Supporting Information

Silver(I)-Catalyzed Novel ipso-Cycloaddition and retro-Friedel-Crafts Reaction of ortho-Hydroxyphenyl-Substituted para-Quinone Methides

Caiqi Zhuo, ${ }^{\dagger}$ Ran Song, ${ }^{\dagger}$ Zhanxu Liu, Qirui Xiang, Daoshan Yang, Wen Si,* and Jian Lv*

Key Laboratory of Optic-electric Sensing and Analytic Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science \& Technology, Qingdao 266042, China
*Email: lvjian@iccas.ac.cn (for J. Lv); siwen@qust.edu.cn (for W. Si)

Table of Contents

1. General Experiment Information and Materials	S 1
2. Investigation of Water effect	S 2
3. Experimental Procedures and Characterization Data	S 3
4. Control Experiments	S 25
5. X-ray crystal Data	S 30
6. NMR Spectrum	S 34
7. References	S 75

1. General Experiment Information and Materials

All commercial reagents were used without further purification unless otherwise noted. Solvents were freshly dried according to the purification handbook Purification of Laboratory Chemicals before using. All of p-QMs $\mathbf{1}^{1}$ and 4-aryl or 5-aryl salicylic aldehyde ${ }^{2}$ were prepared according to literature procedure. Proton and carbon magnetic resonance spectra (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR) were recorded on a Bruker Avance 500 MHz spectrometer. Tetramethylsilane (TMS) served as the internal standard for ${ }^{1} \mathrm{H}$ NMR, and CDCl_{3} served as the internal standard for ${ }^{13} \mathrm{C}$ NMR. ${ }^{1} \mathrm{H}$ NMR data were reported as follows: chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{m}=$ multiplet, $\mathrm{td}=$ triplet of doublet, $\mathrm{dt}=$ doublet of triplet, $\mathrm{dd}=$ doublet of doublet), coupling constants (Hz), and integration. Infrared Spectroscopy was conducted on Thermo Fisher Nicolet is10. The X-ray single-crystal diffraction was performed on Saturn 724+ instrument. High resolution mass spectra were obtained on an Ultima Global spectrometer with an ESI source.

2. Investigation of water effect

Table S1 Screening of reaction conditions ${ }^{\text {a }}$

${ }^{a}$ Reaction conditions: 1a (0.1 mmol) and Lewis acid ($5 \mathrm{~mol} \%$) in DCE (1.0 mL) at room temperature for $24 \mathrm{~h}, \mathrm{DCE}$ removing water with $\mathrm{CaH}_{2} .{ }^{b}$ Isolated yield. DCE = 1,2-dichloroethane, $\mathrm{nr}=$ no reaction.

3. Experimental Procedures and Characterization Data

A) Synthesis of ortho-hydroxyphenyl-substituted para-quinone methides (p-QMs) 1:

General procedure I: To an oven-dried reaction tube was added 2-hydroxybenzaldehyde A ($8 \mathrm{mmol}, 1.0$ equiv) and DMAP ($0.4 \mathrm{mmol}, 5 \mathrm{~mol} \%$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{M}, 40 \mathrm{~mL})$, which was sealed at room temperature. Then $\mathrm{TBSCl}(8.8$ mmol, 1.1 equiv) was added by dropwise slowly. The solvent was stirred overnight, and a saturated NaHCO_{3} solution was added dropwise to quench the reaction. The resulting solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. Then the combined organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, resulting crude product $\mathbf{S 2}$ and used directly in the next step without purification.

A solution of aldehydes \mathbf{B} ($7.2 \mathrm{mmol}, 1.0$ equiv) and phenols ($7.92 \mathrm{mmol}, 1.1$ equiv) in toluene ($0.2 \mathrm{M}, 36 \mathrm{~mL}$) was placed in a Dean-Stark apparatus, and the solution was heated to reflux. Piperidine ($14.4 \mathrm{mmol}, 2.0$ equiv) was added dropwise slowly. Then, the solution was stirred at $140^{\circ} \mathrm{C}$ for 12 h . Then the reaction mixture was cooled to $120{ }^{\circ} \mathrm{C}$, and acetic anhydride ($14.4 \mathrm{mmol}, 2.0$ equiv) was dropwise added. After stirring for 30 min , the solution was poured on ice-water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 30 \mathrm{~mL})$. The organic phases were combined, washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Then the solvent was evaporated under reduced pressure and the corresponding products \mathbf{C} were obtained after flash column chromatography $($ PE/ethyl acetate $=100 / 1)$.

To a solution of $\mathbf{C}\left(3.96 \mathrm{mmol}, 1.0\right.$ equiv) in THF $(0.2 \mathrm{M}, 20 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$ was added
tetrabutylammonium fluoride trihydrate (TBAF) ($4.36 \mathrm{mmol}, 1.1$ equiv). The reaction mixture was stirred for 15 minutes and a saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution was added dropwise to quench the reaction. The resulting solution was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. Then the combined organic phases were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed to give the crude product which was purified by flash column chromatography ($\mathrm{PE} /$ ethyl acetate $=80 / 1$ to $10 / 1$) to afford the desired compounds $\mathbf{1}$.

2,6-di-tert-butyl-4-((4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)cyclohexa-2,5-dien -1-one (1g): Prepared according to the general procedure I above and obtained as yellow solid ($0.93 \mathrm{~g}, 35 \%$ yield for 4 steps), melting point: $159-160{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.42(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}$, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=20.5$ $\mathrm{Hz}, 18 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 185.6, 156.6, 147.6, 146.1, 140.9, $139.4,135.6,131.2,130.1,129.7,129.3,128.90,128.3,126.8,125.9,122.9,116.5$, 34.9, 34.6, 29.3, 29.2 ppm .

2,6-di-tert-butyl-4-((3-hydroxy-[1,1'-biphenyl]-4-yl)methylene)cyclohexa-2,5-dien

 -1-one (1i): Prepared according to the general procedure I above and obtained as yellow solid ($0.98 \mathrm{~g}, 36 \%$ yield for 4 steps), melting point: $232-233^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.41$ (s, 1H), $7.66-7.63(\mathrm{~m}, 3 \mathrm{H}), 7.54(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.47$ (m, $3 \mathrm{H}), 7.40(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$NMR (125 MHz, DMSO- d_{6}) δ 185.7, 157.5, 147.6, 145.9, 143.1, 140.5, 139.2, 135.7, $132.0,129.8,129.0,128.3,128.0,126.5,121.9,117.9,113.7,35.0,34.7,29.3,29.2$ ppm.

2,6-di-tert-butyl-4-((4-hydroxy-4'-methyl-[1,1'-biphenyl]-3-yl)methylene)cyclohe

 xa-2,5-dien-1-one (1k): Prepared according to the general procedure I above and obtained as yellow solid ($1.5 \mathrm{~g}, 39 \%$ yield for 4 steps), melting point: $190-192{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 10.36$ (s, 1H), 7.64 (s, 1H), 7.59 (d, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$), $7.50(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.03(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H})$, $1.26(\mathrm{~d}, J=20.0 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 185.7, 156.4, $147.6,146.1,140.9,136.6,136.1,135.7,131.2,130.1,129.5,129.44,129.0,128.3$, $125.7,122.8,116.5,34.7,34.7,29.3,29.2,20.5 \mathrm{ppm}$.

2,6-di-tert-butyl-4-((4-hydroxy-3'-methyl-[1,1'-biphenyl]-3-yl)methylene)cyclohe xa-2,5-dien-1-one (11): Prepared according to the general procedure I above and obtained as yellow solid ($1.3 \mathrm{~g}, 34 \%$ yield for 4 steps), melting point: $170-171{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.43$ ($\mathrm{s}, 1 \mathrm{H}$), 7.65 ($\mathrm{s}, 1 \mathrm{H}$), 7.61 - 7.59 (m, 3H), 7.43 7.39 (m, 2H), 7.31 (t, $J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.26$ (d, $J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.04(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) δ 185.7, 156.6, 147.6, 146.1, 140.8, 139.4, 138.0, 135.7, 131.3,
$130.0,129.6,129.4,128.8,128.3,127.5,126.7,122.7,122.8,116.4,35.0,34.7,29.3$, 29.2, 21.0 ppm .

2,6-di-tert-butyl-4-((4-hydroxy-4'-methoxy-[1,1'-biphenyl]-3-yl)methylene)cycloh exa-2,5-dien-1-one (1m): Prepared according to the general procedure I above and obtained as yellow solid ($1.26 \mathrm{~g}, 30 \%$ yield for 4 steps), melting point: $195-196{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.29(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{~s}, 1 \mathrm{H}), 7.58-7.53(\mathrm{~m}, 5 \mathrm{H})$, $7.26(\mathrm{~s}, 1 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=18.1 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 183.8, 156.6, 154.3, 145.8, 144.3, 139.2, 133.9, 130.1, $129.2,128.2,127.5,126.9,126.5,125.1,121.0,114.6,112.5,53.3,33.2,32.8,27.5$, 27.4 ppm .

2,6-di-tert-butyl-4-((4-hydroxy-3'-methoxy-[1,1'-biphenyl]-3-yl)methylene)cycloh exa-2,5-dien-1-one (1n): Prepared according to the general procedure I above and obtained as yellow solid ($1.1 \mathrm{~g}, 26 \%$ yield for 4 steps), melting point: $168-169{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.43$ (s, 1H), $7.64-7.62(\mathrm{~m}, 3 \mathrm{H}), 7.58(\mathrm{~d}, J=1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.26(\mathrm{~s}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~s}, 1 \mathrm{H}), 7.05$ (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{dd}, J=8.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=17.0 \mathrm{~Hz}$, $18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 185.7, 159.7, 156.8, 147.6, 146.1, 141.0, 140.9, 135.7, 131.1, 130.1, 129.9, 129.8, 129.3, 128.3, 122.8, 118.3, 116.4, 112.7, 111.2, 55.1, 35.0, 34.7, 29.3, 29.2 ppm .

4-(5-(benzo[d][1,3]dioxol-5-yl)-2-hydroxybenzylidene)-2,6-di-tert-butylcyclohexa -2,5-dien-1-one (10): Prepared according to the general procedure I above and obtained as yellow solid ($1.64 \mathrm{~g}, 38 \%$ yield for 4 steps), melting point: $175-176{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.33(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 3 \mathrm{H})$, $7.26(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=8.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{~s}, 2 \mathrm{H}), 1.27(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 18 \mathrm{H})$ ppm; ${ }^{13} \mathrm{C}$ NMR (126 MHz, DMSO- d_{6}) δ 185.6, 156.3, 147.9, 147.6, 146.4, 146.1, 140.9, 135.7, 133.9, 131.1, 130.1, 129.5, 129.0, 128.3, 122.7, 119.3, 116.4, 108.6, $106.5,101.1,35.0,34.7,29.3,29.2 \mathrm{ppm}$.

2,6-di-tert-butyl-4-((4'-fluoro-4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)cyclohex

 a-2,5-dien-1-one (1p): Prepared according to the general procedure I above and obtained as yellow solid ($1.4 \mathrm{~g}, 35 \%$ yield for 4 steps), melting point: $142-143{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.39(\mathrm{~s}, 1 \mathrm{H}), 7.65-7.55(\mathrm{~m}, 6 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}$, 3 H), $7.04(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.26(\mathrm{~d}, J=24.5 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 185.6, $161.4(\mathrm{~d}, ~ J=243.7 \mathrm{~Hz}), 156.5,147.6,146.0,140.8,136.0,135.6$, $130.2(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 129.6,129.3,128.3,127.8,127.7,122.9,116.5,115.7(\mathrm{~d}, J=$ $21.3 \mathrm{~Hz}), 35.0,34.7,29.3,29.2 \mathrm{ppm}$.

2,6-di-tert-butyl-4-((3'-fluoro-4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)cyclohex a-2,5-dien-1-one (1q): Prepared according to the general procedure I above and obtained as yellow solid ($1.52 \mathrm{~g}, 38 \%$ yield for 4 steps), melting point: $200-201{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.50(\mathrm{~s}, 1 \mathrm{H}), 7.69-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H})$, $7.49-7.44$ (m, 3H), 7.27 (d, $J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, $1 \mathrm{H}), 1.27(\mathrm{~d}, J=22.0 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 185.7$, 162.7 $(\mathrm{d}, J=243.2 \mathrm{~Hz}), 157.0,147.6,146.2,142.0(\mathrm{~d}, J=7.7 \mathrm{~Hz}), 140.6,135.6,130.8$, 130.7 , 130.3, 129.7, 129.5, 128.3, 122.9, $121.8(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 116.5,113.4(\mathrm{~d}, J=$ $21.0 \mathrm{~Hz}), 112.6(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 35.0,34.7,29.3,29.2 \mathrm{ppm}$.

2,6-di-tert-butyl-4-((4'-chloro-4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)cyclohex a-2,5-dien-1-one (1r): Prepared according to the general procedure I above and obtained as yellow solid ($1.05 \mathrm{~g}, 25 \%$ yield for 4 steps), melting point: $174-175{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.48(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 5 \mathrm{H}), 7.53(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.25(\mathrm{~d}, J=27.0 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 185.6, 156.8, 147.6, 146.2, 140.7, 138.3, 135.6, 131.6, 130.3, 129.8, 129.6, 129.31, 128.8, 128.3, 127.6, 123.0, 116.5, 35.0, 34.7, 29.3, 29.2 ppm.

2,6-di-tert-butyl-4-((3'-chloro-4-hydroxy-[1,1'-biphenyl]-3-yl)methylene)cyclohex a-2,5-dien-1-one (1s): Prepared according to the general procedure I above and obtained as yellow solid ($0.95 \mathrm{~g}, 22 \%$ yield for 4 steps), melting point: 212-213 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.51$ ($\mathrm{s}, 1 \mathrm{H}$), 7.66-7.63 (m, 4H), $7.60-7.57(\mathrm{~m}$, $2 \mathrm{H}), 7.46(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.06$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), $1.27(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{DMSO}$) δ $186.2,157.6,148.1,146.7,142.1,141.0,136.1,134.2,131.2,130.8,130.2,130.1$, $130.1,128.8,127.1,126.2,125.0,123.5,117.0,35.5,35.2,29.8,29.7$ ppm.

2,6-di-tert-butyl-4-((3-hydroxy-4'-methoxy-[1,1'-biphenyl]-4-yl)methylene)cycloh exa-2,5-dien-1-one (1t): Prepared according to the general procedure I above and obtained as yellow solid ($1.14 \mathrm{~g}, 27 \%$ yield for 4 steps), melting point: $248-249{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.36$ (s, 1H), 7.66 - 7.58 (m, 3H), $7.55(\mathrm{~s}, 1 \mathrm{H})$, $7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.16(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $1.28(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 186.1, 159.9, $158.0,148.0,146.3,143.4,141.1,136.2,132.4,131.9,130.0,128.8,128.17,121.7$, $117.9,115.0,113.6,55.7,35.5,35.1,29.8,29.7 \mathrm{ppm}$.

2,6-di-tert-butyl-4-((4'-fluoro-3-hydroxy-[1,1'-biphenyl]-4-yl)methylene)cyclohexa-2,5-dien-1 -one (1u): Prepared according to the general procedure I above and obtained as yellow solid (1.48 g, 37\% yield for 4 steps), melting point: $247-248{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d $)_{6} \delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.24-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.19(\mathrm{~s}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=$ $13.5 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d 6) $\delta 185.8,162.1(\mathrm{~d}, J=245.8 \mathrm{~Hz})$, $157.4,147.6,146.0,142.0,140.4,135.7,132.0,130.0,128.6,128.5,128.2,121.9$, $117.9,115.9(\mathrm{~d}, J=21.5 \mathrm{~Hz}), 113.7,35.0,34.6,29.3,29.2 \mathrm{ppm}$.

2,6-di-tert-butyl-4-((3'-fluoro-3-hydroxy-[1,1'-biphenyl]-4-yl)methylene)cyclohex a-2,5-dien-1-one (1v): Prepared according to the general procedure \mathbf{I} above and obtained as yellow solid ($1.37 \mathrm{~g}, 34 \%$ yield for 4 steps $)$, melting point: $243-244{ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 5 \mathrm{H}), 7.27-7.21(\mathrm{~m}$, 4H), $1.25(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO-d6) $\delta 186.2,163.1$ $(\mathrm{d}, J=244.1 \mathrm{~Hz}), 157.9,148.2,146.5,142.3(\mathrm{~d}, J=7.8 \mathrm{~Hz}), 142.1,140.8,136.2$, $132.5,131.5(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 130.5,128.7,123.1,123.0,118.5,115.2(\mathrm{~d}, J=21.1 \mathrm{~Hz})$, $114.4,113.7(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 35.5,35.2,29.8,29.7 \mathrm{ppm}$.

2,6-di-tert-butyl-4-((2'-fluoro-3-hydroxy-[1,1'-biphenyl]-4-yl)methylene)cyclohexa-2,5-dien-1 -one (1w): Prepared according to the general procedure I above and obtained as yellow solid (1.3 g, 31\% yield for 4 steps), melting point: $230-232{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d $\mathrm{d}_{6} \delta 10.42(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}), 7.57-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~s}, 1 \mathrm{H}), 7.13$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 185.7,159.1(\mathrm{~d}, J=247.1 \mathrm{~Hz}), 156.9,147.7,146.1,140.3,137.9,135.7,131.6$, $130.4(\mathrm{~d}, J=3.2 \mathrm{~Hz}), 130.0,130.0(\mathrm{~d}, J=8.4 \mathrm{~Hz}), 128.2,127.4(\mathrm{~d}, J=12.7 \mathrm{~Hz})$, $125.0(\mathrm{~d}, J=3.4 \mathrm{~Hz}), 122.2,119.9(\mathrm{~d}, J=2.3 \mathrm{~Hz}), 116.2(\mathrm{~d}, J=22.7 \mathrm{~Hz}), 116.1(\mathrm{~d}, J$ $=3.4 \mathrm{~Hz}), 35.0,34.7,29.3,29.2 \mathrm{ppm}$.

2,6-di-tert-butyl-4-(2-hydroxy-4-(naphthalen-2-yl)benzylidene)cyclohexa-2,5-die n-1-one (1x): Prepared according to the general procedure I above and obtained as yellow solid ($1.57 \mathrm{~g}, 36 \%$ yield for 4 steps), melting point: $263-265{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 10.47(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~s}, 1 \mathrm{H}), 8.02(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.95(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.35$ $(\mathrm{m}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 186.2,158.0,148.1,146.5,143.4,141.0,137.1,136.2,133.7,133.0$, $132.5,130.4,129.1,128.8,128.0,127.0,126.9,125.9,125.2,122.5,118.7,114.5$, 35.5, 35.2, 29.8, 29.7 ppm.

B) Synthesis of triarylmethanes (TRAMs)

General Procedure II: To an oven-dried reaction tube was added p-QMs 1 (0.1 mmol) and $\operatorname{AgPF}_{6}(5 \mathrm{~mol} \%)$, and $\operatorname{DCE}(1.0 \mathrm{~mL})$ was added, Then $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ was added by dropwise slowly. The mixture was stirred for 24 h at room temperature. Purification of mixture by column chromatography on silica gel (PE/EA $=5: 1$ as eluent) gave the desired product 3 .

Large-scale Reaction: To an oven-dried reaction tube was added p-QMs $\mathbf{1 a}(1.0 \mathrm{~g}$, 3.2 mmol) and $\mathrm{AgPF}_{6}(5 \mathrm{~mol} \%)$, and DCE (32 mL) was added, Then $\mathrm{H}_{2} \mathrm{O}(58 \mu \mathrm{~L}, 3.2$ mmol) was added by dropwise slowly. The mixture was stirred for 24 h at room temperature. Purification of mixture by column chromatography on silica gel (PE/EA $=5: 1$ as eluent) gave the desired product $\mathbf{3 a}(0.65 \mathrm{~g}, 90 \%$ yield $)$.

2,2'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)diphenol (3a): Prepared according to the general procedure II above and obtained as yellow solid ($37.2 \mathrm{mg}, 92 \%$ yield), melting point: $161-162{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.14$ (s, 2H), 6.99-6.96 (m, 2H), 6.77 ($\mathrm{s}, 2 \mathrm{H}), 6.74$ (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H})$, $5.94(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta=154.6,151.5$, $138.4,134.4,131.0,129.4,126.5,125.2,118.2,114.8,42.2,34.4,30.4 \mathrm{ppm}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3633,2956,1594,1484,1453,1434,1277,1233,1023,820,756$; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 403.2279$, found: 403.2280.

2,2'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4-methylphenol)
Prepared according to the general procedure II above and obtained as colorless oil (42 $\mathrm{mg}, 97 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.87$ (s, 2H), 6.80-6.77 (m, 4H), $6.67(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 2 \mathrm{H}), 5.87(\mathrm{~s}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 6 \mathrm{H}), 1.29(\mathrm{~s}$, 18H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 152.4,151.5,138.3,134.3,130.8$, $129.9,126.8,126.2,125.3,114.7,42.2,34.4,30.4,20.5 \mathrm{ppm}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3643$, 2956, 2924, 1610, 1506, 1434, 1232, 1034, 814, 769; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 431.2592$, found: 431.2590 .

2,2'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4-(tert-butyl)phenol) (3c):
Prepared according to the general procedure II above and obtained as yellow solid (40 $\mathrm{mg}, 78 \%$ yield), melting point: $108-109{ }^{\circ} \mathrm{C},{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.92$ (s, 2H), 6.95 (dd, $J=8.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87-6.86(\mathrm{~m}, 4 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~d}, \mathrm{~J}=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}), 1.11(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 152.1,151.4,139.8,138.4,134.5,130.1,126.6,125.3,122.6,114.3$, 41.7, 34.4, 33.5, 31.3, 30.4 ppm ; IR (KBr, cm ${ }^{-1}$):3636, 2956, 2868, 1609, 1508, 1427, 1231, 1202, 824, 765; HRMS (ESI) calcd for $\mathrm{C}_{35} \mathrm{H}_{47} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 515.3531$, found: 515.3523.

2,2'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4-methoxyphenol) (3d): Prepared according to the general procedure II above and obtained as colorless oil ($20 \mathrm{mg}, 43 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 8.74(\mathrm{~s}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.66$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.60-6.58(\mathrm{~m}, 2 \mathrm{H}), 6.24(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 6 \mathrm{H}), 1.30$ (s, 18H) ppm; ${ }^{13}$ C NMR (125 MHz, DMSO-d ${ }_{6}$) $\delta 151.7,151.7,148.6,138.5,133.8$, $132.0,125.1,116.0,115.1,110.7,55.1,42.8,34.4,30.4 \mathrm{ppm}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right), 3606$, 2958, 1590, 1502, 1431, 1275, 1235, 1148, 1040, 818, 721; HRMS (ESI) calcd for $\left.\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{5}{ }^{-}[\mathrm{M}-\mathrm{H}]\right]^{-}: 463.2490$, found: 463.2490.

2,2'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4-fluorophenol) (3e): Prepared according to the general procedure II above and obtained as colorless oil ($27 \mathrm{mg}, 63 \%$ yield); ${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 9.30(\mathrm{~s}, 2 \mathrm{H}), 6.87-6.82(\mathrm{~m}, 3 \mathrm{H}), 6.76-6.73$ $(\mathrm{m}, 4 \mathrm{H}), 6.34(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 1.29(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 155.6(\mathrm{~d}, J=233.7 \mathrm{~Hz}), 152.5,151.4,139.3,133.4,132.7(\mathrm{~d}$, $J=5.6 \mathrm{~Hz}), 125.5,116.1(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 115.8(\mathrm{~d}, J=23.6 \mathrm{~Hz}), 113.4(\mathrm{~d}, J=22.6$ $\mathrm{Hz}), 43.4,34.9,30.9 \mathrm{ppm} ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2954,1555,1506,1436,1258,1026,822$, 760; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{~F}_{2} \mathrm{O}_{3}^{-}[\mathrm{M}-\mathrm{H}]^{-}: 439.2090$, found: 439.2091.

2,2'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4-bromophenol) (3f):

Prepared according to the general procedure II above and obtained as colorless oil ($18.5 \mathrm{mg}, 33 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.66$ (s, 2H), 7.19 (dd, $J=$ 8.5, 2.3 Hz, 2H), $6.84(\mathrm{~s}, 1 \mathrm{H}), 6.77-6.73(\mathrm{~m}, 4 \mathrm{H}), 6.70(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}$, $1 \mathrm{H}), 1.30(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 154.1, 152.0, 138.9, 133.2, $132.3,131.3,129.6,125.1,117.1,109.5,42.9,34.4,30.4 \mathrm{ppm}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3632, 2956, 1597, 1490, 1434, 1232, 816, 769; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{Br}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$: 559.0489, found: 559.0475

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis([1,1'-biphenyl]-4-ol) (3g): Prepared according to the general procedure II above and obtained as colorless oil (53 $\mathrm{mg}, 96 \%$ yield). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.45(\mathrm{~s}, 2 \mathrm{H}), 7.37-7,30(\mathrm{~m}, 10 \mathrm{H})$, $7.22-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.07$ (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.99$ (s, 2H), 6.86 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.78(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 154.6, 151.8, 140.8, 138.7, 133.5, 131.3, 130.2, 128.8, 127.7, 126.2, 125.6, 125.4, 125.1, 115.5, 42.9, $34.5,30.4 \mathrm{ppm}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3627,2957, 1606, 1514, 1486, 1453, 1433, 1278, 1233, 764; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]:$: 555.2905, found: 555.2897.

6,6'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(3-chlorophenol)
(3h):
Prepared according to the general procedure II above and obtained as colorless oil (39 $\mathrm{mg}, 83 \%$ yield) $;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $) \delta 9.79(\mathrm{~s}, 2 \mathrm{H}), 6.78-6.74(\mathrm{~m}, 7 \mathrm{H})$, $6.61(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~s}, 1 \mathrm{H}), 1.28(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 155.6,151.9,138.7,133.1,130.6,130.5,129.9,125.0,118.2,114.6$, $41.8,34.4,30.4 \mathrm{ppm}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3633, 2957, 1587, 1501, 1414, 1262, 1232, 856,820; HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 471.1499$, found:471.1500.

4,4'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis([1,1'-biphenyl]-3-ol) (3i):
Prepared according to the general procedure II above and obtained as colorless oil (42 $\mathrm{mg}, 42 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d $) \delta 9.40(\mathrm{~s}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 4H), $7.44(\mathrm{t}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.04-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.88(\mathrm{~s}$, $2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(125 \mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta 155.0,151.70,140.3,138.7,138.6,134.0,130.5,129.9$, $128.8,127.1,126.3,125.2,116.8,113.1,42.2,34.4,30.4 \mathrm{ppm} ; \operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3629$, 2957, 1610, 1568, 1488, 1433, 1232, 821; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}$: 555.2905, found: 555.2896.

6,6'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(2-methoxyphenol) (3j):
Prepared according to the general procedure II above and obtained as yellow solid (22 $\mathrm{mg}, 47 \%$ yield), melting point: $80-82^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 8.31$ (s, 2H), 6.77 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 6.63(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 1.28(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 151.6,147.0,143.5,138.4,134.4,131.3,125.1,121.5,117.7,109.3$, 55.7, 42.2, 34.4, 30.4 ppm ; IR (KBr, cm^{-1}): 3622, 2957, 1610, 1479, 1434, 1275, 1214, 1025, 770,749; HRMS (ESI) calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{O}_{5}-[\mathrm{M}-\mathrm{H}]^{-}: 463.2490$, found: 463.2492 .

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4'-methyl-[1,1'-biphenyl]
-4-ol) ($\mathbf{3 k}$): Prepared according to the general procedure II above and obtained as colorless oil ($52 \mathrm{mg}, 90 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.39(\mathrm{~s}, 2 \mathrm{H}), 7.28$ - 7.23 (m, 6H), 7.14 (d, $J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.04$ ($\mathrm{s}, 2 \mathrm{H}$), 6.98 (s, 2H), 6.83 (d, $J=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H}), 1.32(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 154.3,151.8,138.6,137.9,135.4,133.5,131.3,130.2,129.4,127.5$, $125.5,125.4,124.8,115.4,42.7,34.5,30.4,20.5 \mathrm{ppm}$; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3626,2957$, 1606, 1498, 1432, 1231, 1024, 888, 811,762; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 583.3218$, found:583.3210.

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(3'-methyl-[1,1'-biphenyl]
-4-ol) (31): Prepared according to the general procedure II above and obtained as colorless oil ($32 \mathrm{mg}, 56 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.48$ (s, 2H), 7.30 - 7.29 (m, 2H), $7.23-7.16$ (m, 6H) , 7.10 (s, 2H), 7.02 (d, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.85$ (d, J $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 2.27(\mathrm{~s}, 6 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 154.5,151.8,140.7,138.7,137.7,133.4,131.2,130.3,128.7$, 127.8, 126.9, 126.4, 125.4, 125.1, 122.8, 115.4, 42.6, 34.5, 30.4, 21.1 ppm; IR (KBr, cm^{-1}): 2955, 1604, 1511, 1481, 1433, 1232, 1024, 888, 824, 703; HRMS (ESI) calcd forC $4_{41} \mathrm{H}_{43} \mathrm{O}^{3}-[\mathrm{M}-\mathrm{H}]^{-}: 583.3218$, found: 583.3207.

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4'-methoxy-[1,1'-biphen $\mathbf{y l}]-\mathbf{4 - o l})(\mathbf{3 m})$: Prepared according to the general procedure II above and obtained as colorless oil ($22 \mathrm{mg}, 36 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.33$ (s, 2H), 7.27 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.24 (dd, $J=8.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}$), 6.99 (d, $J=2.0 \mathrm{~Hz}, 2 \mathrm{H}$), 6.97 (s, $2 \mathrm{H}), 6.91$ (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.81(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 3.73$ (s, 6H), 1.32 (s, 18H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 158.0, 154.0, 151.7, 138.6, 133.6, 133.3, 131.3, 130.0, 127.2, 126.7, 125.4, 124.6, 115.4, 114.3, 55.1, 42.7, 34.5, 30.4 ppm ; IR (KBr, cm ${ }^{-1}$): 3625, 2956, 1607, 1498, 1434, 1245, 1025, 822,763; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{5}{ }^{3-}[\mathrm{M}-\mathrm{H}]^{-}: 615.3116$, found: 615.3105.

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(3'-methoxy-[1,1'-biphen $\mathbf{y l} \mathbf{l}-\mathbf{4 - 0 l}$) (3n): Prepared according to the general procedure II above and obtained as colorless oil ($30 \mathrm{mg}, 49 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.47(\mathrm{~s}, 2 \mathrm{H}$), 7.31 (dd, $J=8.2,2.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}$, 2H), 6.94 (d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.83(\mathrm{~m}, 4 \mathrm{H}), 6.80-6.78(\mathrm{~m}, 3 \mathrm{H}), 6.01(\mathrm{~s}, 1 \mathrm{H})$, 3.72 ($\mathrm{s}, 6 \mathrm{H}$), 1.32 ($\mathrm{s}, 18 \mathrm{H}$) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 159.6, 154.7, $151.8, \quad 142.1,138.7,133.4,131.2,130.0,129.8,127.7,125.4,125.1,118.0,115.4$, $111.8,111.2,54.8,42.6,34.5,30.4 \mathrm{ppm}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3626, 2956, 1604, 1578, 1481, 1435, 1363, 1278, 1219, 1024, 888, 824, 699; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{5}-[\mathrm{M}-\mathrm{H}]^{-}: 615.3116$, found: 615.3111 .

2,2'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4-(benzo[d][1,3]dioxol-5$\mathbf{y l}) \mathbf{p h e n o l}$) (3o): Prepared according to the general procedure II above and obtained as colorless oil ($29 \mathrm{mg}, 45 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.46$ (s, 2H), 7.23 (dd, $J=8.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.89-6.85(\mathrm{~m}, 4 \mathrm{H}), 6.81(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 5 \mathrm{H}$), 5.97 (d, $J=2.0 \mathrm{~Hz}, 5 \mathrm{H}$), 1.32 (s, 18H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) $\delta 154.2,151.8,147.8,145.9,138.7,135.2,133.4,131.2,130.0,127.4$, $125.4,124.9,118.9,115.3,108.6,106.1,100.9,42.8,34.5,30.4 \mathrm{ppm} ; \mathbb{R}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$:

3623, 2955, 1605, 1482, 1430, 1228, 1026, 859, 809, 763; HRMS (ESI) calcd for $\left.\mathrm{C}_{41} \mathrm{H}_{39} \mathrm{O}_{7}{ }^{-}[\mathrm{M}-\mathrm{H}]\right]^{-}: 643.2701$, found: 643.2690 .

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4'-fluoro-[1,1'-biphenyl]-
4-ol) (3p): Prepared according to the general procedure II above and obtained as colorless oil ($27 \mathrm{mg}, 47 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.46(\mathrm{~s}, 2 \mathrm{H}), 7.37$ $-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.00(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~s}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;$ ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 161.1$ (d, $J=243.6 \mathrm{~Hz}$), 154.6, 151.8, 138.6, 137.3 $(\mathrm{d}, J=3.0 \mathrm{~Hz}), 133.4,131.3,129.3,127.6,127.4(\mathrm{~d}, J=8.1 \mathrm{~Hz}), 125.4,125.2,115.6$ (d, $J=21.3 \mathrm{~Hz}), 115.5,42.9,34.4,30.4 \mathrm{ppm} ; \mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 2955,1605,1496,1433$, 1225, 1025, 821, 762; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{3}[\mathrm{M}-\mathrm{H}]^{-}: 591.2716$, found: 591.2708.

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(3'-fluoro-[1,1'-biphenyl]-4-ol) (3q): Prepared according to the general procedure II above and obtained as colorless oil ($15.4 \mathrm{mg}, 26 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.59$ (s, 2H), $7.40-7.36$ (m, 4H), 7.19 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.06-7.02$ (m, 4H), $6.97(\mathrm{~s}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 1.32(\mathrm{~s}, 18 \mathrm{H})$ $\mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 164.1,162.2,155.7,152.4,143.7$ (d, $J=7.3$
$\mathrm{Hz})$, 139.3, 133.7, 131.8, 131.3 (d, $J=8.2 \mathrm{~Hz}$), 129.2, 128.1, 125.9, 122.0, 116.0, $113.4(\mathrm{~d}, J=21.2 \mathrm{~Hz}), 112.6(\mathrm{~d}, J=21.8 \mathrm{~Hz}), 43.5,35.0,30.9 \mathrm{ppm}$; $\mathrm{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 2957, 1608, 1581, 1481, 1435, 1233, 1025, 889, 784, 695; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 591.2716$, found: 591.2709.

3,3'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4'-chloro-[1,1'-biphenyl] -4-ol) (3r): Prepared according to the general procedure II above and obtained as colorless oil ($20 \mathrm{mg}, 32 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.55(\mathrm{~s}, 2 \mathrm{H}$), 7.40 $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.32(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{~d}, J$ $=2.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~s}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 1.31$ (s, 18H) ppm; ${ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 154.9,151.8,139.6,138.7,133.3$, 131.4, 131.0, 128.9, 128.8, 127.5, 127.3, 125.3, 125.2, 115.6, 42.9, 34.5, 30.4 ppm; IR $\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right): 3629,2957,1606,1485,1432,1232,1024,818,760 ;$ HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 623.2125$, found: 623.2117.

3,3''-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(3'-chloro-[1,1'-biphenyl]
-4-ol) (3s): Prepared according to the general procedure II above and obtained as colorless oil ($23 \mathrm{mg}, 38 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.60(\mathrm{~s}, 2 \mathrm{H}), 7.39$ - 7.32 (m, 8H), 7.27 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.86$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{~s}, 1 \mathrm{H}), 5.99(\mathrm{~s}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125

MHz, DMSO- d_{6}) $\delta 155.2,151.9,142.8,138.8,133.6,133.1,131.3,130.7,128.5$, 127.6, 126.0, 125.4, 125.3, 124.2, 115.6, 42.9, 34.5, 30.4 ppm ; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3629, 2957, 1595, 1564,1512, 1434, 1232, 1024, 884, 825, 695; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{Cl}_{2} \mathrm{O}_{3}-[\mathrm{M}-\mathrm{H}]: 623.2125$, found: 623.2112.

4,4'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4'-methoxy-[1,1'-biphen $\mathbf{y l} \mathbf{l}$-3-ol) (3t): Prepared according to the general procedure II above and obtained as colorless oil ($20 \mathrm{mg}, 33 \%$ yield); ${ }^{1} \mathbf{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.32(\mathrm{~s}, 2 \mathrm{H}), 7.49$ $(\mathrm{d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.00-6.95(\mathrm{~m}, 8 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~s}$, $1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm}$; ${ }^{13} \mathrm{C}$ NMR (125 MHz , DMSO- d_{6}) δ 159.1, 155.4, 152.2, 139.1, 138.8, 134.7, 133.1, 130.2, 127.8, 125.7, 116.8, 114.8, 113.1, 55.6, 42.6, 34.9, 30.9 ppm ; IR ($\mathrm{KBr} \mathrm{cm}^{-1}$): 3634, 2949, 1607, 1501, 1431, 1405, 1231, 1046, 833; HRMS (ESI) calcd for $\mathrm{C}_{41} \mathrm{H}_{43} \mathrm{O}_{5}^{-}[\mathrm{M}-\mathrm{H}]:$: 615.3116, found: 615.3110.

4,4'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(4'-fluoro-[1,1'-biphenyl]-3-ol) (3u): Prepared according to the general procedure II above and obtained as colorless oil ($25 \mathrm{mg}, 42 \%$ yield). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.45$ (s, 2H), 7.60 - $7.57(\mathrm{~m}, 4 \mathrm{H}), 7.25(\mathrm{t}, J=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.87(\mathrm{~s}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 5.97(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz ,

DMSO- d_{6}) $\delta 155.5,152.2,139.1,138.2,137.2,134.4,130.9,130.4,128.7(\mathrm{~d}, J=7.4$ $\mathrm{Hz}), 125.7,117.2,116.1(\mathrm{~d}, J=21.3 \mathrm{~Hz}), 113.5,42.6,34.9,30.9 \mathrm{ppm}$; $\operatorname{IR}\left(\mathrm{KBr}, \mathrm{cm}^{-1}\right)$: 3635, 2959, 1601, 1499, 1432, 1230, 833, 811; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 591.2716$, found: 591.2701.

3v

4,4'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(2'-fluoro-[1,1'-biphenyl]-
3-ol) (3v): Prepared according to the general procedure II above and obtained as colorless oil (29mg, 49\%); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.46$ (s, 2H), 7.48 - 7.45 $(\mathrm{m}, 2 \mathrm{H}), 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 4 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 6.92-6.87(\mathrm{~m}, 4 \mathrm{H})$, $6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 6.00(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 159.0(\mathrm{~d}, ~ J=244.3 \mathrm{~Hz}), 154.5,151.8,138.6,133.5,130.8,130.4$, 129.5, 129.1 (d, $J=7.1 \mathrm{~Hz}), 128.3,128.2,125.3,124.8,118.8,116.1(\mathrm{~d}, J=22.7 \mathrm{~Hz})$, $115.3,42.3,34.4,30.4 \mathrm{ppm}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3631, 2957, 1612, 1585, 1485, 1413, 1232, 1025,812; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]:$ 591.2716, found: 591.2708.

4,4''-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(3'-fluoro-[1,1'-biphenyl]-3-ol) (3w): Prepared according to the general procedure II above and obtained as colorless oil (20mg, 34\%); ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 9.50$ (s, 2H), 7.49 - 7.45 (m, 2H), $7.45-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.15(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 4 \mathrm{H}), 6.87$
(s, 2H), 6.82 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 5.98(\mathrm{~s}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 163.1(\mathrm{~d}, J=243.7 \mathrm{~Hz}), 155.6,152.3,143.2(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}), 139.2,137.8,134.2,131.6,131.3(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 130.4,125.7,122.9,117.4$, $114.3(\mathrm{~d}, J=20.9 \mathrm{~Hz}), 113.6,113.4(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 42.8,34.9,30.9 \mathrm{ppm}$; IR $(\mathrm{KBr}$, cm^{-1}): 2958, 1611, 1573, 1483, 1433, 1025, 864, 829; HRMS (ESI) calcd for $\mathrm{C}_{39} \mathrm{H}_{37} \mathrm{~F}_{2} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 591.2716$, found: 591.2709.

6,6'-((3,5-di-tert-butyl-4-hydroxyphenyl)methylene)bis(3-(naphthalen-2-yl)pheno 1) (3x): Prepared according to the general procedure II above and obtained as colorless oil ($45 \mathrm{mg}, 69 \%$ yield); ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.50(\mathrm{~s}, 2 \mathrm{H}$), $8.10(\mathrm{~s}, 2 \mathrm{H}$), 7.98 (d, $J=8.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.92(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54-$ 7.48 (m, 4H), 7.21 - 7.18 (m, 4H), 6.94 (s, 2H), 6.91 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H})$, $6.05(\mathrm{~s}, 1 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) δ 155.6, 152.3, $139.2,139.1,138.2,134.5,133.8,132.6,131.2,130.5,128.9,128.6,127.9,126.8$, $126.4,125.8,125.5,125.2,117.7,113.9,42.8,35.0,31.0 \mathrm{ppm}$; IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 3631, 2922, 1600, 1500, 1433, 1415, 1242, 846, 817; HRMS (ESI) calcd for $\mathrm{C}_{47} \mathrm{H}_{43} \mathrm{O}_{3}{ }^{-}[\mathrm{M}-\mathrm{H}]^{-}: 655.3218$, found: 655.3204.

4. Control Experiments

A) Friedel-Crafts reaction of $\mathbf{3 , 5}$-di-tert-butyl-4-hydroxy benzaldehyde 4 a with

 phenol 5: To an oven-dried reaction tube was added 3,5-di-tert-butyl-4-hydroxy benzaldehyde $4 \mathbf{a}(0.1 \mathrm{mmol})$, phenol 5 (0.4 mmol) and AgPF_{6} ($5 \mathrm{~mol} \%$), and DCE $(1.0 \mathrm{~mL})$ was added. The mixture was stirred for 24 h at room temperature, and no reaction was observed.
B) 1,6-Michael addition of ortho-hydroxyphenyl-substituted para-quinone methide 1a with phenol 5: To an oven-dried reaction tube was added ortho-hydroxyphenyl-substituted para-quinone methide 1a (0.1 mmol), phenol 5 (0.4 $\mathrm{mmol})$ and $\mathrm{AgPF}_{6}(5 \mathrm{~mol} \%)$, and $\mathrm{DCE}(1.0 \mathrm{~mL})$ was added. The mixture was stirred for 24 h at room temperature. Purification of mixture by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=5: 1$ as eluent) gave the desired product $\mathbf{3 a}(33.1 \mathrm{mg}, 82 \%$ yield) and the recovered phenol 5 ($34.6 \mathrm{mg}, 95 \%$ yield).

Two observations can exclude the possibility of Michael addition reaction with simple phenol 5

C) AgPF $_{6}$ catalyzed O-TBS protected ortho-hydroxyphenyl-substituted para-quinone methide 6: To an oven-dried reaction tube was added $6(0.1 \mathrm{mmol})$ and $\operatorname{AgPF}_{6}(5 \mathrm{~mol} \%)$, and $\operatorname{DCE}(1.0 \mathrm{~mL})$ was added, Then $\mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol})$ was added by dropwise slowly. The mixture was stirred for 24 h at room temperature. No reaction was observed.

D) Synthesis of intermediate 2a: To an oven-dried reaction tube was added p-QMs 1a ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{AgPF}_{6}(5 \mathrm{~mol} \%)$, $4 \AA$ M.S. (15 mg) and DCE (1.0 mL). The reaction mixture was then stirred for 24 h at room temperature. Purification of mixture by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=5: 1$ as eluent) gave the desired product 2a (32.0 mg , 52% yield, and $4: 1 \mathrm{dr}$), melting point: $220-222{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 9.70(\mathrm{~s}, 0.3 \mathrm{H}$), $9.52(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.18$ (m, 1.42H), 7.07 (s , $2 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 3 \mathrm{H}), 6.93-6.80(\mathrm{~m}, 7 \mathrm{H}), 6.75-6.69(\mathrm{~m}, 3.2 \mathrm{H}), 6.60-6.57(\mathrm{t}, J=5$ $\mathrm{Hz}, 0.5 \mathrm{H}), 6.52-6.45(\mathrm{~m}, 2.2 \mathrm{H}), 5.83(\mathrm{~s}, 0.3 \mathrm{H}), 5.70(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{~s}, 1 \mathrm{H}), 4.95(\mathrm{~s}$, $0.3 \mathrm{H}), 1.34(\mathrm{~s}, 23 \mathrm{H}), 0.98-0.97(\mathrm{~m}, 11.6 \mathrm{H}), 0.92-0.91(\mathrm{~m}, 11.8 \mathrm{H}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR (125 MHz, DMSO- d_{6}) $\delta 185.0$, 184.9, 156.1, 154.9, 154.8, 153.9, 153.3, 152.5, 148.9, $148.7,146.1,145.0,142.7,137.6,137.5,136.3,130.7,130.1,129.5,128.7,128.2$, 127.8, $127.6(\mathrm{~d}, J=6.3 \mathrm{~Hz}), 123.9,123.7,123.5,123.1,122.6,120.8,117.2,116.4$, $116.3,114.3,114.2,83.7,77.5,59.7,47.2,46.7,44.3,34.4,34.1,30.2,28.6,28.5 \mathrm{ppm} ;$ IR (KBr, cm ${ }^{-1}$): 3638, 2957, 1618, 1582, 1545, 1231, 803, 754; HRMS (ESI) calcd for $\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{O}_{4} \mathrm{Na}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 643.3758$, found: 643.3775.

E) Transformation of intermediate 2a: 1) To an oven-dried reaction tube was added 2a ($0.1 \mathrm{mmol}, 1.0$ equiv), $\mathrm{AgPF}_{6}(5 \mathrm{~mol} \%), \mathrm{H}_{2} \mathrm{O}(0.1 \mathrm{mmol}, 1.0$ equiv) and DCE (1.0 $\mathrm{mL})$. The reaction mixture was then stirred for 24 h at room temperature. Purification of mixture by column chromatography on silica gel ($\mathrm{PE} / \mathrm{EA}=5: 1$ as eluent) gave the desired product 3a($29.9 \mathrm{mg}, 74 \%$ yield); 2) To an oven-dried reaction tube was added 2a ($0.1 \mathrm{mmol}, 1.0$ equiv), HPF_{6} (aq. $60 \%, 5 \mathrm{~mol} \%$), and DCE (1.0 mL). The reaction mixture was then stirred for 1 min at room temperature. Purification of mixture by column chromatography on silica gel $(\mathrm{PE} / \mathrm{EA}=5: 1$ as eluent) gave the desired product 3 a ($14.1 \mathrm{mg}, 35 \%$ yield).

Figure S1 TCL detection in the transformation of intermediate 2a for $1 \mathrm{~min}: 1$) reaction $\mathbf{E 1}$; 2) reaction \mathbf{E} 2.

F) The LC-HRMS spectra of the reaction in the presence of $\mathrm{H}_{2} \mathrm{O}^{\mathbf{1 8}}$.

4. X-ray crystal Data

A) X-Ray Structure of product 3a (CCDC 2039963)

Figure S2 X-Ray Structure of 3a
Table S1 Crystal data and structure refinement for 3a

Empirical formula	C13.50 H16 O1.50
Formula weight	202.26
Temperature	298(2) K
Wavelength	0.71073 A
Crystal system	Triclinic
Space group	P-1
Unit cell dimensions	$a=10.835(17) \AA$ A $\quad a=84.933(17)^{\circ}$.
	$\mathrm{b}=10.925(17) \AA \mathrm{A} \quad \mathrm{d}=64.499(17)^{\circ}$.
	$\mathrm{c}=10.995(17) \AA \quad \mathrm{g}=79.764(19)^{\circ}$.
Volume	1156(3) \AA^{3}
Z	4
Density (calculated)	$1.162 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.074 \mathrm{~mm}^{-1}$
$\mathrm{F}(000)$	436
Crystal size	$0.43 \times 0.40 \times 0.38 \mathrm{~mm}^{3}$
Theta range for data collection	2.052 to 25.015°.
Index ranges	$-7<=\mathrm{h}<=12,-12<=\mathrm{k}<=12,-12<=1<=13$
Reflections collected	5822
Independent reflections	$4006[\mathrm{R}(\mathrm{int})=0.0382]$
Completeness to theta $=25.015^{\circ}$	98.6 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9724 and 0.9689

Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	$4006 / 0 / 278$
Goodness-of-fit on F^{2}	1.056
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0579, \mathrm{wR} 2=0.1433$
R indices (all data)	$\mathrm{R} 1=0.0867, \mathrm{wR} 2=0.1576$
Extinction coefficient	$0.046(5)$
Largest diff. peak and hole	0.248 and $-0.239 \mathrm{e} . \AA^{-3}$

B) X-Ray Structure of intermediate 2a (CCDC 2085323)

Figure S3 X-Ray Structure of 2a
Table S2 Crystal data and structure refinement for 2a

Empirical formula	$\mathrm{C}_{42} \mathrm{H}_{52} \mathrm{O}_{4}$
Formula weight	620.83
Temperature/K	170.00(10)
Crystal system	monoclinic
Space group	$\mathrm{P} 21 / \mathrm{n}$
a / \AA	12.5033(6)
b/Å	31.9324(10)
c/Å	12.5127(5)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	108.215(4)
$\gamma /{ }^{\circ}$	90
Volume/ A 3	4745.5(3)
Z	4
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	0.869
μ / mm^{-1}	0.054
$\mathrm{F}(000)$	1344.0
Crystal size/mm ${ }^{3}$	$0.28 \times 0.23 \times 0.17$
Radiation	Mo K $\alpha(\lambda=0.71073)$
2Θ range for data collection/ ${ }^{\circ}$	3.656 to 62.162
Index ranges	$-16 \leq \mathrm{h} \leq 17,-45 \leq \mathrm{k} \leq 45,-13 \leq 1 \leq 17$

Reflections collected	43438
Independent reflections	$12726\left[\mathrm{R}_{\text {int }}=0.0311, \mathrm{R}_{\text {sigma }}=0.0414\right]$
Data/restraints/parameters	$12726 / 1 / 427$
Goodness-of-fit on F^{2}	1.091
Final R indexes [I>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0473, \mathrm{wR}_{2}=0.1247$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0733, \mathrm{wR}_{2}=0.1334$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$0.21 /-0.29$

5. NMR Spectrum

11

10

1s

3h

[^0]

3j

3q

[^1]

3x

2a

6. References

1. (a) Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem. Int. Ed. 2016, 55, 12104-12108. (b) Liu, S.; Lan, X.-C.; Chen, K.; Hao, W.-J.;

Li, G.; Tu, S.-J.; Jiang, B. Org. Lett. 2017, 19, 3831-3834.
2. Sun, P.; Gao, S.; Yang, C.; Guo, S.; Lin, A.; Yao, H.; Org. Lett. 2016, 18, 6464-6467.

[^0]: $\begin{array}{lllllllllllllllllllllll}210 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 \\ f(\mathrm{ppm})\end{array}$

[^1]:

