Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting information for

I₂-Catalyzed Oxidative Dehydrogenative Tandem Cyclization of 2-

Methylquinolines, Arylamines and 1,4-Dioxane

Hongrui Qi,*a Yiyan Yan, Yunfeng Liao,*a,b Furong Jiang, Hualan Gao, and Guo-jun Deng*a

- ^a Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Email: 1748578701@qq.com; gjdeng@xtu.edu.cn.
- ^b Hunan Provincial Key Laboratory of Environmental Catalysis & Waste Recycling, College of Materials and Chemical Engineering, Hunan Institute of Engineering, Xiangtan, 411104, China; Email:liaoyunfeng900@126.com.

Table of Contents

1. General information	2
2. General procedure for preparation	2
3. Characterization data of products	2-14
4. References	14
5. Crystal data and structure refinement for 4j	15-21
6. Copies of ¹ H and ¹³ C NMR spectra of all products	22-43

General information:

All reactions were carried out under an atmosphere of air unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker-AV (400 and 100 MHz, respectively) instrument internally referenced to tetramethylsilane (TMS) or chloroform signals. Mass spectra was measured on bruker 15T HRMS instrument (maldi). Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. All reagents were obtained from commercial suppliers and used without further purification.

General procedure for preparation (4a):

A 10 mL sealed tube was added 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), aniline (**2a**, 18 μ L, 0.2 mmol), 70%TBHP (62 μ L, 0.44 mmol), 1,4-dioxane (1.5 mL) by syringe. The reaction vessel was stirred at 110 °C for 16 h. After cooling to room temperature, the volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc =1:1) to yield the desired product **4a** as yellow oil (38.5 mg, 60% yield).

Preparation of 3-(2-bromoethoxy)-2,2'-biquinoline (4ab):^[1]

NBS (40.6 mg, 0.226 mmol), **4a** (29.4 mg, 0.093 mmol) and 1 mL CHCl₃ were added to a 10 mL reaction tube. After the reaction vessel was stirred for 30 minutes at room temperature, PPh₃ (44.6 mg, 0.170 mmol) was added to the reaction vessel and the sealed tube stirred for 5h at room temperature. The volatiles were removed under reduced pressure. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc =1:1) to yield the desired product **4ab** as yellow liquid (33.3 mg, 95% yield).

2-([2,2'-biquinolin]-3-yloxy)ethan-1-ol (4a)

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.39 (d, J = 8.4, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.4 1H), 8.15 (d, J = 8.0 Hz, 1H), 7.90 (d, J = 8.4 Hz, 1H), 7.81-7.75 (m, 3H), 7.65-7.55 (m, 3H), 4.52 (t, J = 4.2 Hz, 2H), 4.00 (t, J = 4.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.4, 151.8, 150.8, 146.8, 143.5, 137.3, 130.1, 129.5, 129.2, 128.7, 127.7, 127.6, 127.6, 127.6, 127.2, 126.4, 122.6, 119.0, 73.2, 60.7; HRMS (maldi, m/z): calcd. for C₂₀H₁₇N₂O₂ [M+H]⁺ 317.1290, found 317.1291.

2-((6'-methyl-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4b)

The reaction was conducted with 6-methyl-quinolin (**1b**, 94.4 mg, 0.6 mmol) and aniline (**2a**, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4b** as reddish-brown oil (24.5 mg, 37%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.29 (d, J = 8.8 Hz, 1H), 8.17-8.13 (m, 3H), 7.78 (d, J = 8.0 Hz, 1H), 7.73 (s, 1H), 7.65-7.54 (m, 4H), 6.62 (brs, 1H), 4.52 (t, J = 4.4 Hz, 2H), 4.00 (t, J = 4.4 Hz, 2H), 2.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 155.5, 151.9, 151.0, 145.4, 143.5, 137.2, 136.7, 132.4, 129.5, 129.2, 128.4, 127.8, 127.6, 127.6, 126.4, 126.4, 122.6, 119.1, 73.3, 60.7, 21.6; HRMS (maldi, m/z): calcd. for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1447, found 331.1445.

2-((6'-methoxy-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4c)

The reaction was conducted with 6-methoxyquinaldine (1c, 103.9 mg, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (2a, 18 μ L, 0.2 mmol). The residue was purified by column

chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product 4c as reddishbrown oil (32.4 mg, 47%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.27 (d, J = 8.8 Hz, 1H), 8.18-8.13 (m, 3H), 7.78 (d, J = 8.0 Hz, 1H), 7.73 (s, 1H), 7.64-7.61 (m, 1H), 7.55 (t, J = 7.4 Hz, 1H), 7.41 (dd, J = 2.4, 9.2 Hz, 1H), 7.14 (d, J = 2.4 Hz, 1H), 6.61 (brs, 1H), 4.51 (t, J = 4.0 Hz, 2H), 4.01-3.97 (m, 5H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.3, 154.0, 151.9, 150.9, 143.5, 142.9, 136.0, 130.2, 129.4, 129.1, 129.0, 127.6, 127.5, 126.5, 122.9, 119.1, 104.9, 73.3, 60.7, 55.5. HRMS (maldi, m/z): calcd. for C₂₁H₁₉N₂O₃ [M+H]⁺ 347.1396, found 347.1395.

methyl 3'-(2-hydroxyethoxy)-[2,2'-biquinoline]-6-carboxylate (4d)

The reaction was conducted with 2-methylquinoline-6-carboxylate (1d, 120.7 mg, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (2a, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product 4d as yellow oil (24.8 mg, 33%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.67 (s, 1H), 8.49 (d, J = 8.8 Hz, 1H), 8.36-8.28 (m, 3H), 8.14 (d, J = 8.4 Hz, 1H), 7.81 (t, J = 8.0 Hz, 1H), 7.76 (s, 1H), 7.67-7.57 (m, 2H), 4.53 (t, J = 4.2 Hz, 2H), 4.02-4.00 (m, 5H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 166.5, 158.6, 151.9, 150.2, 148.8, 143.6, 138.5, 130.7, 129.6, 129.6, 129.4, 129.2, 128.6, 127.9, 127.8, 126.9, 126.4, 123.5, 119.1, 73.2, 60.7, 52.5; HRMS(maldi, m/z): calcd. for C₂₂H₁₉N₂O₄ [M+H]⁺ 375.1435, found 375.1344.

2-((6'-fluoro-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4e)

The reaction was conducted with 6-fluoro-2-methylquinoline (1e, 96.7 mg, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (2a, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product 4e as reddishbrown oil (28.6 mg, 43%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.38 (d, J = 8.4 Hz, 1H), 8.19 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 8.4 Hz, 1H), 7.93-7.88 (m, 2H), 7.80 (d, J = 8.4 Hz, 1H), 7.76 (s, 1H), 7.64 (t, J = 7.0 Hz, 1H), 7.58 (t, J = 7.0 Hz, 1H), 7.43-7.48 (m, 1H), 4.52 (t, J = 4.2 Hz, 2H), 4.01 (t, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.4 (d, J = 249.1 Hz), 157.5, 151.9, 150.4, 147.8 (d, J = 12.4 Hz), 143.6, 137.3, 129.6 (d, J = 9.9 Hz), 129.6, 129.3, 127.8 (d, J = 8.5 Hz), 126.4, 124.8, 122.0, 122.0, 119.2, 117.8 (d, J = 25.3 Hz), 112.6(d, J = 20.7 Hz), 73.4, 60.7. HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂O₂F [M+H]⁺ 335.1196, found 335.1194.

2-((6'-bromo-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4f)

The reaction was conducted with 6-bromo-2-methylquinoline (**1f**, 133.2 mg, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (**2a**, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product **4f** as yellow oil (39.6 mg, 50%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.27 (q, J = 8.9 Hz, 2H), 8.13 (q, J = 4.3 Hz, 2H), 8.06 (d, J = 1.6 Hz, 1H), 7.84-7.79 (m, 2H), 7.74 (s, 1H), 7.66-7.56 (m, 2H), 6.25 (brs, 1H), 4.52 (t, J = 4.4 Hz, 2H), 4.00 (t, J = 4.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.8, 151.8, 150.2, 145.4, 143.5, 136.3, 133.5, 130.5, 129.6, 129.6, 129.3, 128.8, 127.8, 127.7, 126.4, 123.6, 121.2, 119.0, 73.1, 60.7. HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂O₂Br [M+H]⁺ 395.0395, found 395.0395.

2-((7'-chloro-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4g)

The reaction was conducted with 7-chloro-2-methylquinoline (**1g**, 106.6 mg, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (**2a**, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product **4g** as brown oil (41.8 mg, 60%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.36 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 1.2 Hz, 1H), 8.21 (d, J = 8.8 Hz, 1H), 8.13 (d, J = 8.4 Hz, 1H), 7.84-7.79 (m, 2H), 7.75 (s, 1H), 7.66-7.62 (m, 1H), 7.59-7.54 (m, 2H), 6.25 (brs, 1H), 4.52 (t, J = 4.2 Hz, 2H), 4.00 (t, J = 4.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.5, 151.8, 150.3, 147.2, 143.5, 137.1, 136.0, 129.5, 129.3, 128.8, 128.3, 127.8, 127.7, 127.7, 126.4, 126.1, 122.9, 119.1, 73.2, 60.7; HRMS (maldi, m/z): calcd. for C₂₀H₁₇N₂O₂Cl [M+H]⁺ 351.0900, found 351.0899.

2-((8'-amino-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4h)

The reaction was conducted with 8-bromo-2-methylquinoline (**1h**, 133.2 mg, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (**2a**, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product **4h** as brown oil (35.4 mg, 45%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.33 (d, J = 8.4 Hz, 1H), 8.18-8.09 (m, 3H), 7.87 (d, J = 7.6 Hz, 1H), 7.80 (d, J = 7.6 Hz, 1H), 7.65-7.57 (m, 3H), 7.45 (t, J = 7.6 Hz, 1H), 4.34 (t, J = 4.4 Hz, 2H), 3.99 (t, J = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.8, 151.4, 150.3, 144.5, 143.1, 137.2, 133.5, 129.5, 129.3, 129.0, 127.7, 127.6, 127.3, 126.4, 125.1, 123.5, 115.7, 70.3, 61.0; HRMS (maldi, m/z): calcd. for C₂₀H₁₇N₂O₂Br [M+H]⁺ 395.0395, found 395.0394.

2-((2-(pyridin-2-yl)quinolin-3-yl)oxy)ethan-1-ol (4i)

The reaction was conducted with 2-methylpyridine (1i, 59 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (2a, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product 4i as yellow solid (26.5 mg, 41%), melting point (m.p.): 123.8-125.0 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.67 (d, J = 4.8 1H), 8.13-8.08 (m, 2H), 7.96-7.92 (m, 1H), 7.78 (d, J = 7.6 1H), 7.71 (s, 1H), 7.64-7.54 (m, 2H), 7.41 (t, J = 6.2 1H), 4.48 (t, J = 4.4 Hz, 2H), 3.94 (t, J = 4.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.5, 151.7, 150.6, 147.9, 143.5, 137.6, 129.5, 129.2, 127.6, 127.5, 126.4, 125.1, 123.6, 119.0, 73.5, 60.7; HRMS (maldi, m/z): calcd. for C₁₆H₁₅N₂O₂ [M+H]⁺ 269.1290, found 269.1288.

2-((2-(quinoxalin-2-yl)quinolin-3-yl)oxy)ethan-1-ol (4j)

The reaction was conducted with 2-methylquinoxaline (**1j**, 77 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and aniline (**2a**, 18 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product **4j** as yellow solid (18.2 mg, 30%), melting point (m.p.): 85.0-87.0 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 9.68 (s, 1H), 8.25-8.18 (m, 3H), 7.85-7.80 (m, 3H), 7.74 (s, 1H), 7.68-7.58 (m, 2H), 5.45 (brs, 1H), 4.50 (t, *J* = 4.4 Hz, 2H), 4.03 (t, *J* = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 152.2, 150.6, 147.9, 146.8, 143.6, 142.0, 140.7, 130.5, 129.8, 129.4, 129.3, 129.1, 128.2, 127.9, 126.4, 118.3, 72.6, 60.8; HRMS (maldi, m/z): calcd. for C₁₉H₁₅N₃NaO₂ [M+Na]⁺ 340.1062, found 340.1056.

2-((6-methyl-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4k)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and 4-methyl- benzenamine (**2b**, 21.4 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4k** as yellow-brown oil (36.4 mg, 55%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.38 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 8.03 (d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 7.6 Hz, 1H), 7.66 (s, 1H), 7.60 (t, J = 7.6 Hz, 1H), 7.55 (s, 1H), 7.46 (dd, J = 1.6, 8.8 Hz, 1H), 4.51 (t, J = 4.4 Hz, 2H), 4.00 (t, J = 4.2 Hz, 2H), 2.56 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.6, 152.0, 149.8, 146.9, 142.2, 137.8, 137.3, 130.0, 130.0, 129.3, 129.2 128.8, 127.7, 127.6, 127.1, 125.3, 122.6, 118.6, 73.3, 60.7, 21.7; HRMS (maldi, m/z): calcd. for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1447, found 331.1445.

2-((6-methoxy-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (41)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and p-anisidine (**2c**, 24.6 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4l** as reddishbrown oil (15.0 mg, 20%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.37 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 8.8 Hz, 1H), 8.20 (d, J = 8.8 Hz, 1H), 8.02 (d, J = 8.8 Hz, 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 7.6 Hz, 1H), 7.65 (s, 1H), 7.59 (t, J = 7.4 Hz, 1H), 7.29 (d, J = 2.8 Hz, 1H), 7.05 (d, J = 2.8 Hz, 1H), 4.51 (t, J = 4.4 Hz, 2H), 4.00 (t, J = 4.2 Hz, 2H), 3.96 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 158.8, 156.6, 152.4, 148.0, 146.9, 139.6, 137.3, 131.0, 130.6, 130.0, 128.7, 127.7, 127.6, 127.0, 122.6, 120.4, 118.3, 104.0, 73.3, 60.7, 55.6; HRMS (maldi, m/z): calcd. for C₂₁H₁₉N₂O₃ [M+H]⁺

2-((6-(tert-butyl)-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4m)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and 4-tert-butylaniline (**2d**, 32 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4m** as yellow oil (34.4 mg, 46%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.38 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 8.4 Hz, 1H), 8.20 (d, J = 8.4 Hz, 1H), 8.08 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.79-7.71 (m, 4H), 7.60 (t, J = 7.6 Hz, 1H), 6.65 (brs, 1H), 4.53 (t, J = 4.4 Hz, 2H), 4.00 (t, J = 4.4 Hz, 2H), 1.45 (s, 9H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.6, 151.9 , 150.7, 150.1, 146.9, 142.2, 137.4, 130.0, 129.0, 128.8, 127.7, 127.6, 127.1, 126.8, 122.6, 121.5, 119.5, 73.4, 60.7, 35.1, 31.2; HRMS (maldi, m/z): calcd. for C₂₄H₂₅N₂O₂ [M+H]⁺ 373.1916, found 373.1915.

2-((6-fluoro-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4n)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and 4-fluoroaniline (**2e**, 19 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4n** as brown oil (36.0 mg, 54%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.39 (d, J = 8.8 Hz, 1H), 8.25 (d, J = 8.8 Hz, 1H), 8.18 (d, J = 8.8 Hz, 1H), 8.15-8.11 (m, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.78 (t, J = 7.6 Hz, 1H), 7.67 (s, 1H), 7.61 (t, J = 7.4 Hz, 1H), 7.40 (d, J = 8.4 Hz, 2H), 4.51 (t, J = 4.4 Hz, 2H), 4.01 (t, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.9 (d, J = 247.7 Hz), 156.2, 152.6, 150.1, 146.9,

140.5, 137.4, 132.1 (d, J = 9.8 Hz), 130.2, 130.1, 128.8, 127.7, 1267.6, 127.2, 122.4, 118.2 (d, J = 5.3 Hz), 117.8 (d, J = 25.6 Hz), 109.5 (d, J = 22.1 Hz), 73.3, 60.7; HRMS (maldi, m/z): calcd. for $C_{20}H_{16}N_2O_2F$ [M+H]⁺ 335.1196, found 335.1194.

2-((6-chloro-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (40)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and 4-chloroaniline (**2f**, 25.5 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4o** as brown oil (26.8 mg, 38%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.38 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 8.4 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.06 (d, J = 8.8 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.79-7.76 (m, 2H), 7.63-7.59 (m, 2H), 7.55 (dd, J = 2.4, 9.2 Hz, 1H), 4.50 (t, J = 4.2 Hz, 2H), 4.00 (t, J = 4.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.1, 152.6, 151.0, 146.9, 141.7, 137.4, 133.5, 131.1, 130.2, 129.9, 128.8, 128.5, 127.8, 127.6, 127.3, 125.0, 122.4, 117.8, 73.3, 60.7; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂O₂Cl [M+H]⁺ 351.0900, found 351.0899.

2-((8-methyl-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4p)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and o-toluidine (**2g**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4p** as yellow-brown oil (24.8 mg, 35%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.38 (d, J = 8.4 Hz, 1H), 8.32 (d, J = 8.8 Hz, 1H), 8.27

(d, J = 8.4 Hz, 1H), 7.90 (d, J = 8.0 Hz, 1H), 7.77 (t, J = 7.2 Hz, 1H), 7.73 (s, 1H), 7.64-7.58 (m, 2H), 7.48-7.43 (m, 2H), 4.54 (t, J = 4.4 Hz, 2H), 4.03 (t, J = 4.4 Hz, 2H), 2.84 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.9, 151.9, 148.9, 146.7, 142.6, 137.7, 137.1, 130.0, 129.3, 128.7, 127.8, 127.7, 127.5, 127.1, 124.4, 123.0, 119.6, 73.4, 60.7, 17.9; HRMS (maldi, m/z): calcd. for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1447, found 331.1445.

2-((7-methyl-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4q)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and m-toluidine (**2h**, 21 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4q** as yellow-brown oil (35.6 mg, 54%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.36 (d, J = 8.4 Hz, 1H), 8.26 (d, J = 8.8 Hz, 1H), 8.19 (d, J = 8.8 Hz, 1H), 7.92 (s, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.76 (t, J = 7.2 Hz, 1H), 7.70 (s, 1H), 7.67 (d, J = 8.4 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.39 (d, J = 8.4 Hz, 1H), 4.50 (t, J = 4.4 Hz, 2H), 3.99 (t, J = 4.2 Hz, 2H), 2.55 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.6, 151.3, 150.5, 146.8, 143.7, 137.7, 137.3, 130.0, 129.9, 128.7, 128.5, 127.7, 127.5, 127.1, 127.0, 126.0, 122.6, 119.1, 73.2, 60.7, 21.6; HRMS (maldi, m/z): calcd. for C₂₁H₁₉N₂O₂ [M+H]⁺ 331.1447, found 331.1445.

2-((6,8-dimethyl-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4r)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and 2,4-dimethyl aniline (**2i**, 25 μ L, 0.2 mmol). The residue was purified by column

chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product $4\mathbf{r}$ as brown oil (21.7 mg, 32%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.33 (q, J = 8.1 Hz, 2H), 8.27 (d, J = 8.4 Hz, 1H), 7.88 (d, J = 8.0 Hz, 1H), 7.75 (t, J = 7.2 Hz, 1H), 7.63 (s, 1H), 7.58 (t, J = 7.4 Hz, 1H), 7.38 (s, 1H), 7.31 (s, 1H), 6.93 (brs, 1H), 4.52 (t, J = 4.2 Hz, 2H), 4.02 (t, J = 4.2 Hz, 2H), 2.80 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 157.1, 152.0, 148.0, 146.8, 141.3, 137.6, 137.3, 137.0, 130.2, 129.9, 129.5, 128.7, 127.7, 127.5, 127.0, 123.2, 123.0, 119.1, 73.3, 60.7, 21.7, 17.8; HRMS (maldi, m/z): calcd. for C₂₂H₂₁N₂O₂ [M+H]⁺ 345.1603, found 345.1597.

2-((2-(quinolin-2-yl)benzo[g]quinolin-3-yl)oxy)ethan-1-ol (4s)

The reaction was conducted with 2-methylquinoline (**1a**, 80 μ L, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and 2-naphthylamine (**2j**, 28.6 mg, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1:1) afforded the product **4s** as brown oil (28.8 mg, 41%).

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.61-8.58 (m, 2H), 8.40 (d, J = 8.4 Hz, 1H), 8.29 (d, J = 8.4 Hz, 2H), 8.03 (d, J = 8.8 Hz, 1H), 7.97-7.90 (m, 3H), 7.78 (t, J = 7.6 Hz, 1H), 7.74-7.67 (m, 2H), 7.61 (t, J = 7.6 Hz, 1H), 4.66 (t, J = 3.6 Hz, 2H), 4.06 (t, J = 3.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 156.5, 152.8, 149.0, 146.9, 142.9, 137.3, 132.3, 130.1, 129.1, 128.9, 128.8, 128.8, 128.0, 127.8, 127.7, 127.6, 127.2, 126.9, 126.8, 123.0, 122.7, 116.5, 74.0, 60.9; HRMS (maldi, m/z): calcd. for C₂₄H₁₉N₂O₂ [M+H]⁺ 367.1447, found 367.1446.

2-((6'-bromo-6-fluoro-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4t)

The reaction was conducted with 6-bromo-2-methylquinoline (1f, 133.2 mg, 0.6 mmol),

70%TBHP (84 μ L, 0.6 mmol) and 4-fluoroaniline (**2e**, 19 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product **4t** as brown solid (35.2 mg, 44%), melting point (m.p.): 171.6–173.0 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.29 (d, J = 8.8 Hz, 1H), 8.22 (d, J = 8.4 Hz, 1H), 8.12 (d, J = 9.2 Hz, 2H), 8.06 (d, J = 2.0 Hz, 1H), 7.83 (dd, J = 2.0, 8.8 Hz, 1H), 7.73-7.70 (m, 2H), 7.52 (dd, J = 2.0, 8.8 Hz, 1H), 6.22 (brs, 1H), 4.50 (t, J = 4.2 Hz, 2H), 4.00 (t, J = 4.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 163.4 (d, J = 249.1 Hz), 157.5, 151.9, 150.4, 147.8 (d, J = 12.4 Hz), 143.6, 137.3, 129.6 (d, J = 9.9 Hz), 129.6, 129.3, 127.8(d, J = 8.5 Hz), 126.4, 124.8, 122.0, 122.0, 119.2, 117.8 (d, J = 25.3 Hz), 112.6 (d, J = 20.7 Hz), 73.4, 60.7, 21.8; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂O₂BrF [M+H]⁺ 413.0301, found 413.0300.

2-((6'-bromo-7-fluoro-[2,2'-biquinolin]-3-yl)oxy)ethan-1-ol (4u)

The reaction was conducted with 6-bromo-2-methylquinoline (**1f**, 133.2 mg, 0.6 mmol), 70%TBHP (84 μ L, 0.6 mmol) and 3-fluoroaniline (**2k**, 19 μ L, 0.2 mmol). The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2:1) afforded the product **4u** as brown solid (33.2 mg, 40%), melting point (m.p.): 183.0–185.1 °C.

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.29 (d, J = 8.8 Hz, 1H), 8.23 (d, J = 8.4 Hz, 1H), 8.14-8.10 (m, 2H), 8.06 (d, J = 2.0 Hz, 1H), 7.83 (dd, J = 2.4, 9.0 Hz, 1H), 7.67 (s, 1H), 7.42-7.38 (m, 2H), 6.22 (s, 1H), 4.50 (t, J = 4.4 Hz, 2H), 4.00 (t, J = 4.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 161.9 (d, J = 246.7 Hz), 156.6, 151.5, 151.1, 145.5, 144.1 (d, J = 12.2 Hz), 136.3, 133.6, 130.6, 129.7, 128.9, 128.1 (d, J = 9.5 Hz), 126.2, 123.5, 121.3, 119.3,118.4 (d, J = 25.4 Hz), 113.2 (d, J = 20.4 Hz), 73.3, 60.7; HRMS (maldi, m/z): calcd. for C₂₀H₁₆N₂O₂BrF [M+H]⁺ 413.0301, found 413.0301.

3-(2-bromoethoxy)-2,2'-biquinoline (4ab):

¹H NMR (400 MHz, CDCl₃, ppm) δ 8.29 (d, J = 8.4, 2H), 8.23 (d, J = 8.4 Hz, 1H), 8.02 (d, J = 8.8 1H), 7.89 (d, J = 8.0 Hz, 1H), 7.79-7.74 (m, 2H), 7.64-7.54 (m, 4H), 4.46 (t, J = 6.2 Hz, 2H), 3.62 (t, J = 6.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃, ppm) δ 155.9, 151.2, 150.3, 148.1, 143.5, 135.8, 130.1, 129.9, 129.5, 128.9, 127.7, 127.6, 127.5, 127.5, 126.9, 126.3, 122.8, 115.6, 68.7, 28.6; MS (maldi, m/z): calcd. for C₂₀H₁₆BrN₂O [M+H]⁺ 379.0446, found 379.0337.

References

[1] (a) A. Martins and M. Lautens, A Palladium-Catalyzed approach to polycyclic sulfur heterocycles, *J. Org. Chem.*, 2008, **73**, 8705 – 8710; (b) A. C. Kruegel, S. Rakshit, X. Li, and D. Sames, Constructing iboga alkaloids via C–H bond functionalization: examination of the direct and catalytic union of heteroarenes and isoquinuclidine Alkenes, *J. Org. Chem.*, 2015, **80**, 2062–2071.

Crystal data and structure refinement for 4j

mo_ddz20083_0m CCDC 2101003

4j

Table 1. Crystal data and structure	e refinement for 4j .	
Identification code	mo_ddz20083_0m	
Empirical formula	C_{19} H ₁₅ N ₃ O ₂	
Formula weight	317.34	
Temperature	293 (2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	C 2/c	
Unit cell dimensions	$a = 22.630(7) \text{ Å} \qquad \alpha = 90^{\circ}$.	
	b = 3.8102(11) Å β = 99.852(8)°	•
	c = 18.998(6) Å $\gamma = 90^{\circ}$.	
Volume	1613.9(8) Å ³	
Z	4	
Density (calculated)	1.306 Mg/m ³	
Absorption coefficient	0.087 mm^{-1}	
F (000)	664	
Crystal size	0.150 x 0.100 x 0.050 mm ³	
Theta range for data collection	2.591 to 24.996 $^{\circ}$.	
Index ranges	$-26 \le h \le 25$, $-4 \le k \le 4$, $-22 \le 1 \le 22$	
Reflections collected	9644	
Independent reflections	1428 [R(int) = 0.0572]	
Completeness to theta = 25.242°	97.1 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.7456 and 0.6177	
Refinement method	Full-matrix least-squares on ${\rm F}^2$	
Data / restraints / parameters	1428 / 73 / 157	

15

Goodness-of-fit on F ²	1.389
Final R indices [I>2sigma(I)]	R1 = 0.1168, wR2 = 0.3369
R indices (all data)	R1 = 0.1616, wR2 = 0.3829
Extinction coefficient	0.026(10)
Largest diff. peak and hole	0.685 and -0.384 e. ${\rm \AA}^{-3}$

Table 2. Atomic coordinates ($x\ 10^4)$ and equivalent isotropic displacement parameters (Å $^2x\ 10^3)$

for mo_ddz20083_0m. U(eq) is defined as one third of the trace of the orthogonalized $U^{\rm i\,j}$ tensor.

	Х	У	Z	U(eq)
0(1)	4743 (3)	3312(17)	3687(3)	63 (2)
N(2)	5786(2)	1795(12)	3954(3)	75(2)
N(1)	5766(2)	-741 (10)	2567 (2)	72(1)
C(1)	6298(2)	397 (12)	3766(3)	67(1)
C(2)	6840(2)	240(13)	4257 (3)	74(2)
C(3)	7342(2)	-1146(13)	4049(3)	74(2)
C(4)	7324(2)	-2350(13)	3349(3)	73(2)
C(5)	6805(2)	-2253(13)	2867 (3)	67 (2)
C(6)	6278(2)	-834(11)	3058(3)	62(1)
C(7)	5279(2)	544(12)	2769(3)	66(2)
C (8)	5286(2)	1911 (14)	3468(3)	74(2)
C (9)	5786(2)	1795(12)	3954(3)	75(2)
0(2)	3978(4)	9210(20)	3798(4)	36(2)
C(10)	4695(5)	5210(30)	4332(6)	38(2)
C(11)	4083 (4)	6220(30)	4262(5)	37(2)
0(2')	3957 (5)	7110(30)	4040(5)	38(2)
C(10')	4741 (8)	3980 (50)	4430(7)	38(2)
C(11')	4100(11)	4520 (80)	4490(16)	38(2)

Table 3. Bond lengths [Å] and angles [°] for $\mbox{mo_ddz}20083_0\mbox{m.}$

0(1)-C(10')	1.435(14)
0(1)-C(10)	1.442(11)
0(1)-C(8)	1.462(8)

N(2) - C(8)	1.333(7)
N(2)-C(1)	1.378(7)
N(1)-C(7)	1.322(6)
N(1)-C(6)	1.359(6)
C(1)-C(2)	1.410(7)
C(1)-C(6)	1.417(7)
C(2)-C(3)	1.370(7)
С(2)-Н(2)	0.9300
C(3)-C(4)	1.401(7)
С(3)-Н(3)	0.9300
C(4)-C(5)	1.360(6)
C(4)-H(4)	0.9300
C(5)-C(6)	1.413(6)
С(5)-Н(5)	0.9300
С(7)–С(8)	1.424(8)
C(7)-C(7)#1	1.483(9)
0(2)-C(11)	1.434(10)
0(2)-H(2A)	0.8200
C(10)-C(11)	1.423(13)
С(10)-Н(10А)	0.9700
С(10)-Н(10В)	0.9700
С(11)-Н(11А)	0.9700
С(11)-Н(11В)	0.9700
0(2')-C(11')	1.310(18)
0(2')-H(2')	0.8200
C(10')-C(11')	1.489(18)
С(10')-Н(10С)	0.9700
C(10')-H(10D)	0.9700
C(11')-H(11C)	0.9700
C(11')-H(11D)	0.9700
C(10')-O(1)-C(8)	119.3(7)
C(10)-O(1)-C(8)	127.8(6)
C(8) - N(2) - C(1)	119.0(5)
C(7) - N(1) - C(6)	117.8(5)
N(2)-C(1)-C(2)	121.4(5)
N(2)-C(1)-C(6)	118.9(5)
C(2)-C(1)-C(6)	119.7(5)

C(3) - C(2) - C(1)	119.7(5)
С(3)-С(2)-Н(2)	120.1
C(1) - C(2) - H(2)	120.1
C(2)-C(3)-C(4)	120.6(5)
C(2) - C(3) - H(3)	119.7
C(4) - C(3) - H(3)	119.7
C(5) - C(4) - C(3)	120.7(4)
C(5) - C(4) - H(4)	119.6
C(3) - C(4) - H(4)	119.6
C(4) - C(5) - C(6)	120.5(5)
C(4) - C(5) - H(5)	119.8
C(6) - C(5) - H(5)	119.8
N(1) - C(6) - C(5)	119.5(5)
N(1) - C(6) - C(1)	121.8(4)
C(5) - C(6) - C(1)	118.7(4)
N(1)-C(7)-C(8)	122.0(5)
N(1)-C(7)-C(7)#1	116.9(6)
C(8)-C(7)-C(7)#1	121.1(5)
N(2)-C(8)-C(7)	120.4(5)
N(2) - C(8) - O(1)	118.0(5)
C(7) - C(8) - O(1)	121.5(5)
С(11)-0(2)-Н(2А)	109.5
C(11)-C(10)-O(1)	105.7(9)
С(11)-С(10)-Н(10А)	110.6
0(1)-C(10)-H(10A)	110.6
С(11)-С(10)-Н(10В)	110.6
0(1)-C(10)-H(10B)	110.6
H(10A)-C(10)-H(10B)	108.7
C(10)-C(11)-O(2)	109.1(9)
С(10)-С(11)-Н(11А)	109.9
0(2)-C(11)-H(11A)	109.9
С(10)-С(11)-Н(11В)	109.9
0(2)-C(11)-H(11B)	109.9
H(11A)-C(11)-H(11B)	108.3
С(11')-0(2')-Н(2')	109.5
0(1)-C(10')-C(11')	105.5(16)
0(1)-C(10')-H(10C)	110.6
C(11')-C(10')-H(10C)	110.7

0(1)-C(10')-H(10D)	110.6
C(11')-C(10')-H(10D)	110.6
H(10C)-C(10')-H(10D)	108.8
0(2')-C(11')-C(10')	100.8(15)
0(2')-C(11')-H(11C)	111.6
С(10')-С(11')-Н(11С)	111.6
0(2')-C(11')-H(11D)	111.6
С(10')-С(11')-Н(11D)	111.6
H(11C)-C(11')-H(11D)	109.4

Symmetry transformations used to generate equivalent atoms: #1 $-x\!+\!1,\,y,\,-z\!+\!1/2$

Table 4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_ddz20083_0m. The anisotropic

displacement factor exponent takes the form: $-2\pi^2[$ h^2 a*2U^{11} + ... + 2 h k a* b* U^{12}]

	U ¹¹	U ²²	U ³³	U23	U ¹³	U ¹²
0(1)	67 (4)	75(4)	47 (3)	-11 (3)	8(3)	2(3)
N(2)	72(3)	63(3)	88(3)	-7(2)	14(2)	2(2)
N(1)	67 (3)	63(3)	84(3)	18(2)	5(2)	-2(2)
C(1)	58(3)	56(3)	89(4)	11(2)	18(2)	-2(2)
C(2)	76(3)	66(3)	79(3)	1(3)	14(3)	-6(3)
C(3)	70(3)	71(4)	78(3)	5(3)	4(2)	-3(2)
C(4)	67 (3)	76(4)	77(3)	8(3)	17(3)	6(2)
C(5)	69(3)	66(3)	66(3)	9(2)	13(2)	2(2)
C(6)	65(3)	51 (3)	69(3)	13(2)	9(2)	-4(2)
C(7)	62(3)	46(3)	89(4)	5(2)	7(2)	-1(2)
C(8)	64(3)	54(3)	102(4)	3(3)	2(3)	-3(2)
C(9)	72(3)	63(3)	88(3)	-7(2)	14(2)	2(2)
0(2)	58(3)	27 (4)	22(3)	13(3)	7(2)	19(3)
C(10)	61 (3)	28(4)	25(3)	15(3)	6(2)	20(3)
C(11)	60(3)	27 (4)	24(3)	15(3)	6(2)	20(3)
0(2')	60(3)	29(4)	24(3)	13(3)	7(2)	19(3)
C(10')	61 (3)	28(4)	25(3)	15(3)	6(2)	20(3)
C(11')	61 (3)	28(4)	25(3)	14(3)	6(2)	20(3)

	Х	У	Z	U(eq)
H(2)	6858	1076	4720	88
H(3)	7698	-1290	4376	89
H(4)	7671	-3225	3212	88
H(5)	6798	-3128	2409	80
H(9)	5788	2646	4413	90
H (2A)	4149	10924	3999	53
H(10A)	4809	3721	4748	46
H(10B)	4953	7256	4380	46
H(11A)	3988	6802	4727	45
H(11B)	3826	4293	4065	45
H(2')	4259	8240	4005	57
H(10C)	4975	6062	4586	46
H(10D)	4908	2007	4719	46
H(11C)	3862	2437	4346	45
H(11D)	4055	5170	4971	45

Table 5. Hydrogen coordinates ($x\ 10^4)$ and isotropic displacement parameters (Å $^2x\ 10^{-3})$

for mo_ddz20083_0m.

Table 6. Torsion angles [°] for mo_ddz20083_0m.

C(8) - N(2) - C(1) - C(2)	179.4(4)
C(8)-N(2)-C(1)-C(6)	0.8(7)
N(2)-C(1)-C(2)-C(3)	-179.6(5)
C (6) -C (1) -C (2) -C (3)	-0.9(7)
C(1)-C(2)-C(3)-C(4)	1.2(8)
C(2)-C(3)-C(4)-C(5)	-1.8(8)
C(3)-C(4)-C(5)-C(6)	2.0(7)
C(7)-N(1)-C(6)-C(5)	178.7(4)
C(7)-N(1)-C(6)-C(1)	0.0(6)
C(4) - C(5) - C(6) - N(1)	179.5(4)
C(4)-C(5)-C(6)-C(1)	-1.7(7)
N(2)-C(1)-C(6)-N(1)	-1.5(7)

C(2) - C(1) - C(6) - N(1)	179.9(4)
N (2) -C (1) -C (6) -C (5)	179.8(4)
C (2) –C (1) –C (6) –C (5)	1.1(7)
C (6) –N (1) –C (7) –C (8)	2.1(7)
C (6) –N (1) –C (7) –C (7) #1	-178.6(3)
C(1) –N(2) –C(8) –C(7)	1.3(7)
C(1) –N(2) –C(8) –O(1)	178.2(5)
N(1)-C(7)-C(8)-N(2)	-2.8(8)
C(7)#1-C(7)-C(8)-N(2)	177.9(4)
N (1) –C (7) –C (8) –O (1)	-179.7(5)
C (7) #1-C (7) -C (8) -O (1)	1.1(7)
C(10')-O(1)-C(8)-N(2)	-9.7(12)
C (10) -O (1) -C (8) -N (2)	12.4(11)
С (10') – 0 (1) – С (8) – С (7)	167.2(10)
С (10) –О (1) –С (8) –С (7)	-170.6(7)
C(10')-O(1)-C(10)-C(11)	-113 (3)
C (8) -O (1) -C (10) -C (11)	175.5(7)
0 (1) -C (10) -C (11) -O (2)	-78.3(11)
C(10)-O(1)-C(10')-C(11')	73(3)
C (8) -O (1) -C (10') -C (11')	-166.5(13)
0(1)-C(10')-C(11')-0(2')	-57 (2)

Symmetry transformations used to generate equivalent atoms: #1 $-x\!+\!1,\,y,\,-z\!+\!1/2$

D-НА	d (D-H)	d (H A)	d (DA)	< (DHA)
C(11)-H(11A)N(2)#2	0.97	2.53	3.435(11)	156.0
0(2)-H(2A)0(1)#3	0.82	1.81	2.369(11)	124.6
C(11)-H(11A)N(2)#2	0.97	2.53	3.435(11)	156.0
$0(2) - H(2A) \dots O(1) #3$	0.82	1.81	2.369(11)	124.6

Table 7. Hydrogen bonds for mo_ddz20083_0m [Å and $^\circ$].

Symmetry transformations used to generate equivalent atoms:

#1 -x+1, y, -z+1/2 #2 -x+1, -y+1, -z+1 #3 x, y+1, z

¹H NMR and ¹³C NMR spectra

