.79 (s, 1H), 7.84-7.73 (m, 2H), 7.53-7.44 (m, 3H), 7.17-7.10 (m, 2H), 7.08-7.02 (m, 2H), 3.78 (s, 3H), 3.14 (d, *J* = 16.4 Hz, 1H), 2.81 (d, *J* = 16.5 Hz, 1H), 1.99-1.82 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.8, 172.3, 164.7, 159.7, 133.5, 131.1, 129.1, 128.2, 126.3, 123.8, 114.8, 97.0, 55.7, 50.4, 27.7, 27.0, 9.5.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{20}N_2O_5H^+$ 381.1445, found 381.1451

(**3ja**):

(4a*R*,7a*S*)-4a-ethyl-6-(4-fluorophenyl)-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 99% yield, 96% ee; mp = 169.8-170.1 °C; [α] D²⁰ = +240.3 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 14 min, t_{minor} = 17 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.85 (s, 1H), 7.88-7.71 (m, 2H), 7.55-7.45 (m, 3H), 7.41-7.28 (m, 4H), 3.16 (d, *J* = 16.5 Hz, 1H), 2.84 (d, *J* = 16.5 Hz, 1H), 2.02-1.76 (m, 2H), 0.97 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.3, 171.7, 164.3, 161.8 (d, *J* = 246.5 Hz), 133.2, 130.9, 129.0, 128.9, 127.2 (d, *J* = 3.1 Hz), 126.1, 116.4 (d, *J* = 23.1 Hz), 96.7, 50.2, 27.4, 26.6, 9.2.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₇FN₂O₄H⁺ 369.1245, found 369.1250

(3ka):

(4a*R*,7aS)-6-(4-chlorophenyl)-4a-ethyl-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 99% yield, 96% ee; mp = 158.7-159.9 °C; [α] D²⁰ = +220.4 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 15 min, t_{minor} = 19 min);

¹**H** NMR (300 MHz, DMSO-*d*₆) δ 8.87 (s, 1H), 7.79 (dd, *J* = 7.8, 1.9 Hz, 2H), 7.63-7.56 (m, 2H), 7.53-7.42 (m, 3H), 7.35-7.26 (m, 2H), 3.16 (d, *J* = 16.6 Hz, 1H), 2.83 (d, *J* = 16.6 Hz, 1H), 2.00-1.75 (m, 2H), 0.96 (t, *J* = 7.4 Hz, 3H). ¹³**C** NMR (75 MHz, DMSO-*d*₆) δ 176.1, 171.5, 164.1, 133.6, 133.2, 130.9, 129.8, 129.5, 128.9, 128.4, 126.1, 96.7, 50.1, 27.4, 26.5, 9.2. (**3la**):

(4a*R*,7a*S*)-6-(4-bromophenyl)-4a-ethyl-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 99% yield, 94% ee; mp = 169.7-170.7 °C; [α] D²⁰ = +144.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} =16 min, t_{minor} = 21 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.86 (s, 1H), 7.82-7.68 (m, 4H), 7.55-7.42 (m, 3H), 7.29-7.19 (m, 2H), 3.16 (d, *J* = 16.6 Hz, 1H), 2.83 (d, *J* = 16.6 Hz, 1H), 2.04-1.77 (m, 2H), 0.96 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.1, 171.5, 164.1, 133.2, 132.4, 130.9, 130.2, 128.9, 128.7, 126.0, 122.1, 96.6, 50.1, 27.4, 26.4, 9.2.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₇BrN₂O₄H⁺429.0444, found 429.0447

(**3ma**):

(4a*R*,7a*S*)-6-benzyl-4a-ethyl-7a-hydroxy-3-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 94% yield, 95% ee; mp = 164.7-166.5 °C; [α] D²⁰ = +128.4 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} =20 min, t_{major} = 25 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.73 (s, 1H), 7.69 (d, *J* = 6.5 Hz, 2H), 7.59-7.36 (m, 3H), 7.31-7.09 (m, 5H), 4.63 (s, 2H), 3.05 (d, *J* = 15.9 Hz, 1H), 2.74 (d, *J* = 16.0 Hz, 1H), 1.92-1.65 (m, 2H), 0.80 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.9, 172.4, 165.9, 135.3, 133.0, 130.9, 128.8, 128.5, 127.6, 127.3, 126.1, 97.4, 50.7, 41.5, 27.4, 26.7, 9.2

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{20}N_2O_4H^+$ 365.1496, found 365.1503

(3na):

(4aR,7aS)-7a-hydroxy-4a-methyl-3,6-diphenyl-4a,7a-dihydropyrrolo[3,4-e][1,2] oxazine-5,7(4H,6H)-dione-2,7(4H,6H)-2,7(4H,6H)

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 99% yield, 98% ee; mp = 190.2-192.1 °C; [α] D²⁰ = +150.3 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak IC, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} =21 min, t_{major} = 24 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.72 (s, 1H), 7.88-7.73 (m, 2H), 7.57-7.42 (m, 6H), 7.29-7.21 (m, 2H), 3.13 (d, *J* = 15.7 Hz, 1H), 2.91 (d, *J* = 15.7 Hz, 1H), 1.39 (s, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 177.1, 171.4, 166.6, 133.1, 131.1, 131.1, 129.2, 129.0, 128.9, 126.9, 126.2, 97.3, 47.2, 29.2, 18.4.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₁₉H₁₆N₂O₄H⁺ 337.1183, found 337.1191

(3oa):

(4aR,7aS)-7a-hydroxy-3,6-diphenyl-4a-propyl-4a,7a-dihydropyrrolo[3,4-e][1,2]oxazine-5,7(4H,6H)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 94% yield, 96% ee; mp = 183.3-184.8 °C; [α] D²⁰ = +170.4 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 14 min, t_{minor} = 16 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.84 (s, 1H), 7.91-7.69 (m, 2H), 7.57-7.38 (m, 6H), 7.31-7.10 (m, 2H), 3.16 (d, *J* = 16.5 Hz, 1H), 2.84 (d, *J* = 16.4 Hz, 1H), 1.94-1.69 (m, 2H), 1.56-1.23 (m, 2H), 0.89 (t, *J* = 7.2 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.4, 171.8, 164.4, 133.2, 131.0, 130.9, 129.4, 129.1, 128.9, 126.6, 126.0, 96.8, 50.0, 36.4, 26.9, 17.8, 14.3.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{20}N_2O_4H^+$ 365.1496, found 365.1506.

(**3pa**):

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 86% yield, 95% ee; mp = 132.7-133.7 °C; [α] D²⁰ = +173.5 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 10 min, t_{minor} = 11 min);

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.85 (s, 1H), 7.80 (d, *J* = 5.5 Hz, 2H), 7.56-7.41 (m, 6H), 7.22 (d, *J* = 6.8 Hz, 2H), 3.17 (d, *J* = 16.5 Hz, 1H), 2.84 (d, *J* = 16.5 Hz, 1H), 1.96-1.72 (m, 2H), 1.50-1.17 (m, 8H), 0.89-0.76 (m, 3H).
¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.4, 171.8, 164.4, 133.2, 131.0, 130.9, 129.4, 129.0, 128.9, 126.5, 126.1, 96.8,

49.9, 34.3, 30.9, 29.0, 27.0, 24.1, 22.0, 13.9. $[\alpha] \; D^{20}$

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{24}H_{26}N_2O_4H^+$ 407.1965, found 407.1973.

(3qa):

(4aR,7aS)-4a-benzyl-7a-hydroxy-3,6-diphenyl-4a,7a-dihydropyrrolo[3,4-e][1,2]oxazine-5,7(4H,6H)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 97% yield, 95% ee; mp = 169.7-170.7 °C; [α] D²⁰ = +335.0 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 16 min, t_{minor} = 19 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 9.25 (s, 1H), 7.92-7.72 (m, 2H), 7.54-7.46 (m, 3H), 7.42-7.35 (m, 3H), 7.29 (s, 5H), 6.72-6.56 (m, 2H), 3.42 (d, *J* = 14.2 Hz, 3H), 3.30 (d, *J* = 17.5 Hz, 1H), 3.10 (d, *J* = 13.5 Hz, 1H), 2.94 (d, *J* = 17.5 Hz, 1H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 175.1, 171.1, 161.1, 135.0, 133.5, 130.7, 130.6, 130.5, 129.1, 128.9, 128.8, 128.4, 127.4, 126.3, 125.9, 95.7, 50.8, 25.7.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{25} H_{20} N_2 O_4 H^+$ 413.1496, found 413.1504.

(**3ra**):

(4aS,7aS)-7a-hydroxy-3,4a,6-triphenyl-4a,7a-dihydropyrrolo[3,4-e][1,2]oxazine-5,7(4H,6H)-dione

It was purified by flash chromatography [V(PE/EA) = 5/1] to afford white solid, 98% yield, 84% ee; mp = 118.2-120.1 °C; [α] D²⁰ = +74.5 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak IC, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 9 min, t_{major} = 13 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.95 (s, 1H), 7.94-7.85 (m, 2H), 7.58-7.39 (m, 11H), 7.28 (d, *J* = 6.8 Hz, 2H), 3.70-3.51 (m, 2H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 175.5, 171.9, 167.7, 135.4, 132.7, 131.3, 131.0, 129.5, 129.3, 129.1, 128.5, 128.1, 127.7, 126.7, 126.3, 98.4, 56.7, 28.0.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{24}H_{18}N_2O_4H^+$ 399.1339, found 399.1345.

(3sa):

(4a*S*,7a*S*)-4a-(tert-butoxy)-7a-hydroxy-3,6-diphenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

White solid, 91% yield, >99% ee; mp = 128.7-129.9 °C; [α] D²⁰ = +234.8 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 15min, t_{major} = 20 min); eluent: v(petroleum ether/ethyl acetate)= 10/1 to 5/1

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.72 (s, 1H), 7.82 (d, *J* = 5.9 Hz, 2H), 7.62-7.47 (m, 6H), 7.30 (d, *J* = 7.6 Hz, 2H), 3.51 (d, *J* = 17.4 Hz, 1H), 3.14 (d, *J* = 17.4 Hz, 1H), 1.33 (s, 9H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 174.0, 170.8, 160.2, 133.1, 131.0, 130.8, 129.5, 129.1, 128.8, 126.1, 94.6, 78.8, 75.8, 29.5, 29.1.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{22}H_{22}N_2O_5H^+$ 395.1602, found 395.1601.

(3ab):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-6-phenyl-3-(p-tolyl)-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 83% yield, 97% ee; mp = 184.3-185.2 °C; [α] D²⁰ = +229.5 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 18 min, t_{minor} = 20 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.79 (s, 1H), 7.69 (d, *J* = 8.0 Hz, 2H), 7.56-7.42 (m, 3H), 7.33-7.19 (m, 4H), 3.13 (d, *J* = 16.4 Hz, 1H), 2.80 (d, *J* = 16.4 Hz, 1H), 2.34 (s, 3H), 2.02-1.77 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.3, 171.8, 164.5, 140.8, 131.0, 130.4, 129.4, 129.3, 129.0, 126.6, 126.0, 96.8, 50.3, 27.2, 26.7, 20.9, 9.2.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{20}N_2O_4H^+$ 365.1496, found 365.1503.

(3ac):

(4*aR*,7*aS*)-4*a*-ethyl-7*a*-hydroxy-3-(4-methoxyphenyl)-6-phenyl-4*a*,7*a*-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 87% yield, 96% ee; mp = 161.9-163.7 °C; [α] D²⁰ = +264.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak IC, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 11 min, t_{major} = 15 min);

¹**H** NMR (300 MHz, DMSO- d_6) δ 8.75 (s, 1H), 7.76 (d, J = 8.9 Hz, 2H), 7.59-7.34 (m, 3H), 7.21 (d, J = 6.8 Hz, 2H), 7.03 (d, J = 8.9 Hz, 2H), 3.80 (s, 3H), 3.12 (d, J = 16.1 Hz, 1H), 2.80 (d, J = 16.1 Hz, 1H), 2.04-1.74 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.4, 171.9, 164.5, 161.4, 131.0, 129.3, 129.0, 127.7, 126.6, 125.3, 114.2, 96.8, 55.3, 50.4, 27.1, 26.9, 9.3.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{20}N_2O_5H^+$ 381.1445, found 381.1454.

(3ad):

(4a*R*,7a*S*)-4a-ethyl-3-(4-fluorophenyl)-7a-hydroxy-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 87% yield, 95% ee; mp = 181.2-182.3 °C; [α] D²⁰ = +210.9 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 17 min, t_{minor} = 18 min);

¹**H NMR** (300 MHz, DMSO- d_6) δ 8.86 (s, 1H), 7.96-7.75 (m, 2H), 7.61-7.40 (m, 3H), 7.39-7.11 (m, 4H), 3.16 (d, J = 16.7 Hz, 1H), 2.83 (d, J = 16.7 Hz, 1H), 2.00-1.80 (m, 2H), 0.98 (t, J = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.3, 171.7, 163.7 (d, *J* = 248.5 Hz), 163.1, 131.0, 129.8 (d, *J* = 2.7 Hz), 129.4, 129.1, 128.5 (d, *J* = 8.7 Hz), 126.6, 115.9 (d, *J* = 21.9 Hz), 96.6, 50.1, 27.5, 26.4, 9.2.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₀H₁₇FN₂O₄H⁺ 369.1245, found 369.1258.

(3ae):

(4a*R*,7a*S*)-3-(4-chlorophenyl)-4a-ethyl-7a-hydroxy-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 95% yield, 95% ee; mp = 135.8-137.6 °C; [α] D²⁰ = +215.8 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 19 min, t_{minor} = 21 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.90 (s, 1H), 8.00-7.72 (m, 2H), 7.61-7.42 (m, 5H), 7.24 (d, *J* = 6.7 Hz, 2H), 3.17 (d, *J* = 16.8 Hz, 1H), 2.82 (d, *J* = 16.9 Hz, 1H), 2.08-1.72 (m, 2H), 0.98 (t, *J* = 7.2 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.2, 171.7, 162.8, 135.7, 132.1, 131.0, 129.4, 129.1, 128.9, 127.9, 126.6, 96.6, 49.9, 27.7, 26.1, 9.1.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{20}H_{17}CIN_2O_4H^+$ 385.0950, 387.0928, found 385.0957, 387.0936.

(3af):

(4a*R*,7a*S*)-3-(4-bromophenyl)-4a-ethyl-7a-hydroxy-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 89% yield,95% ee; mp = 144.8-145.9 °C; [α] D²⁰ = +208.9 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 20 min, t_{minor} = 22 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.88 (s, 1H), 7.85-7.64 (m, 4H), 7.57-7.43 (m, 3H), 7.27-7.16 (m, 2H), 3.16 (d, *J* = 16.8 Hz, 1H), 2.82 (d, *J* = 16.8 Hz, 1H), 2.05-1.75 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.2, 171.6, 162.9, 132.4, 131.8, 130.9, 129.3, 129.0, 128.0, 126.6, 124.5, 96.6, 49.9, 27.6, 26.0, 9.1.

 $\label{eq:HRMS} HRMS(ESI) \ m/z; \ [M+H]^+ \ calcd \ for \ C_{20}H_{17}BrN_2O_4H^+ \ 429.0444; \ 431.0427, \ found \ 429.0453, \ 431.0435.$

(3ag):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-6-phenyl-3-(4-(trifluoromethyl)phenyl)-4a,7a-dihydropyrrolo[3,4*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 91% yield, 95% ee; mp = 173.1-174.4 °C; [α] D²⁰ = +205.5 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 16 min, t_{major} = 17 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.97 (s, 1H), 8.03 (d, *J* = 8.2 Hz, 2H), 7.85 (d, *J* = 8.2 Hz, 2H), 7.61-7.44 (m, 3H), 7.31-7.21 (m, 2H), 3.23 (d, *J* = 17.0 Hz, 1H), 2.87 (d, *J* = 17.1 Hz, 1H), 2.04-1.83 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (151 MHz, DMSO-*d*₆) δ 176.2, 171.6, 162.2, 137.2, 131.0, 130.7 (q, *J* = 32.6, 32.1 Hz), 129.4, 129.2, 129.1, 127.3, 127.0, 126.6, 125.8 (q, *J* = 3.5 Hz), 124.0 (d, *J* = 272.4 Hz), 96.6, 49.7, 27.9, 25.8, 9.1.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{21}H_{17}F_3N_2O_4H^+$ 419.1213, found 419.1223.

(3ah):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-3-(4-nitrophenyl)-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 86% yield, 93% ee; mp = 184.8-186.8 °C; [α] D²⁰ = +215.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak IC, n-hexane/isopropanol = 50/50, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 8 min, t_{major} = 9 min);

¹**H** NMR (300 MHz, DMSO-*d*₆) δ 9.05 (s, 1H), 8.31 (d, *J* = 8.5 Hz, 2H), 8.08 (d, *J* = 8.5 Hz, 2H), 7.57-7.43 (m, 3H), 7.27 (d, *J* = 7.0 Hz, 2H), 3.26 (d, *J* = 17.3 Hz, 1H), 2.89 (d, *J* = 17.3 Hz, 1H), 2.07-1.76 (m, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.0, 171.4, 161.3, 148.7, 139.3, 130.9, 129.4, 129.1, 127.4, 126.6, 123.9, 96.6, 49.5, 28.1, 25.5, 9.0.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{20}H_{17}N_3O_6H^+$ 396.1190, found 396.1197.

(3ai):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-3-(3-methoxyphenyl)-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 97% yield, 95% ee; mp = 159.2-160.6 °C; [α] D²⁰ = +126.6 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 16 min, t_{major} = 17 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.85 (s, 1H), 7.56-7.33 (m, 5H), 7.32-7.28 (m, 1H), 7.27-7.21 (m, 2H), 7.13-7.05 (m, 1H), 3.80 (s, 3H), 3.15 (d, *J* = 16.6 Hz, 1H), 2.82 (d, *J* = 16.6 Hz, 1H), 2.07-1.69 (m, 2H), 0.97 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.3, 171.8, 164.0, 159.4, 134.6, 131.0, 130.0, 129.4, 129.1, 126.6, 118.5, 116.7, 111.1, 96.7, 55.3, 50.2, 27.5, 26.7, 9.2.

 $\label{eq:HRMS} \text{(ESI)} \text{ m/z: } [M+H]^+ \text{ calcd for } C_{21}H_{20}N_2O_5H^+ \ 381.1445, \ \text{found } \ 381.1451.$

(**3aj**):

(4a*R*,7a*S*)-3-(3-chlorophenyl)-4a-ethyl-7a-hydroxy-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 89% yield, 94% ee; mp = 166.2-167.7 °C; [α] D²⁰ = +208.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 12 min, t_{minor} = 13 min);

¹**H** NMR (300 MHz, DMSO- d_6) δ 8.91 (s, 1H), 7.88-7.70 (m, 2H), 7.63-7.46 (m, 5H), 7.31-7.20 (m, 2H), 3.19 (d, J = 17.0 Hz, 1H), 2.83 (d, J = 17.1 Hz, 1H), 2.01-1.81 (m, 2H), 0.97 (t, J = 7.4 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.1, 171.6, 162.2, 135.4, 133.7, 131.0, 130.8, 130.6, 129.4, 129.1, 126.6, 125.7, 124.7, 96.6, 49.8, 27.8, 25.9, 9.1.

 $\label{eq:HRMS} \textbf{HRMS}(ESI) \ m/z; \ [M+H]^+ \ calcd \ for \ C_{21}H_{20}N_2O_5H^+ \ 385.0950; \ 387.0928, \ found 385.0961; \ 387.0941.$

(3ak):

3-((4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-5,7-dioxo-6-phenyl-4,4a,5,6,7,7a-hexahydropyrrolo[3,4-*e*][1,2]oxazin-3-yl)benzonitrile

It was purified by flash chromatography [V(PE/EA) = 10/1 to 5/1] to afford white solid, 89% yield, 95% ee; mp = 198.4-200.2 °C; [α] D²⁰ = +301.9 (c 0.50, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 26 min, t_{minor} = 29 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.96 (s, 1H), 8.29 (s, 1H), 8.15 (d, *J* = 9.0 Hz, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.75-7.64 (m, 1H), 7.56-7.43 (m, 3H), 7.26 (d, *J* = 7.8 Hz, 2H), 3.24 (d, *J* = 17.3 Hz, 1H), 2.87 (d, *J* = 17.4 Hz, 1H), 1.92 (q, *J* = 7.3 Hz, 2H), 0.98 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.1, 171.5, 161.2, 134.5, 134.3, 131.0, 130.5, 130.1, 129.9, 129.4, 129.1, 126.7, 118.3, 112.2, 96.4, 49.5, 28.1, 25.3, 9.1.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₁H₁₇N₃O₄H⁺ 376.1292, found 376.1302.

(3al):

(4a*R*,7a*S*)-4a-ethyl-7a-hydroxy-3-(naphthalen-2-yl)-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 8/1] to afford white solid, 93% yield, 96% ee; mp = 153.7-156.5 °C; [α] D²⁰ = +361.5 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 22 min, t_{minor} = 26 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.91 (s, 1H), 8.44 (s, 1H), 8.15-7.88 (m, 4H), 7.67-7.40 (m, 5H), 7.34-7.12 (m, 2H), 3.34 (d, *J* = 16.6 Hz, 1H), 2.99 (d, *J* = 16.5 Hz, 1H), 2.19-1.65 (m, 2H), 1.02 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 176.4, 171.8, 163.9, 133.9, 132.6, 131.0, 130.5, 129.4, 129.1, 128.8, 128.4, 127.6, 126.9, 126.7, 126.7, 122.5, 96.8, 50.2, 27.6, 26.3, 9.3.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{24}H_{20}N_2O_4H^+$ 401.1496, found 401.1500.

(3am):

(4a*R*,7a*S*)-4a-ethyl-3-(furan-2-yl)-7a-hydroxy-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 5/1 to 2/1] to afford white solid, 21% yield, 97% ee; mp = 178.9-182.3 °C; [α] D²⁰ = +127.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak IC, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 13 min, t_{major} = 16 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 9.15 (s, 1H), 7.95 (s, 1H), 7.75 (d, *J* = 3.5 Hz, 1H), 7.54-7.45 (m, 3H), 7.36-7.27 (m, 2H), 6.85-6.69 (m, 1H), 3.51 (d, *J* = 18.3 Hz, 1H), 3.19 (d, *J* = 18.3 Hz, 1H), 1.99 (dq, *J* = 11.5, 6.7 Hz, 2H), 0.99 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.2, 168.7, 145.4, 144.6, 132.1, 131.1, 129.2, 129.1, 126.9, 114.7, 112.6, 98.7, 51.2, 33.7, 25.0, 8.9.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{18}H_{16}N_2O_5H^+$ 341.1132, found 341.1143.

(3am'):

(*R*)-4-ethyl-4-((2*Z*)-2-(furan-2-yl)-2-((2-(furan-2-yl)-2-(hydroxyimino)ethoxy)imino)ethyl)-1-phenylpyrrolidine-2,3,5-trione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 8/1] to afford white solid, 80% yield, 90% ee (1.2 eq: 98% yield, 90% ee); mp = 105.1-107.0 °C; [α] D²⁰ = +124.7 (c 0.5, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 15 min, t_{minor} = 21 min); eluent: v(petroleum ether/ethyl acetate)= 10/1 to 8/1

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 12.09 (s, 1H), 7.89 (s, 1H), 7.77 (s, 1H), 7.64-7.42 (m, 5H), 7.34 (d, *J* = 3.5 Hz, 1H), 7.03 (d, *J* = 3.6 Hz, 1H), 6.73-6.56 (m, 2H), 4.99-4.75 (m, 2H), 3.46 (d, *J* = 4.0 Hz, 2H), 2.08 (q, *J* = 7.4 Hz, 2H), 1.01 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 194.4, 174.9, 160.3, 144.9, 144.4, 143.3, 143.2, 142.1, 140.9, 131.0, 129.4, 129.1, 126.3, 118.9, 117.3, 112.6, 112.1, 73.6, 50.6, 34.0, 28.3, 8.3.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{18}H_{16}N_2O_5H^+$ 464.1452, found 464.1461.

(3an):

(4a*R*,7a*S*)-3-(benzofuran-2-yl)-4a-ethyl-7a-hydroxy-6-phenyl-4a,7a-dihydropyrrolo[3,4-*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 8/1 to 5/1] to afford white solid, 77% yield,94% ee; mp = 189.7-190.1 °C; [α] D²⁰ = +197.0 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 24 min, t_{minor} = 38 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.96 (s, 1H), 7.81-7.60 (m, 3H), 7.57-7.42 (m, 4H), 7.37-7.22 (m, 3H), 3.21 (d, *J* = 16.4 Hz, 1H), 2.93 (d, *J* = 16.6 Hz, 1H), 2.11-1.72 (m, 2H), 0.99 (t, *J* = 7.3 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 176.0, 171.4, 156.3, 154.9, 148.7, 130.9, 129.3, 129.1, 127.3, 126.9, 126.6, 123.7, 122.2, 111.6, 110.2, 97.2, 49.6, 27.5, 25.4, 9.1.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{22}H_{18}N_2O_5H^+$ 391.1289, found 391.1288.

(3an'):

(*R*)-4-((2*Z*)-2-(benzofuran-2-yl)-2-((2-(benzofuran-2-yl)-2-(hydroxyimino)ethoxy)imino) ethyl)-4-ethyl-1-phenylpyrrolidine-2,3,5-trione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 8/1] to afford white solid, 33% yield, 90% ee (1.2 eq: 95% yield, 90% ee); mp = 205.6-207.1 °C; [α] D²⁰ = +171.2 (c 0.5, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 15 min, t_{minor} = 20 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 12.63 (s, 1H), 7.83 (s, 1H), 7.75 (d, *J* = 7.7 Hz, 1H), 7.71-7.36 (m, 7H), 7.35-7.19 (m, 2H), 5.26-5.02 (m, 2H), 3.61 (d, *J* = 3.5 Hz, 2H), 2.14 (q, *J* = 7.4 Hz, 2H), 1.04 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 206.1, 194.6, 174.9, 160.3, 153.1, 152.7, 145.4, 144.2, 143.1, 141.6, 131.0, 129.5, 129.2, 127.8, 127.5, 127.2, 126.6, 126.4, 123.9, 123.5, 122.7, 122.5, 114.7, 113.4, 111.7, 111.4, 74.4, 50.8, 34.1, 28.5, 8.5.

HRMS (ESI) m/z: $[M+H]^+$ calcd for $C_{32}H_{25}N_3O_7H^+$ 564.1765, found 564.1766.

(**3ao**):

(4a*R*,7a*S*)-3-(benzo[b]thiophen-2-yl)-4a-ethyl-7a-hydroxy-6-phenyl-4a,7a-dihydropyrrolo[3,4*e*][1,2]oxazine-5,7(4*H*,6*H*)-dione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 8/1] to afford white solid, 73% yield, 94% ee; mp = 167.8-169.1 °C; [α] D²⁰ = +203.0 (c 0.2, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 23 min, t_{minor} = 28 min);

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 8.98 (s, 1H), 8.17 (s, 1H), 7.99 (d, *J* = 7.8 Hz, 1H), 7.91 (d, *J* = 7.5 Hz, 1H), 7.55-7.42 (m, 5H), 7.25 (d, *J* = 7.7 Hz, 2H), 3.34 (d, *J* = 16.6 Hz, 1H), 2.99 (d, *J* = 16.6 Hz, 1H), 1.98-1.88 (m, 2H), 1.01 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (150 MHz, DMSO-*d*₆) δ 176.0, 171.4, 160.2, 139.6, 138.9, 136.3, 131.0, 129.4, 129.1, 127.1, 126.7, 126.6, 125.0, 124.8, 122.7, 97.2, 49.6, 27.6, 25.8, 9.1.

HRMS(ESI) m/z: [M+H]⁺ calcd for C₂₂H₁₈N₂O₄S H⁺ 407.1072, found 407.1060.

(3ao'):

(*R*)-4-((2*Z*)-2-(benzo[b]thiophen-2-yl)-2-((2-(benzo[b]thiophen-2-yl)-2(hydroxyimino)ethoxy)imino)ethyl)-4-ethyl-1-phenylpyrrolidine-2,3,5-trione

It was purified by flash chromatography [V(PE/EA) = 8/1 to 4/1] to afford white solid, 28% yield, 96% ee (1.2 eq: 96% yield, 90% ee); mp = 115.4-116.4 °C; [α] D²⁰ = +202.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 41 min, t_{minor} = 44 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 12.67 (s, 1H), 8.20 (s, 1H), 8.04-7.73 (m, 5H), 7.64-7.37 (m, 9H), 5.28-5.03 (m, 2H), 3.89-3.65 (m, 2H), 2.16 (q, *J* = 7.4 Hz, 2H), 1.11 (t, *J* = 7.5 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 212.0, 192.4, 177.9, 164.1, 162.4, 159.0, 158.4, 154.5, 154.2, 148.5, 147.6, 146.8, 146.7, 146.6, 146.5, 144.1, 143.8, 143.7, 143.3, 142.4, 142.0, 141.9, 139.5, 93.4, 68.4, 53.6, 45.9, 25.8.

HRMS(ESI) m/z: $[M+H]^+$ calcd for $C_{32}H_{25}N_3O_5S_2H^+$ 596.1318, found 596.1308.

(3ap'):

(R)-4-ethyl-4-((2E)-2-((2-(hydroxyimino)propoxy)imino)propyl)-1-phenylpyrrolidine-2,3,5-trione

It was purified by flash chromatography [V(PE/EA/DCM) = 10/1/1 to 5/1/1] to afford white solid, 78% yield, 84% ee; mp = 131.1-131.9 °C; [α] D²⁰ = +19.9 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, t_{major} = 13.6 min, t_{minor} = 14.6 min);

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 10.85 (s, 1H), 7.69-7.26 (m, 5H), 4.39-4.16 (m, 2H), 3.00 (s, 2H), 1.94 (q, *J* = 7.5 Hz, 2H), 1.81 (s, 3H), 1.65 (s, 3H), 0.95 (t, *J* = 7.4 Hz, 3H).

¹³C NMR (75 MHz, DMSO-*d*₆) δ 194.6 , 175.0 , 160.2 , 155.1 , 151.8 , 131.1 , 129.3 , 129.1 , 126.3 , 75.0 , 50.6 , 28.1 , 14.3 , 11.3 , 8.2 .

 $\label{eq:HRMS} \text{(ESI)} \ \text{m/z:} \ [\text{M}+\text{H}]^{+} \ \text{calcd for} \ \text{C}_{18}\text{H}_{21}\text{N}_{3}\text{O}_{5}\text{H}^{+} \ 360.1554, \ \text{found} \ 360.1556.$

(3ama):

(*R*)-4-ethyl-4-((2*Z*)-2-(furan-2-yl)-2-((2-(hydroxyimino)-2-phenylethoxy)imino)ethyl)-1-phenylpyrrolidine-2,3,5-trione

It was purified by flash chromatography [V(PE/EA) = 5/1] to afford white solid, 95% yield, 87% ee; mp = 116.0-117.7 °C; [α] D²⁰ = +66.1 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 29 min, t_{minor} =39 min); ¹**H NMR** (300 MHz, DMSO-*d*₆) δ 11.40 (s, 1H), 7.84 (s, 1H), 7.63-7.48 (m, 5H), 7.45-7.29 (m, 5H), 6.80 (d, *J* = 3.6 Hz, 1H), 6.62-6.45 (m, 1H), 4.98-4.64 (m, 2H), 3.41-3.32 (m, 2H), 2.05 (q, *J* = 7.3 Hz, 2H), 0.99 (t, *J* = 7.4 Hz, 3H).

 $\label{eq:stars} \begin{array}{l} ^{13}C\ \text{NMR}\ (75\ \text{MHz},\ \text{DMSO-}d_6)\ \delta\ 194.4\ ,\ 174.8\ ,\ 160.3\ ,\ 150.7\ ,\ 144.9\ ,\ 143.2\ ,\ 142.4\ ,\ 131.6\ ,\ 131.0\ , \\ 129.4\ ,\ 129.2\ ,\ 128.9\ ,\ 128.3\ ,\ 128.1\ ,\ 126.5\ ,\ 126.3\ ,\ 118.9\ ,\ 112.5\ ,\ 75.9\ ,\ 50.6\ ,\ 34.0\ ,\ 28.3\ ,\ 8.3\ . \\ \begin{array}{l} \text{HRMS}(\text{ESI})\ \text{m/z}[\text{M+H}]^+\ \text{calcd\ for\ }C_{26}\text{H}_{23}\text{N}_3\text{O}_6\ \text{H}^+\ 474.1660,\ found\ 474.1663. \end{array}$

(5):

(R)-4-ethyl-4-(2-oxo-2-phenylethyl)-1-phenylpyrrolidine-2,3,5-trione

It was purified by flash chromatography [V(PE/EA) = 10/1 to 8/1] to afford yellow solid, 99% yield, 93% ee; mp = 117.0-118.5 °C; [α] D²⁰ = +42.6 (c 1.0, CH₂Cl₂); the ee was determined by HPLC (Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 12 min, t_{minor} = 13 min); eluent: v(petroleum ether/ethyl acetate)= 8/1

¹**H NMR** (300 MHz, DMSO-*d*₆) δ 8.16-7.95 (m, 2H), 7.75-7.66 (m, 1H), 7.65-7.49 (m, 5H), 7.43-7.36 (m, 2H), 4.16 (q, *J* = 19.2 Hz, 2H), 2.13-1.99 (m, 2H), 1.04 (t, *J* = 7.4 Hz, 3H).

¹³**C NMR** (75 MHz, DMSO-*d*₆) δ 198.9, 196.1, 175.5, 160.0, 134.7, 134.0, 131.2, 129.4, 129.3, 129.0, 128.8, 126.6, 50.7, 45.7, 26.7, 8.5.

HRMS(ESI) m/z: $[M+ Na]^+$ calcd for $C_{20}H_{17}NO_4Na^+$ 358.1050, found 358.1050.

5 HPLC, NMR and HRMS spectra of products

3aa

3ba

¹H NMR (300 MHz, DMSO-*d*₆)

3ca ¹**H NMR** (300 MHz, DMSO-*d*₆)

3da

¹H NMR (300 MHz, DMSO-*d*₆)

3ea

¹**H NMR** (300 MHz, DMSO-*d*₆)

¹**H NMR** (300 MHz, DMSO-*d*₆)

3fa

3ga ¹**H NMR** (300 MHz, DMSO-*d*₆)

3ha

¹H NMR (300 MHz, DMSO-*d*₆)

¹H NMR (300 MHz, DMSO-*d*₆)

3ia

¹³C NMR (75 MHz, DMSO-*d*₆)

3ja ¹H NMR (300 MHz, DMSO-*d*₆)

3ka

¹H NMR (300 MHz, DMSO-*d*₆)

¹**H NMR** (300 MHz, DMSO-*d*₆)

3ma

¹³C NMR (75 MHz, DMSO-*d*₆)

¹**H NMR** (300 MHz, DMSO-*d*₆)

¹³C NMR (75 MHz, DMSO-*d*₆)

3na

30a

¹³C NMR (75 MHz, DMSO-*d*₆)

3pa ¹**H NMR** (300 MHz, DMSO-*d*₆)

¹³C NMR (75 MHz, DMSO-*d*₆)

3qa ¹H NMR (300 MHz, DMSO-*d*₆)

3ra ¹**H NMR** (300 MHz, DMSO-*d*₆)

¹**H NMR** (300 MHz, DMSO-*d*₆)

3sa

3ab

3ac ¹H NMR (300 MHz, DMSO-*d*₆)

3ad

¹H NMR (300 MHz, DMSO-*d*₆)

¹**H NMR** (300 MHz, DMSO-*d*₆)

¹³C NMR (75 MHz, DMSO-*d*₆)

3ae

¹**H NMR** (300 MHz, DMSO-*d*₆)

¹³C NMR (75 MHz, DMSO-*d*₆)

3af

3ag

3ah ¹**H NMR** (300 MHz, DMSO-*d*₆)

¹³C NMR (75 MHz, DMSO-*d*₆)

¹**H NMR** (300 MHz, DMSO-*d*₆)

3ai

3aj ¹**H NMR** (300 MHz, DMSO-*d*₆)

3ak ¹**H NMR** (300 MHz, DMSO-*d*₆)

3al ¹**H NMR** (300 MHz, DMSO-*d*₆)

¹³C NMR (75 MHz, DMSO-*d*₆)

3am

¹H NMR (300 MHz, DMSO-*d*₆)

3am'

¹H NMR (300 MHz, DMSO-*d*₆)

3an

¹H NMR (300 MHz, DMSO-*d*₆)

3an'

¹³C NMR (75 MHz, DMSO-*d*₆)

3ao

3ao'

3ap'

¹³C NMR (75 MHz, DMSO-*d*₆)

3ama

¹H NMR (300 MHz, DMSO-*d*₆)

电压(mv)

IUU

80

20

10 0

Ó

1

Peak#

1

2

2

Ż 4 5 6 7 8 ġ

Ret. Time (min)

15.408

17.093

电压(mv) 50

10 11 12 13

时间(min)

Height (mV*sec)

33863.457

454.692

17.093

Area (%)

98.5613

1.4387

15 16 17 18 19 20

14

Area (mv)

760736.688

11104.500

3aa' 64 / 127

HPLC conditions: Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 15 min, t_{minor} = 17 min

HPLC conditions: Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 17 min, t_{major} = 20 min

HPLC conditions: Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 24 min, t_{minor} = 28 min

3da 67 / 127

HPLC conditions: Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 25 min, t_{minor} = 27 min

68 / 127

Chiralpak IC, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 5 min, t_{major} = 6 min

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 24$ min, $t_{minor} = 28$ min

3ga

 $Chiralpak ~AD-H, n-hexane/isopropanol = 80/20, ~flow ~rate ~1.0 ~mL/min, ~\lambda = 254 ~nm, ~t_{minor} = 11 ~min, ~t_{major} = 24 ~min$

3ha

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 14$ min, $t_{minor} = 18$ min

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 19$ min, $t_{minor} = 26$ min

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 14 \ min, \ t_{minor} = 17 \ min \ nm, \ t_{major} = 10 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 14 \ min, \ t_{minor} = 17 \ min \ nm, \ t_{major} = 10 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 14 \ min, \ t_{minor} = 10 \ mL/min, \ \lambda = 10 \ mL/$

 $Chiralpak \ AD-H, n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 15 \ min, \ t_{minor} = 19 \ min \ nm, \ t_{major} = 10 \ min \ nm, \ t_{major}$

3ka

3la 75 / 127

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, $\lambda = 254$ nm, $t_{major} = 16$ min, $t_{minor} = 21$ min

3ma

 $Chiralpak \ AD-H, n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \\ \lambda = 254 \ nm, \ t_{minor} = 20 \ min, \ t_{major} = 25 \ min \ nm, \ t_{major} = 25 \ min \ nm, \ t_{major} = 10 \ mL/min, \ t_{$

Chiralpak IC, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 21 min, t_{major} = 24 min.

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 14 \ min, \ t_{minor} = 16 \ min \ nm)$

 $Chiralpak \ AD-H, n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 10 \ min, \ t_{minor} = 11 \ min \ nm, \ t_{major} = 10 \ min, \ t_{minor} = 11 \ min \ nm, \ t_{major} = 10 \ min, \ t_{major} = 10 \ m$

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 16 min, t_{minor} = 19 min

 $Chiralpak \ IC, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{minor} = 9 \ min, \ t_{major} = 13 \ minor = 13$

```
82 / 127
```


 $Chiralpak ~AD-H, n-hexane/isopropanol = 80/20, ~flow ~rate ~1.0 ~mL/min, ~\lambda = 254 ~nm, ~t_{minor} = 15 min, ~t_{major} = 20 ~min$

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 18 \ min, \ t_{minor} = 20 \ min \ nm, \ t_{major} = 10 \ min, \ t_{major} = 10 \ min \ nm, \ t_{major} = 1$

Chiralpak IC, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{minor} = 11 min, t_{major} = 15 min

Chiralpak AD-H, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 17 min, = 18 min

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 19 min, t_{minor} = 21 min t_{minor} = 21 minor = 2

3ae

3af 87 / 127

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	20.227	29232.371	882371.813	49.9642
2	22.645	25734.191	883636.375	50.0358

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 20 min, t_{minor} = 22 min

88 / 127

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{minor} = 16 \ min, \ t_{major} = 17 \ min \ nm, \ t_{major} = 17 \ min \ nm, \ t_{major} = 10 \ min \ nm, \ t_{major$

 $Chiralpak \ IC, \ n-hexane/isopropanol = 50/50, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{minor} = 8 \ min, \ t_{major} = 9 \ min \ n_{major} = 1.0 \ mL/min, \ \lambda = 1.0 \ mL/mi$

20134.582

547644.188

50.5086

2

17.562

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, tminor = 16 min, tmajor = 17 min

3aj 91 / 127

Chiralpak AD-H, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 12 min, t_{minor} = 13 min t_{minor} = 13 minor = 13

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	26.182	7823.649	373985.000	50.0594
2	29.648	6761.462	373097.000	49.9406

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 90/10, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 26 \ min, \ t_{minor} = 29 \ min \ nm, \ t_{major} = 20 \ min, \ t_{minor} = 20 \ min \ nm, \ t_{major} = 10 \ mL/min, \ \lambda = 10 \$

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 22 \ min, \ t_{minor} = 26 \ min \ nm, \ t_{major} = 26 \ min \ nm, \ t_{major} = 10 \ mL/min, \ \lambda = 10 \ mL/m$

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	13.492	7505.857	429690.031	49.3515
2	17.215	7199.009	440981.813	50.6484

 $Chiralpak \ IC, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{minor} = 13 \ min, \ t_{major} = 16 \ min \ nm, \ t_{major}$

 $Chiralpak \ AD-H, n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 15 \ min, \ t_{minor} = 21 \ min \ nm, \ t_{major} = 15 \ min, \ t_{minor} = 10 \ mL/min, \ \lambda = 10 \ mL/min, \ \lambda$

 $Chiralpak \ AD-H, n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 16 \ min, \ t_{minor} = 22 \ min \ nm, \ t_{major} = 10 \ min, \ t_{minor} = 10 \ min, \ t_{major} = 10 \ min, \$

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 24 min, t_{minor} = 38 min

3an' 98 / 127

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	15.988	12740.798	395449.313	49.8862
2	20.598	9663.707	397253.438	50.1138

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 15 min, t_{minor} = 20 min **3an'** (2.2eq)

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 15 min, t_{minor} = 20 min

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	22.858	38872.797	1528147.625	49.9328
2	27.857	31845.869	1532259.000	50.0672

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 23 min, t_{minor} = 28 min t_{minor} = 28 minor = 28 minor

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	41.145	25870.180	2228276.000	97.7426
2	44.315	545.500	51463.750	2.2574

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 90/10, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 41 \ min, \ t_{minor} = 44 \ min \ nm, \ t_{major} = 41 \ min, \ t_{minor} = 44 \ min \ nm, \ t_{major} = 10 \ mL/min, \ \lambda = 10 \$

Peak#	Ret. Time (min)	Height (mV*sec)	Area (mv)	Area (%)
1	39.140	20662.900	1575071.375	50.2131
2	42.715	17914.256	1561702.125	49.7869

Chiralpak AD-H, n-hexane/isopropanol = 90/10, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 39 min, t_{minor} = 42 min

19290.162

461748.750

49.6098

2

14.625

 $Chiralpak \ AD-H, n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 13 \ min, \ t_{minor} = 14 \ min \ nm, \ t_{major} = 14 \ min \ nm, \ t_{major}$

 $Chiralpak \ AD-H, n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 12 \ min, \ t_{minor} = 14 \ min \ nm \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 12 \ min, \ t_{minor} = 14 \ min \ nm \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 12 \ min, \ t_{minor} = 14 \ min \ nm \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 12 \ min, \ t_{minor} = 14 \ min \ nm \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 12 \ min, \ t_{minor} = 14 \ min \ rate \ nm \ r$

3aa Scale up 105 / 127

 $Chiralpak \ AD-H, \ n-hexane/isopropanol = 80/20, \ flow \ rate \ 1.0 \ mL/min, \ \lambda = 254 \ nm, \ t_{major} = 12 \ min, \ t_{minor} = 14 \ min \ nm)$

Chiralpak AD-H, n-hexane/isopropanol = 80/20, flow rate 1.0 mL/min, λ = 254 nm, t_{major} = 29 min, t_{minor} = 39 min. HRMS

3aa

Cpd. 1: C20 H18 N2 O4

Compound Spectra

x10 ⁶	Cpd 1: C20	118 N2 O4; 0.12	28: + FBF Sp	ectrum (rt: 0.1	78 min) SL\	N-0-3.d	Subtrac	t													
-	351 (M	.1346 +H)+																			
1.4-		<u> </u>																			
1.2																					
1-																					
0.8																					
0.6																					
0.4		352.1380																373	.1166		
0.4		(M+H)+																(M-	-Na)+		
0.2-	1	353.14 (M+H	416 I)+																	375.12 (M+Na	18
ل <u>ہ</u>	<u>ال</u>	1 V	···																	(PI+INA	0 +
	350 35	51 352 353	354 355	356 357	358 359	360	361	362	363	364	365	366	367	368 3	369 3	370	371 3	372 3	73 374	375	376
								Co	unts v	: Mass-f	to-Cha	rae (m	(7)								
								-				ige (ii									
		Spectru	n Peaks																		
			m/z	m/z	(Calc)	D	iff (ppn	1)		Abu	ind		Heig	ht %	Hei	ight %	6 (Calo	:) I	on Speci	ies	z
			351.1346	35	1.1339		1.9	4		1466	728		- 1	00.00		-	100.0	ō	(M+H)+		1
			352.1380	35	2.1371		2.5	57		305	606			20.84			22.7	3	(M+H)+	-	1
			353.1416	35	3.1398		5.2	21		39	123			2.67			3.2	9	(M+H)+	-	1
					0.4450		2.0	ne i		2000	710			00.00			100.0	0	(A4 - A1-)		1
			373.1166	37	3.1159		2.0	13		200.	/15						100.0	0	(M+Na)+	+	1
			373.1166 374.1195	37 37	3.1159 4.1191		1.2	24		63	905			22.29			22.7	2	(M+Na)+ (M+Na)+	+	1

3ba

Cpd. 1: C20 H17 F N2 O4

Compound Spectra

	Cpd 1: C20	H17 F N2	04: 0.2	283: +	FBF S	pectru	m (rt:	0.333	min) 3	ba.d	Subtra	t															
×10 -	369 (M-	.1250 +H)+							í																		
1.2																											
1-																											
0.8																											
0.6																											
0.4		370.12 (M+H	283)+																			3(91.10 M+Na	69)+			
0.2			371.130 (M+H)	03 +																				т <mark>(</mark>	393.11 [M+Na]	36)+ .	
Ŭ	368 36	59 370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	39
													Count	s vs. M	lass-to	-Charg	ge (m/z	:)									

m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
369.1250	369.1245	1.34	1305243	100.00	100.00	(M+H)+	1
370.1283	370.1277	1.66	265474	20.34	22.72	(M+H)+	1
371.1303	371.1303	-0.06	41421	3.17	3.28	(M+H)+	1
391.1069	391.1065	1.17	260796	100.00	100.00	(M+Na)+	1
392.1102	392.1096	1.47	56995	21.85	22.71	(M+Na)+	1
393.1136	393.1123	3.28	8237	3.16	3.28	(M+Na)+	1
394.1141	394.1149	-1.99	601	0.23	0.36	(M+Na)+	1
3ca

Cpd. 3: C22 H22 N2 O4

Compound Spectra

×10 ⁵ _	Cpd 3: C	22 H	22 N2 (04; 0.23	31: + F	BF Spe	ctrum (rt: 0.331-0	646 mi	n) 3ca.	d Subt	tract														
2		379.1 (M+	1660 H)+																							
1.8																										
1.6																										
1.4																										
1.2																										
1-																										
0.8			380.1	691																			401.14	70		
0.6-			(M+I	1)+																			(M+Na)+		
0.4				381.17	732																			402.15	11	
0.2 1			I	(M+H)+																			(Pitina)) +	
6				1																						
لـ0	378	379	380	381	382	383	384	385 386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	40
لـ	378	379	380	381	382	383	384	385 386	387	388	389	390 C	391 ounts v	392 s. Mass	393 -to-Ch	394 harge (395 m/z)	396	397	398	399	400	401	402	403	40
ل ₀	378	379	380	381	382	383	384	385 386	387	388	389	390 C	391 iounts v	392 s. Mass	393 -to-Ch	394 narge (395 m/z)	396	397	398	399	400	401	402	403	40
- <u>-</u> -	378	379	380 <i>S</i> j	381	382 n Peal	383 ks	384	385 386	387	388	389	390 C	391 iounts v	392 s. Mass	393 -to-Ch	394 harge (395 m/z)	396	397	398	399	400	401	402	403	40
لـ ₀	378	379	380 <i>S</i> (381	382 n Peal	383 ks m/z	384	385 386	387	388 D	389 iff (pp	390 C	391 ounts v	392 s. Mass Ab	393 -to-Ch	394 narge (395 m/z) He	396	397	398 Height	399 % (Ca	400	401	402	403	40 ⁻
-0-1	378	379	380 <i>S</i> J	381	382 n Peal 379.	383 ks m/z .1660	384	385 386 m/z (Cal 379.16	c)	388 D	389 iff (pp 1	390 C om)	391 ounts v	392 s. Mass Ab 190	393 -to-Ch ound 0943	394 harge (395 m/z) He	396 ight %	397 5 H	398 Height	399 % (Ca 100	400	401	402 5pecie	403	40 ⁻ 2 1
-0-1	378	379	380 Sį	381	382 n Peal 379. 380. 381.	383 ks m/z .1660 .1691 .1732	384	m/z (Cal 379.16 380.16 381.17	c) 52 84 12	388 D	389 9 9 1 1 1 5	390 C 0m) 1.93 1.81 5.41	391 Jounts v	392 s. Mass Ab 190 48	393 →to-Ch ound 0943 8435 8204	394 narge (395 m/z) He	396 ight % 100.0 25.3 4.3	397 397 6 H	398 Height	399 % (Ca 100 24 3	400 400 alc) 0.00 4.94 3.80	401 Ion (N (N	402 Specie 1+H)+ 1+H)+ 1+H)+	403	40 ⁻ 2 1 1
- <u>-</u> -	378	379	380 Sj	381 Dectrur	382 n Peal 379. 380. 381. 401.	383 m/z .1660 .1691 .1732 .1479	384	m/z (Cal 385 386 379.16 380.16 381.17 401.14	c) 52 84 12 72	388 D	iff (pp 1 1 1 1	390 C 0 m) 1.93 1.81 5.41 1.91	391 iounts v	392 s. Mass Ab 190 48 41	393 -to-Ch ound 0943 8435 8204 1242	394 harge (395 m/z) He	ight % 100.00 25.33 4.30 100.00	397 397 6 H 0 7 0	398 leight	399 % (Ca 100 24 3 100	400 400 .00 .94 .80 0.00	401 Ion (N (N (M	Specie 1+H)+ 1+H)+ 1+H)+ 1+H)+ +Na)+	403	40 [.] 2 1 1 1 1
- <u>-</u> -	378	379	380 	381 Dectrur	382 m Peal 379. 380. 381. 401. 402.	383 m/z .1660 .1691 .1732 .1479 .1511	384	m/z (Cal 379.16 380.16 381.17 401.14 402.15	c) 52 84 12 72 04	388 D	iff (pp 1 1 1 1 1 1	390 C 1.93 1.81 5.41 1.91 1.80	391 ounts v	392 s. Mass Ab 190 48 8 41 10	393 -to-Ch 0943 8435 8204 1242 0534	394 harge (395 m/z) He	ight % 100.00 25.3 100.00 25.5	397 5 F 0 7 0 1 4	398 leight	399 % (Ca 100 24 3 100 24	400 400 .00 4.94 3.80 0.00 4.93	Ion (N (N (M (M (M (M	5pecie 1+H)+ 1+H)+ 1+H)+ 1+H)+ +Na)+ +Na)+	403	40 ⁻ 2 1 1 1 1

3da

Cpd. 4: C21 H20 N2 O4

Spectrum Peaks

Compound Spectra

×10 ⁷	Cpd 4: C2 3	21 H20 65.15) N2 (31	04; 0.247	7: + F	BF Spe	ectrum	n (rt: 0	.247 m	iin) 3d	a.d Su	ıbtract																
1.4	((M+H)	+																									
1.2																												
1-																												
0.8																							3	387.1	343			
0.6		:	366.1 (M+H	554 I)+																			((M+N	a)+			
0.4			Ĩ	.,.																					388,13	76		
0.2				367.158 (M+H)+	4 F	369.16 (M+H)	39)+																		(M+Na))+	390.14 (M+Na	28)+
ل -0			1		Ť			1	1	Т	1	1	1	Т	Т	1	1	1	Т	Т	Т	Т	Т			1	1	
	364	365	366	367	368	369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	390	39

m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
365.1531	365.1496	9.49	14485329	100.00	100.00	(M+H)+	1
366.1554	366.1528	7.17	4337080	29.94	23.84	(M+H)+	1
367.1584	367.1555	7.90	642679	4.44	3.54	(M+H)+	1
368.1615	368.1581	9.39	69734	0.48	0.39	(M+H)+	1
369.1639	369.1607	8.85	8334	0.06	0.03	(M+H)+	1
387.1343	387.1315	7.25	5592626	100.00	100.00	(M+Na)+	1
388.1376	388.1347	7.29	1339836	23.96	23.83	(M+Na)+	1
389.1405	389.1374	7.99	187830	3.36	3.54	(M+Na)+	1
390.1428	390.1400	7.05	23067	0.41	0.39	(M+Na)+	1

3ea

Cpd. 1: C20 H17 Cl N2 O4

Compound Spectra

3fa

Cpd. 1: C22 H22 N2 O4

Compound Spectra

x10 ⁵	Cpd 1: C	22 H2	22 N2 0	04; 0.24	1 5: + F	BF Spe	ectrum	(rt: 0.3	45-0.6	61 min	n) 3fa.d	Subt	act														
-		379.1	661																								
4		(M+I	1)+																								
3.5-																											
3-																											
2.5																											
2-																											
1.5			380.1	.694																				401.14	480		
1-			(M+I	1)+																				(M+N	a)+		
0.5				381.17 (M+H	726 I)+																					403.15	62
0				- T																						(Int+ing	i)+
	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392	393	394	395	396	397	398	399	400	401	402	403	40
													0	ounts v	s. Mas	s-to-Ch	arge (m/z)									
													-														
			S	oectrur	n Pea	ks																					
						m/z		m/z	(Calc)	D	iff (pp	m)		A	bund		He	ight %	6 1	leight	: % (C	alc)	Ion	Spec	ies	z
					379.	.1661		37	9.1652	2		2	.41		40	7673			100.0	0		10	0.00	(1	м+н)+		1
					380.	.1694		38	0.1684	4		2	.43		10	2397			25.1	2		2	4.94	(1	м+н)+	-	1
					381.	.1726		38	1.1712	2		3	.68		1	6032			3.9	3			3.80	(1	м+н)+	-	1
					401.	.1480		40	1.147	2		2	.12		8	35297			100.0	0		10	0.00	()	1+Na)-	÷	1
					402.	.1512		40	2.1504	4		1	.96		2	1956			25.7	4		2	4.93	()	1+Na)-	+	1
					403.	.1562		40	3.153	1		7	.61			3702			4.3	4			3.80	()	1+Na)	ł	1

3ga Cpd. 2: C20 H16 F2 N2 O4

Compound Spectra

3ha

Cpd. 4: C21 H20 N2 O4

Compound Spectra

x10 ⁶	Cpd 4: C21 I	120 N2	04; 0.259:	+ FBF Sp	ectrum	(rt: 0.3	25 min) 3ha.	d Subt	ract															
-	365	.1505																							
1.8	(M-	+=+++++++++++++++++++++++++++++++++++++																							
1.6																									
1.4-																									
1.2-																									
1-																									
0.8-																									
0.6		366. (M+	1539 H)+																			387.13	27		
0.4			367.1570																				,+	290 12	97
0.2			(M+H)+																				1	(M+Na	ĵ÷
U	364 36	55 366	367 3	68 369	370	371	372	373	374	375	376	377	378	379	380	381	382	383	384	385	386	387	388	389	39
											C	ounts v	/s. Mas	s-to-Cl	narge (m/z)									
		s	pectrum I	Peaks																					
							10-1-1	`		GE /									to to bar	N 10.	1.		e		-

- 2	Ion Species	Height % (Calc)	Height %	Abund	Diff (ppm)	m/z (Calc)	m/z
1	(M+H)+	100.00	100.00	1799427	2.54	365.1496	365.1505
1	(M+H)+	23.84	21.80	392277	3.08	366.1528	366.1539
1	(M+H)+	3.54	3.38	60760	4.17	367.1555	367.1570
1	(M+Na)+	100.00	100.00	351917	2.96	387.1315	387.1327
1	(M+Na)+	23.83	23.56	82926	3.13	388.1347	388.1359
1	(M+Na)+	3.54	4.04	14209	3.33	389.1374	389.1387

111 / 127

3ia

Cpd. 3: C21 H20 N2 O5

Compound Spectra

3ja

Cpd. 1: C20 H17 F N2 O4

Compound Spectra

x10 ⁵	Cpd 1: C20 H1	17 F N2 O4; 0.15	: + FBF S	pectrum	(rt: 0.10	7 min) 3	ja.d Su	btract															_
1.6-	369.1 (M+I	250 1)+																					
1.4-	-																						
1 2-	- 1																						
1-	4 1																						
0.8-																							
0.0																							
0.0		370.1276 (M+H)+																	3	391.106	7		
0.4	1	371 1200																	(M+Na)	+ 92.109		
0.2	1	(M+H)+																		(I	M+Na)-	-	
0-				1	1	<u>г т</u>	1	-	-	-	1	1	1	1	1	1	1	1	1	+	+	Ť.	=
	368 369	270 274 7	70 070	374	375 3	76 37	7 378	379	380	201	200	383	384	385	386	207	200	380	390	201	392	393	39
		3/0 3/1 3	12 3/3	571					500	201	382	000			500	201	200	505		391			
		370 371 3	12 3/3	571					500 G	ounts v	382 s. Mass	s-to-Ch	arge (r	n/z)	500	367	200	505		391			
		Spectrum	12 313 Doake	571			,		G	ounts v	382 s. Mass	s-to-Ch	arge (r	n/z)	300	367	300	505		391			
		Spectrum I	veaks	571			,	:# /	C	ounts v	382 s. Mass	s-to-Ch	arge (r	n/z)	-1.1.0/	367	300	505 N (C-1		391			-
		Spectrum I	/2 3/3 /eaks m/z 1250	571	m/z (Ca	alc)	D	iff (pp	C m)	ounts v	382 s. Mass Al	s-to-Ch	arge (r	n/z) Hei	ght %	н	eight	% (Cal	lc)	Jon S	ipecies		Z
		Spectrum I	72 373 Peaks m/z 169.1250	571	m/z (Ca 369.1 370.1	alc) 245 277	D	iff (pp 1	G m) .25	ounts v	382 s. Mass Al 15 3	ound 4941	arge (r	m/z) Hei	ght % 100.00	. Н	eight	% (Cal 100.0	lc) 00	391 Ion 5 (M-	pecies +H)+		Z 1
		Spectrum I	2 373 Peaks m/z 69.1250 70.1276 71.1299	571	m/z (Ca 369.1 370.1 371.1	alc) 245 277 303	D	iff (pp 1 -0 -1	C m) .25 .18 .21	ounts v	382 s. Mass At 15 3	ound 4941 7512 6232	arge (r	n/z) Hei	ght % 100.00 24.21 4.02	ы н	eight	% (Cal 100. 22. 3.	lc) 00 72 28	391 Ion 5 (M+ (M+ (M+	5 pecies +H)+ +H)+		Z 1 1
		Spectrum I	2 373 Peaks m/z 69.1250 670.1276 671.1299 91.1067	571	m/z (Ca 369.1 370.1 371.1 391.1	alc) 245 277 303 065	D	iff (pp 1 -0 -1 0	C m) .25 .18 .21 .53	ounts v	382 s. Mass Al 15 3 3	ound 4941 7512 6232 3304	arge (r	n/z) Hei	ght % 100.00 24.21 4.02 100.00	ы н 1	eight (% (Cal 100. 22. 3. 100.	lc) 00 72 28 00	391 Ion S (M+ (M+ (M+ (M+	pecies +H)+ +H)+ +H)+ +H)+		Z 1 1 1
		Spectrum I	2 373 Peaks m/z 69.1250 670.1276 671.1299 191.1067 192.1098	571	m/z (Ca 369.1 370.1 371.1 391.1 392.1	alc) 245 277 303 065 096	D	iff (pp 1 -0 -1 0 0	C m) .25 .18 .21 .53 .46	ounts v	382 s. Mass At 15 3 3	ound 4941 7512 6232 3304 7890	arge (r	n/z) Hei	ght % 100.00 24.21 4.02 100.00 23.69	, н	eight	% (Cal 100. 22. 3. 100. 22.	lc) 00 72 28 00 71	Ion 5 (M+ (M+ (M+ (M+ (M+	5pecies +H)+ +H)+ +H)+ -Na)+ -Na)+		Z 1 1 1 1

3ka

Cpd. 3: C20 H17 Cl N2 O4

Compound Spectra

m/2	m/z (Calc)	Diff (ppin)	ADUNA	neight %	neight % (Calc)	ton species	L 1
385.0961	385.0950	3.02	5812792	100.00	100.00	(M+H)+	1
386.0991	386.0981	2.49	1298354	22.34	22.72	(M+H)+	1
387.0937	387.0928	2.18	1935741	33.30	35.28	(M+H)+	1
388.0968	388.0956	3.13	369646	6.36	7.63	(M+H)+	1
389.0997	389.0981	4.06	57948	1.00	1.08	(M+H)+	1
407.0779	407.0769	2.32	1310898	100.00	100.00	(M+Na)+	1
408.0813	408.0801	2.91	273993	20.90	22.71	(M+Na)+	1
409.0759	409.0748	2.72	390126	29.76	35.28	(M+Na)+	1
410.0785	410.0775	2.33	86828	6.62	7.62	(M+Na)+	1

3la

Cpd. 5: C20 H17 Br N2 O4

x10 ⁶	Cpd 5: C20 H1	17 Br N2 O	4; 0.167: + FBF Spe	ectrum (rt: 0.134 min) 3l	a.d Subtract					
-	429.04	447 431.	0430							
1.4	(0170	')∓ (M+	H)+							
12										
1										
0.8										
0.6										
0.4	· · · · ·	430.0482 (M+H)+	432.0462					451.0266 (M+Na)+	5 453.0250 - (M+Na)+	
0.2			433.0491					45	2.0299 454.0283	
			(M+H)+					(M	+Na)+ (M+Na)+	
U										1
	428 429	430 43	31 432 433 43	4 435 436 437 43	38 439 440 441	442 443 444 44	15 446 447 448	449 450 451	452 453 454 4	55
					Cour	nts vs. Mass-to-Charo	ie (m/z)			
							- (
		Spect	rum Peaks			-				
		Spect	rum Peaks m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	z
		Spect	rum Peaks m/z 429.0447	m/z (Calc) 429.0444	Diff (ppm) 0.61	Abund 1438729	Height % 100.00	Height % (Calc) 99.44	Ion Species (M+H)+	Z 1
		Spect	rum Peaks m/z 429.0447 430.0482	m/z (Calc) 429.0444 430.0476	Diff (ppm) 0.61 1.33	Abund 1438729 296304	Height % 100.00 20.59	Height % (Calc) 99.44 22.59	Ion Species (M+H)+ (M+H)+	Z 1 1
		Spect	rum Peaks m/z 429.0447 430.0482 431.0430	m/z (Calc) 429.0444 430.0476 431.0427	Diff (ppm) 0.61 1.33 0.80	Abund 1438729 296304 1400069	Height % 100.00 20.59 97.31	Height % (Calc) 99.44 22.59 100.00	Ion Species (M+H)+ (M+H)+ (M+H)+	Z 1 1
		Spect	trum Peaks m/z 429.0447 430.0482 431.0430 432.0462	m/z (Calc) 429.0444 430.0476 431.0427 432.0457	Diff (ppm) 0.61 1.33 0.80 1.09	Abund 1438729 296304 1400069 283631	Height % 100.00 20.59 97.31 19.71	Height % (Calc) 99.44 22.59 100.00 22.33	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+	Z 1 1 1 1
		Spect	rum Peaks m/z 429.0447 430.0482 431.0430 432.0462 433.0491	m/z (Calc) 429.0444 430.0476 431.0427 432.0457 433.0483	Diff (ppm) 0.61 1.33 0.80 1.09 1.79	Abund 1438729 296304 1400069 283631 39378	Height % 100.00 20.59 97.31 19.71 2.74	Height % (Calc) 99.44 22.59 100.00 22.33 3.21	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+	Z 1 1 1 1 1
		Spect	rum Peaks m/z 429.0447 430.0482 431.0430 432.0462 433.0491 434.0513	m/z (Całc) 429.0444 430.0476 431.0427 432.0457 433.0483 434.0509	Diff (ppm) 0.61 1.33 0.80 1.09 1.79 1.08	Abund 1438729 296304 1400069 283631 39378 4918	Height % 100.00 20.59 97.31 19.71 2.74 0.34	Height % (Calc) 99.44 22.59 100.00 22.33 3.21 0.35	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+	Z 1 1 1 1 1 1
		Spect	rum Peaks m/z 429.0447 431.0430 432.0462 433.0491 433.0491 434.0513 451.0266	m/z (Calc) 429.0444 430.0476 431.0427 432.0457 433.0483 434.0509 451.0264	Diff (ppm) 0.61 1.33 0.80 1.09 1.79 1.08 0.55	Abund 1438729 296304 1400069 283631 39378 4918 302789	Height % 100.00 20.59 97.31 19.71 2.74 0.34 96.77	Height % (Calc) 99.44 22.59 100.00 22.33 3.21 0.35 99.44	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+	Z 1 1 1 1 1 1 1
		Spect	rum Peaks m/z 429.0447 430.0482 431.0430 432.0462 433.0491 434.0513 451.0266 452.0299	m/z (Calc) 429.0444 430.0476 431.0427 432.0457 433.0483 434.0509 451.0264 452.0296	Diff (ppm) 0.61 1.33 0.80 1.09 1.79 1.08 0.55 0.74	Abund 1438729 296304 1400069 283631 39378 4918 302789 64832	Height % 100.00 20.59 97.31 19.71 2.74 0.34 96.77 20.72	Height % (Calc) 99.44 22.59 100.00 22.33 3.21 0.35 99.44 22.58	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+Na)+	Z 1 1 1 1 1 1 1 1
		Spect	rum Peaks m/z 429.0447 430.0482 431.0430 432.0462 433.0491 434.0513 451.0266 452.0299 453.0250	m/z (Calc) 429.0444 430.0476 431.0427 432.0457 433.0483 434.0509 451.0264 452.0296 453.0246	Diff (ppm) 0.61 1.33 0.80 1.09 1.79 1.08 0.55 0.74 0.80	Abund 1438729 296304 1400069 283631 39378 4918 302789 64832 312895	Height % 100.00 20.59 97.31 19.71 2.74 0.34 96.77 20.72 100.00	Height % (Calc) 99.44 22.59 100.00 22.33 3.21 0.35 99.44 22.58 100.00	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+Na)+ (M+Na)+	Z 1 1 1 1 1 1 1 1
		Spect	rum Peaks m/z 429.0447 431.0430 432.0462 433.0491 434.0513 451.0266 452.0299 453.0250 454.0283	m/z (Calc) 429.0444 430.0476 431.0427 432.0457 433.0483 434.0509 451.0264 452.0296 453.0246 454.0276	Diff (ppm) 0.61 1.33 0.80 1.09 1.79 1.08 0.55 0.74 0.80 1.43	Abund 1438729 296304 1400069 283631 39378 4918 302789 64832 312895 70129	Height % 100.00 20.59 97.31 19.71 2.74 0.34 96.77 20.72 100.00 22.41	Height % (Calc) 99,44 22.59 100.00 22.33 3.21 0.35 99,44 22.58 100.00 22.32	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+Na)+ (M+Na)+ (M+Na)+	Z 1 1 1 1 1 1 1 1 1 1 1
		Spect	rum Peaks m/z 429.0447 430.0482 431.0430 432.0462 433.0491 434.0513 451.0266 452.0299 453.0250 454.0283 455.0296	m/z (Calc) 429.0444 430.0476 431.0427 432.0457 433.0483 434.0509 451.0264 452.0296 453.0246 454.0276	Diff (ppm) 0.61 1.33 0.80 1.09 1.79 1.08 0.55 0.74 0.80 1.43 -1.32	Abund 1438729 296304 1400069 283631 39378 4918 302789 64832 312895 70129 10739	Height % 100.00 20.59 97.31 19.71 2.74 0.34 96.77 20.72 100.00 22.41 3.43	Height % (Calc) 99,44 22,59 100,00 22,33 3,21 0,35 99,44 22,58 100,00 22,32 3,21	Ion Species (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+H)+ (M+Ha)+ (M+Na)+ (M+Na)+ (M+Na)+	Z 1 1 1 1 1 1 1 1 1 1 1

3ma

Cpd. 2: C21 H20 N2 O4

Compound Spectra

4.34

2359

0.63

0.39

(M+Na)+

1

3na

Cpd. 2: C19 H16 N2 O4

390.1417

390.1400

Compound Spectra

x105_Cpd 2: C19 H16 N2 O4; 0.297: + FBF Spectrum (rt: 0.331-0.414 min) 3na.d Subtract 337.1191 (M+H)+ 7 6-5-359.1012 (M+Na)+ 4 3-2⊣ 338.1222 (M+H)+ 360.1042 (M+Na)+ 1-339.1252 (M+H)+ 0 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 36 336 337 338 339 340 360 361 359

> Spectrum Peaks m/z (Calc) 337.1183 338.1215 339.1241 Diff (ppm) 2.56 Abund 684575 Height % 100.00 Height % (Calc) 100.00 Ion Species (M+H)+ (M+H)+ (M+H)+ m/z 337.1191 **Z** 1 338.1222 339.1252 2.11 3.24 136554 22046 19.95 3.22 21.63 3.05 1 1 340.1256 359.1012 360.1042 340.1266 359.1002 360.1034 -3.07 2.77 2.32 2751 346486 67819 (M+H)+ (M+Na)+ (M+Na)+ 0.40 0.32 1 100.00 19.57 100.00 21.62 1 361.1069 361.1060 2.37 10559 3.05 3.05 (M+Na)+ 1

3oa

Cpd. 4: C21 H20 N2 O4

Compound Spectra

3pa

Cpd. 3: C24 H26 N2 O4

Compound Spectra

×10 ⁶	3: C24 H26 N2 O4; 0.296: + FBF Spectrum (rt: 0.346 min) 3pa.d Subtract	-
1.2	407.1973 (M+H)+	
1-		
0.8		
0.6	429.1793	
0.4	408.2006 (M+Na)+ (M+H)+	
0.2	490.1825 409.2034 (M+H)+ (M+N)+ 432.185 (M+Na)+ 432.185	1
0-	406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432	43

m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
407.1973	407.1965	1.89	1160467	100.00	100.00	(M+H)+	1
408.2006	408.1998	1.97	291407	25.11	27.15	(M+H)+	1
409.2034	409.2026	2.17	43597	3.76	4.37	(M+H)+	1
429.1793	429.1785	1.96	408871	100.00	100.00	(M+Na)+	1
430.1825	430.1817	1.83	115653	28.29	27.14	(M+Na)+	1
431.1845	431.1845	0.03	17387	4.25	4.36	(M+Na)+	1
432.1851	432.1872	-4.73	2888	0.71	0.52	(M+Na)+	1

3qa

Cpd. 4: C25 H20 N2 O4

Compound Spectra

3ra

Cpd. 2: C24 H18 N2 O4

×10 ⁶	Сро	1 2: C	24 H1	8 N2	04; 0.2	93: + I	FBF Sp	ectrum	(rt: 0	.343-0	.359 m	nin) 3ra	a.d Su	ibtract															
-		3	99.1	345																									
1 2-			(M+U	0+																									
1.2																													
1-	1																												
0.8	-																												
0.6-																								1	421.11 M+Na	66)+			
04				400.1	379																				1				
0.4				(111)	1/1																					422.119	96		
0.2	1				401.14 (M+H	109)+																				(M+Na)	/+	424.12	53
0-	<u>_</u> ا																										<u> </u>	(m+iva)+
		398	399	400	401	402	403	404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420	421	422	423	424	42
															Count	ts vs. M	4ass-to	-Charg	ge (m/:	z)									
				S	pectru	m Pea	aks																						

m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	z
399.1345	399.1339	1.36	1290503	100.00	100.00	(M+H)+	1
400.1379	400.1371	1.89	335058	25.96	27.06	(M+H)+	1
401.1409	401.1399	2.46	47413	3.67	4.34	(M+H)+	1
402.1446	402.1426	4.93	6487	0.50	0.51	(M+H)+	1
421.1166	421.1159	1.63	515190	100.00	100.00	(M+Na)+	1
422.1196	422.1191	1.16	140328	27.24	27.05	(M+Na)+	1
423.1226	423.1219	1.65	20526	3.98	4.34	(M+Na)+	1
424.1253	424.1246	1.79	3067	0.60	0.51	(M+Na)+	1

3sa

Cpd. 4: C22 H22 N2 O5

Compound Spectra

420.1506

3ab

Cpd. 4: C21 H20 N2 O4

Compound Spectra

x10 ⁶ .	Cpd 4: C21	H20 N2	04; 0.166: +	FBF Spe	ctrum (rt: (0.116 mi	in) 3ab	.d Su	btract															
	365	5.1503																						
	(M	I+H)+																						
1.8																								
1.6																								
1.4																								
1.2																								
1-																								
0.8																								
0.6		366.	1538																	i	387.1 (M+N	.326 la)+		
0.4		(M+	п)+																		T	388 1356		
0.2			367.1565																			(M+Na)+	39	0.1446
ل <u>م</u>			(M+H)+																				. (M	I+Na)+
	264 2		c 267 260	200	270 271	272	272	274	275	270	277	270	270	200	201	202	202	204	205	2000	207	200 2		200 20

370 371 372 373 374 375 376 377 378 379 383 384 385 386 387 388 389 390 3 Counts vs. Mass-to-Charge (m/z)

Spectrum Pe	aks
-------------	-----

m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	Z
365.1503	365.1496	1.86	1856117	100.00	100.00	(M+H)+	1
366.1538	366.1528	2.83	391077	21.07	23.84	(M+H)+	1
367.1565	367.1555	2.76	59297	3.19	3.54	(M+H)+	1
387.1326	387.1315	2.84	449037	100.00	100.00	(M+Na)+	1
388.1356	388.1347	2.21	119930	26.71	23.83	(M+Na)+	1
389.1385	389.1374	2.77	20687	4.61	3.54	(M+Na)+	1
390.1446	390.1400	11.60	1192	0.27	0.39	(M+Na)+	1

56345

1 1

3ac

Cpd. 4: C21 H20 N2 O5

Compound Spectra

3ad

Cpd. 1: C20 H17 F N2 O4

406.1358

406.1348

Compound Spectra

x10°	opo 11 0201		2 0 1 0 2 17 1		pocului				sound 2																
1.4	369. (M+	1258 H)+																							
1.2-																									
1-																									
0.8																									
0.6																									
0.4		370.1 (M+	1292 H)+																	3	91.10 M+Na	080 a)+			
0.2			371.1315 (M+H)+																			392.1111 (M+Na)+	39 (N	94.119 4+Na)	52)+
0	368 36	9 370) 371 372	373	374	375 37	6 377	378	379	380	381	382	383	384	385	386	387	388	389	390	391	392 3	393	394	3
											Count	s vs. M	lass-to	-Charg	ge (m/z	z)									
		5	pectrum Pe	aks																					
				m/z		m/z (C	alc)		Diff (r	(mac			Abun	d		Heiah	t %	Hei	aht %	(Calo)	Ion Spe	cies		z

					in a famely	a on openeo	
369.1258	369.1245	3.42	1333334	100.00	100.00	(M+H)+	1
370.1292	370.1277	3.95	284303	21.32	22.72	(M+H)+	1
371.1315	371.1303	3.23	38683	2.90	3.28	(M+H)+	1
372.1334	372.1329	1.22	4646	0.35	0.36	(M+H)+	1
391.1080	391.1065	3.93	285079	100.00	100.00	(M+Na)+	1
392.1111	392.1096	3.85	63914	22.42	22.71	(M+Na)+	1
393.1132	393.1123	2.36	7775	2.73	3.28	(M+Na)+	1
394.1152	394.1149	0.78	1308	0.46	0.36	(M+Na)+	1

1667

0.46

0.44

3ae

Cpd. 3: C20 H17 Cl N2 O4

Compound Spectra

3af

Cpd. 1: C20 H17 Br N2 O4

Compound	Spectra
----------	---------

x10 ⁶ .	Cpd 1: C20 H17 Br N2 O4; 0.081: + FBF Spectrum (rt: 0.081 min) SLW-0-2.d Subtract
-	429.0453
2.5	(H+H)+ (M+H)+
2.25	
2-	
1.75	
1.5	
1.25	
1-	420.0409
0.75	1300-100 432,0969 (M+H)+ (M+H)+
0.5	451.0272 453.0256 (MUN) 455.0272
0.25	(M+H)+ (M+Na)+ (M+Na)+
0	
	י ככף 104 154 155 157 159 159 159 149 149 149 149 149 149 149 149 149 14
	Counts vs. Mass-to-Charge (m/z)

Spectrum Peaks

z	Ion Species	Height % (Calc)	Height %	Abund	Diff (ppm)	m/z (Calc)	m/z
1	(M+H)+	99.44	100.00	2510871	2.07	429.0444	429.0453
1	(M+H)+	22.59	20.02	502556	2.79	430.0476	430.0488
1	(M+H)+	100.00	95.48	2397408	1.99	431.0427	431.0435
1	(M+H)+	22.33	18.99	476720	2.84	432.0457	432.0469
1	(M+H)+	3.21	2.92	73401	4.52	433.0483	433.0503
1	(M+H)+	0.35	0.44	11108	1.92	434.0509	434.0517
1	(M+Na)+	99.44	100.00	169996	1.75	451.0264	451.0272
1	(M+Na)+	22.58	21.32	36238	3.11	452.0296	452.0310
1	(M+Na)+	100.00	96.73	164436	2.22	453.0246	453.0256
1	(M+Na)+	22.32	22.46	38180	1.55	454.0276	454.0283
1	(M+Na)+	3.21	2.81	4771	4.24	455.0302	455.0322

21.67 33.25 6.87

3ag

Cpd. 3: C21 H17 F3 N2 O4

Compound Spectra

3ah

Cpd. 3: C20 H17 N3 O6

3ai

Cpd. 3: C21 H20 N2 O5

Compound Spectra

3aj

Cpd. 1: C20 H17 Cl N2 O4

Spectrum Peaks

Compound Spectra

x10 ⁶	Cpd 1: C2	20 H17	CI N2 O4	; 0.325:	+ FBF	Spectru	ım (rt: 0.3	75-0.45	8 min) :	3aj.d S	Subtrac	t														
	3	85.096	51																							
1.2		(m+n)-	•																							
1-																										
-																										
0.8																										
0.6																										
~			387 (M-	.0941 -H)+																	4	107 079	22			
0.4				1																	Ó	M+Na)	i÷			
0.2				388.09 (M+H	66)+																		i	409.075 (M+Na)	57)+	
ل_																							`			
	384	385	386 3	37 388	389	390	391 39	2 393	394	395	396	397	398	399	400	401	402	403	404	405	406	407	408	409	410	4

m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	z
385.0961	385.0950	2.99	1209765	100.00	100.00	(M+H)+	1
386.0993	386.0981	3.07	252885	20.90	22.72	(M+H)+	1
387.0941	387.0928	3.35	374455	30.95	35.28	(M+H)+	1
388.0966	388.0956	2.74	77003	6.37	7.63	(M+H)+	1
407.0782	407.0769	3.18	265412	100.00	100.00	(M+Na)+	1
408.0812	408.0801	2.84	59384	22.37	22.71	(M+Na)+	1
409.0757	409.0748	2.39	85743	32.31	35.28	(M+Na)+	1
410.0784	410.0775	2.14	20516	7.73	7.62	(M+Na)+	1

3ak

Cpd. 3: C21 H17 N3 O4 Compound Spectra

Сотро	ind Spectr	а

3al

Cpd. 6: C24 H20 N2 O4

x10 ⁶	Cpd 6: C24 H20 N2 O4; 0.267: + FBF Spect	trum (rt: 0.333 min) 3al.d Subtract		
-	401.1500 (M+H)+			
1.4-				
1.2-				
1-				
0.8-				
0.6	402.1535			423.1322
0.4	(M+H)+			(M+Na)+
0.2-	403.1561 (M+H)+			424.1354 (M+Na)+
0-		<u> </u>		
	400 401 402 403 404 405	406 407 408 409 410 41	11 412 413 414 415 416 417 418 41	9 420 421 422 423 424 425 42
			Counts vs. Mass-to-Charge (m/z)	

Spectrum Peaks							
m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	z
401.1500	401.1496	1.14	1464729	100.00	100.00	(M+H)+	1
402.1535	402.1528	1.69	374857	25.59	27.08	(M+H)+	1
403.1561	403.1556	1.24	58139	3.97	4.35	(M+H)+	1
404.1584	404.1583	0.23	7844	0.54	0.52	(M+H)+	1
423.1322	423.1315	1.48	344077	100.00	100.00	(M+Na)+	1
424.1354	424.1347	1.47	84440	24.54	27.07	(M+Na)+	1
425.1380	425.1375	1.15	14292	4.15	4.34	(M+Na)+	1

3am

Cpd. 6: C18 H16 N2 O5

Compound Spectra

3am'

Cpd. 4: C24 H21 N3 O7

Compound Spectra

×10 ⁵	Cpd 4: C24 H21 N3 O7; 0.267: + FBF Spectrum (rt: 0.384-0.683 min) 3am'.d Subtract
-	464.1461 (M+H)+
7	
6-	
5-	
4	486 1281
3	465.1493 (M+Na)+
2-	(^(H) TT))+ 467.1311
1-	(M+Na)+ 499,1360 (M+Na)+ (M+Na)+
-0	
	403 404 405 406 407 408 409 4/0 4/1 4/2 4/3 4/4 4/5 4/6 4// 4/8 4/9 480 481 482 483 484 485 486 487 488 489 48

Spectrum Peaks							
m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	z
464.1461	464.1452	1.98	723080	100.00	100.00	(M+H)+	1
465.1493	465.1484	2.06	189164	26.16	27.57	(M+H)+	1
466.1518	466.1509	1.87	34461	4.77	5.10	(M+H)+	1
467.1547	467.1535	2.68	5071	0.70	0.71	(M+H)+	1
486.1281	486.1272	1.98	251756	100.00	100.00	(M+Na)+	1
487.1311	487.1303	1.64	66188	26.29	27.56	(M+Na)+	1
488.1338	488.1329	1.85	12034	4.78	5.09	(M+Na)+	1
489.1366	489.1354	2.33	1831	0.73	0.71	(M+Na)+	1

3ao

Cpd. 5: C22 H18 N2 O4 S

Compound Spectra

3ao'

Cpd. 4: C32 H25 N3 O5 S2

Compound Spectra

×10 ⁶	Cpd 4: C	32 H25 N	3 O5 S2;	0.246	: + FB	F Spect	trum (rt: 0.39	95-0.4	45 min	n) 3ao'	.d Su	btract															
-	5	96.1318																										
1		TUT																										
0.9																												
0.8																												
0.7																												
0.6																												
0.5		597	.1351																					40				
0.4		(M	+H)+																			Č	M+Na	40)+				
0.3			598.13	329																			6	519.116	58			
0.1			(M+H)+																			(M+Na))+	621.115	52	
L ₀ .,				1																					1	(M+Ņa)	+.	_
	595	596 5	97 598	599	600	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615	616	617	618	619	620	621	622	6
	000	000 0	., .,,	000	000	001	002	000		000	000		000	000	010			010		010	010		010		020			1

Spectrum Peaks							
m/z	m/z (Calc)	Diff (ppm)	Abund	Height %	Height % (Calc)	Ion Species	z
596.1318	596.1308	1.69	1002052	100.00	100.00	(M+H)+	1
597.1351	597.1339	2.12	339375	33.87	37.77	(M+H)+	1
598.1329	598.1314	2.59	133642	13.34	16.92	(M+H)+	1
599.1334	599.1323	1.76	35982	3.59	4.52	(M+H)+	1
618.1140	618.1128	1.90	283023	100.00	100.00	(M+Na)+	1
619.1168	619.1158	1.62	101742	35.95	37.76	(M+Na)+	1
620.1146	620.1133	2.09	38391	13.56	16.91	(M+Na)+	1
621.1152	621.1143	1.55	10246	3.62	4.52	(M+Na)+	1
622.1152	622.1138	2.24	2323	0.82	1.05	(M+Na)+	1

3ama

Cpd. 1: C26 H23 N3 O6

x10 ⁶	Cpd 1: C26 H	123 N3 C	06; 0.172: +	FBF Sp	ectrum	n (It: 0	.138 m	nin) 3a	ma.d 🤉	Subtra	ct															
-	474.	1663																								
4.5	(M+	H)+																								
4																					4	96.14	82			
3.5-																					(M+Na	i)+			
3																										
2.5																										
2		475 14	06																							
1.5		(M+H)+																				497.15	14		
1-			476 4700																				(M+Na)+		
0.5			4/6.1/23 (M+H)+																					498.15 (M+Na)	12 +	
الــ			<u>` ´ ,</u>																					1	· .	_
	473 47	4 475	476 477	478	479	480	481	482	483	484	485	486	487	488	489	490	491	492	493	494	495	496	497	498	499	5
												_														
												Coun	ts vs. I	Mass-to	o-Char	ge (m/	z)									

spectrum reaks	m/z (Calc)	Diff (ppp)	Abund	Height %	Height % (Calc)	Ton Species	7
474.1663	474.1660	0.77	4446637	100.00	100.00	(M+H)+	1
475.1696	475.1691	1.09	1255418	28.23	29.72	(M+H)+	1
476.1723	476.1718	1.12	217840	4.90	5.50	(M+H)+	1
477.1760	477.1744	3.36	31387	0.71	0.76	(M+H)+	1
496.1482	496.1479	0.61	3486447	100.00	100.00	(M+Na)+	1
497.1514	497.1511	0.70	942748	27.04	29.71	(M+Na)+	1
498.1542	498.1537	1.01	173778	4.98	5.49	(M+Na)+	1
499.1569	499.1564	1.15	20192	0.58	0.76	(M+Na)+	1

