Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2021

Supporting Information

For

Copper-Catalyzed, N-Auxiliary Group-Controlled Switchable, Transannulation/Nitration Initiated by Nitro Radicals: Selective Synthesis of Pyridoquinazolones and 3-Nitroindoles

Adedamola Shoberu, Cheng-Kun Li, Hai-Feng Qian, Jian-Ping Zou*

Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry and Chemical Engineering, Soochow University, Jiangsu 215123, China

Table of Contents

1.	General Information	S2
2.	Reaction Development/Screening of Auxiliary Groups on Indole	S2
3.	Optimization of Reaction Conditions	S 3
4.	General Procedure for the Formation of 2 and 3	S 4
5.	General Procedure for the Formation of 5	S 5
6.	Mechanistic Studies	S 5
7.	Gram–Scale Synthesis of 2a and 5a	S20
8.	Unsuccessful Substrates	S21
9.	Preparation and Characterization of Unknown Starting Materials	S21
10.	Characterization Data for Products 2 and 3	S33
11.	Characterization Data for Products 5	S42
12.	References	S50
13.	Copies of ¹ H NMR and ¹³ C NMR Spectra of all Synthesized and Isolated Compounds	S51

1. General Information

Unless otherwise noted, all reagents were obtained from commercial sources and used without further purification. NMR spectra were recorded on a Varian Inova–400 MHz, Inova–300 MHz, Bruker DRX–400 or Bruker DRX–500 instruments using CDCl₃ or DMSO- d_6 as solvent and tetramethylsilane (TMS) as internal standard. All chemical shifts (δ) were reported in ppm and coupling constants (J) in Hz. High resolution mass spectra were recorded on a TOF machine (ESI). Column chromatography was performed with 300-400 mesh silica gel using flash column techniques.

2. Reaction Development/Screening of Auxiliary Groups on Indole

General procedure for screening of auxiliary groups using Cu(NO₃)₃.3H₂O/Pivalic acid system (GP1)

N-protected indole (0.5 mmol), Cu(NO₃)₂.3H₂O (181 mg, 1.5 equiv) and pivalic acid (10.2 mg, 20 mol%) were weighed into a tube, followed by the addition of 3 mL of CH₃CN. The tube was capped and the mixture stirred at 70 $^{\circ}$ C. After the reaction was complete (approximately 3 hours), the mixture was cooled and diluted with 10 mL of saturated NH₄Cl solution (containing 1% aqueous ammonia). This mixture was extracted with EtOAc (15 mL × 3). The combined organic extract was washed with 10 mL of H₂O and dried over anhydrous Na₂SO₄. The dried extract was concentrated under vacuum and purification by column chromatography on silica gel to afford the pure product **2a** or **5a**.

3. Optimization of Reaction Conditions

				Ö	
		Nitro source	Catalyst (<i>x</i> mol %		
		(x equiv)	Solvent (2 mL)		
	≫ ~ 1a		60 °C	2a	
Entry	Nitro source (x equiv)	Catalyst (x mol%)	Time (h)	Solvent (mL)	Yield $(\%)^b$
1	$Cu(NO_3)_2.3H_2O(1.5)$	Pivalic acid (20)	3	CH ₃ CN	73
2	TBN (3)	$Cu(NO_3)_2.3H_2O(20)$) 12	CH ₃ CN	$61(10)^{c}$
3	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	CH ₃ CN	$63(14)^{c}$
4	Fe(NO ₃) ₃ .9H ₂ O (2)	$Cu(OAc)_2.H_2O(20)$	12	CH ₃ CN	58
5	$AgNO_3(2)$	$Cu(OAc)_2.H_2O(20)$	12	CH ₃ CN	$N.D.^d$
6	$NaNO_2(4)$	$Cu(OAc)_2.H_2O(20)$	12	CH ₃ CN	$N.R.^{e}$
7	$NaNO_2(4)$	$Cu(OAc)_2.H_2O(20)$	12	DMF	$14^{f}(63)^{c}$
8	$NaNO_2(4)$	_	12	DMF	$12^{f}(51)^{c}$
9	TBN (3)	Cu(OAc) ₂ .H ₂ O (20)	12	DCE	$69(9)^{c}$
10	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	DMF	73
11	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	DMSO	85
12	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane	$67(25)^{c}$
13	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	H_2O	56
14	TBN (3)	$Cu(OAc)_2(20)$	12	DMSO	71
15	TBN (3)	$CuCl_2(20)$	12	DMSO	77
16	TBN (3)	CuCl (20)	12	DMSO	76
17	TBN (3)	CuBr (20)	12	DMSO	84
18	TBN (3)	CuI (20)	12	DMSO	81
19	TBN (3)	Cu(OAc) ₂ .H ₂ O (20)	12	Dioxane $-H_2O(10:1)$	89
20	TBN (3)	Cu(OAc) ₂ .H ₂ O (20)	12	Dioxane $-H_2O(3:1)$	72
21	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(2:1)$	68
22	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(1:1)$	61
23	TBN (3)	$Cu(OAc)_2$ (20)	12	Dioxane $-H_2O(10:1)$	88
24	TBN (3)	CuBr ₂ (20)	12	Dioxane $-H_2O(10:1)$	24
25	TBN (3)	$CuCl_2(20)$	12	Dioxane $-H_2O(10:1)$	78
26	TBN (3)	$Cu(OAc)_2.H_2O(10)$	12	Dioxane $-H_2O(10:1)$	78
27	TBN (3)	$Cu(OAc)_2.H_2O(30)$	12	Dioxane $-H_2O(10:1)$	84
28	TBN (3)	_	12	Dioxane $-H_2O(10:1)$	64
29	TBN (2)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(10:1)$	91
30	TBN (1.5)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(10:1)$	85
31	TBN (1)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(10:1)$	62
32	_	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(10:1)$	N.R. ^e
33	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(10:1)$	53 ^g
34	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(10:1)$	88 ^{<i>n</i>} .
35	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	Dioxane $-H_2O(10:1)$	85 ^{<i>i</i>}
36	TBN (3)	$Cu(OAc)_2.H_2O(20)$	12	$Dioxane-H_2O(10:1)$	$N.D.^{d,j}$

Table S2: Optimization o	f reaction	conditions for	or f	ormation	of j	pyridoq	uinazolone ($2a^a$
--------------------------	------------	----------------	------	----------	------	---------	--------------	--------

^{*a*} Conditions: **1a** (0.5 mmol) in 3 mL of solvent at 60 °C. ^{*b*} Isolated yields. ^{*c*} Amount of recovered starting material in parenthesis. ^{*d*} N.D. = not detected. ^{*e*} N. R. = no reaction. ^{*f*} K₂S₂O₈ (2 equiv) was added. ^{*g*} Under O₂ atmosphere. ^{*h*} Under N₂ atmosphere. ^{*i*} 70 °C. ^{*j*} 25 °C. TBN = *tert*-butyl nitrite.

Although the use of catalytic amounts of CuI or CuBr salts appeared to give good yields, side reactions such as the formation of 3-iodo and 3-bromoindole derivatives were observed with electron-deficient substrates.

		Nitro source	per source (x	mol %)	
		+ (x equiv)	Solvent (3 m	L)	
			00 °C	, _ N	0_
	4a			5a 1	02
Entry	Nitro source (x equiv)	Catalyst (<i>x</i> mol%)	Time (h)	Solvent (mL)	Yield (%) ^b
1	$Cu(NO_3)_2.3H_2O(1.5)$	Pivalic acid (20)	3	CH ₃ CN	67
2	TBN (3)	$Cu(OAc)_2.H_2O(20)$	24	Dioxane– $H_2O(10:1)$	$19(37)^{c}$
3	TBN (3)	$Cu(OAc)_2.H_2O(20)$	24	Dioxane	$22 (45)^{c}$
4	TBN (3)	$Cu(OAc)_2.H_2O(30)$	24	Dioxane	$47(24)^{c}$
5	TBN (3)	$Cu(OAc)_2.H_2O(50)$	24	Dioxane	86
6	TBN (3)	$Cu(OAc)_2.H_2O(50)$	18	Dioxane	87
7	TBN (3)	CuCl (50)	18	Dioxane	41
8	TBN (3)	CuCN (50)	18	Dioxane	36
9	TBN (3)	CuO (50)	18	Dioxane	N.R. ^d
10	TBN (3)	$CuCl_2(50)$	18	Dioxane	Trace
11	TBN (3)	$CuBr_2(50)$	18	Dioxane	Trace
12	TBN (3)	CuI (50)	18	Dioxane	71
13	TBN (3)	$[Cu(CH_{3}CN)_{4}]PF_{6}(50)$	18	Dioxane	$12(17)^{c}$
14	TBN (3)	$Cu(acac)_2(50)$	18	Dioxane	$15(21)^{c}$
15	TBN (3)	$CuSO_4 5H_2O(50)$	18	Dioxane	9 (36) ^c
16	TBN (3)	$Cu(OTf)_{2}(50)$	18	Dioxane	$6(26)^{c}$
17	TBN (3)	$Cu(OAc)_2(50)$	18	Dioxane	78
18	TBN (3)	$Cu(OAc)_2.H_2O(50)$	18	DCE	74
19	TBN (3)	$Cu(OAc)_2.H_2O(50)$	18	PhCN	68
20	TBN (3)	$Cu(OAc)_2.H_2O(50)$	18	DMF	43
21	TBN (3)	$Cu(OAc)_2.H_2O(50)$	18	DMSO	32
22	TBN (3)	$Cu(OAc)_2.H_2O(50)$	18	Ethanol	N.D. ^e
23	TBN (3)	_	18	Dioxane	N.R. ^d
24	TBN (2)	Cu(OAc) ₂ .H ₂ O (50)	18	Dioxane	89
25	TBN (1.5)	$Cu(OAc)_2.H_2O(50)$	18	Dioxane	90
26	TBN (1)	Cu(OAc) ₂ .H ₂ O (50)	18	Dioxane	75
27	$NaNO_3(3)$	$Cu(OAc)_2.H_2O(50)$	18	Dioxane	N.R. ^e

Table S3: Optimization of reaction conditions for formation of 3-nitroindole 5a^a

^aConditions: **4a** (0.5 mmol) in 3 mL of solvent at 60 °C. ^bIsolated yields. ^cAmount of recovered starting material in parenthesis. ^dN.R. = no reaction. ^eN.D. = not detected. TBN = *tert*-butyl nitrite

4. General Procedure for the Formation of 2 and 3

With TBN/Cu(OAc)₂.H₂O system (GP2)

N-(pyridin-2-yl)indole **1** (0.5 mmol) and Cu(OAc)₂.H₂O (20 mg, 20 mol%) were weighed into a tube, followed by the addition of 3 mL of a mixture of dioxane-H₂O (10:1 to 3:1) or DMSO. Then, TBN (0.2 mL, 3 equiv) was added, the tube was capped and the mixture was stirred at 60 °C for 12-24 hours. After the reaction was complete (as indicated by TLC), the mixture was cooled and diluted with 10 mL of saturated NH₄Cl solution (containing 1% aqueous ammonia). This mixture was extracted with EtOAc (15 mL × 3). The combined organic extract was washed with 10 mL of saturated NaCl solution and dried over anhydrous Na₂SO₄. The dried extract was concentrated under vacuum and purified by column chromatography on silica gel to afford the pure products **2** and **3**.

With TBN (GP3)

N-(pyridin-2-yl)indole **1** (0.5 mmol) was placed into a tube, followed by the addition of 3 mL of a mixture of dioxane-H₂O (10:1) or DMSO. Then, TBN (0.2 mL, 3 equiv) was added, the tube was capped and the mixture stirred at 60 °C for 12-24 hours. After the reaction was complete (as indicated by TLC), the solvent was evaporated under vacuum. The crude mixture was purified directly by column chromatography on silica gel to afford the pure products **3j-m**.

5. General Procedure for the Formation of 5 (GP4)

N-(2-pyridoyl) indole **4** (0.5 mmol) and Cu(OAc)₂.H₂O (50 mg, 50 mol%) were weighed into a tube followed by the addition of 3 mL of dioxane. Then, TBN (0.2 mL, 3 equiv) was added, the tube was capped and the mixture was stirred at 60 °C. After the reaction was complete (indicated by TLC), the reaction mixture was cooled and diluted with 10 mL of 3 M aqueous NH₃ solution. After separation of the two layers, the aqueous layer was extracted with EtOAc (15 mL × 3). The combined organic extract were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. Purification of crude product by column chromatography on silica gel afforded the pure 3nitro products **5**.

6. Mechanistic Studies

Control experiments for formation of 2a

(a) Evidence of a Radical Process: Involvement of NO₂ Radicals

The addition of BHT or DPE to the reaction totally inhibited the formation of product **2a** (Scheme S1a,b). In addition, 36% yield of 2-nitro-1,1-diphenylethene (**6**) was isolated as a greenish yellow solid in the presence of DPE which confirmed the involvement of nitro radicals. ¹H NMR (CDCl₃, 400 MHz): δ 7.44 (m, 5H), 7.38 (m, 2H), 7.32 – 7.26 (m, 2H), 7.26 – 7.20 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 150.5, 137.1, 135.6, 134.4, 130.9, 129.3, 128.93, 128.91, 128.8, 128.5. These data are in agreement with those reported previously in the literature.¹

Scheme S1. Radical trapping experiments involving 2a.

Procedure for radical trapping experiment: N-(pyridin-2-yl)indole **1a** (49 mg, 0.25 mmol), Cu(OAc)₂.H₂O (10 mg, 20 mol%) and radical scavenger (butylated hydroxytoluene, BHT or 1,1-diphenylethene, DPE) (0.75 mmol)

were weighed into a tube, followed by the addition of 3 mL of a mixture of dioxane-H₂O (10:1). Then, TBN (0.09 mL, 3 equiv) was added, the tube was capped and the mixture was stirred at 60 $^{\circ}$ C for 12 hours.

(b) Investigation of the role of H₂O

The transannulation reaction barely took place under anhydrous conditions, with a substantial recovery of starting material (Scheme S2). The fact that **2a** was formed at all was probably due to adventitious H_2O present in the reaction medium. This result underlines the importance of H_2O in driving this reaction forward.

Scheme S2. Importance of H₂O

(c) Isotope Labeling Experiment: Sources of O-atom in 2a

Since water was required to promote the transformation of **1a** in dioxane, a mixture of dry dioxane and labeled water (H_2O^{18}) (used *in lieu* of H_2O^{16}) was employed as solvent to determine the source of the oxygen atom in **2a**. Mass analysis revealed the formation of a mixture of products **2a** and **2a'** which proves that H_2O contributed to the oxygen atom content present in product **2a** (Scheme S3, Figure S1).

Scheme S3. Isotope labeling experiment involving pyridoquinazolone 2a.

Figure S1. High resolution mass spectrum of pyridoquinazolone 2a and 2a'

(d) Isolation of Probable Intermediates in the Formation of 2a

Moreover, a series of experiments were carried out to identify and possibly isolate intermediates *en route* to the formation of pyridoquinazolones **2a**. *N*-2-pyridylindoles **1a** or **1ab** (which contains the stabilizing 2-phenyl substituent group) were employed for this purpose.

(i) Isolation/Detection of 3-nitrosoindole intermediates

Upon the addition of TBN to a mixture of **1ab** and Cu(OAc)₂.H₂O in dioxane-H₂O at room temperature, immediate reaction took place (indicated by a color change of the mixture to green). The formed intermediate **7** was isolated as a relatively unstable light-green solid (Scheme S4a). Although not isolable, the 3-nitroso-1-(pyridin-2-yl)-1*H*-indole **7'** corresponding to indole **1a** (indicated by a color change of the mixture light yellow to reddish brown) was detected in the ESI-HRMS spectrum of its crude mixture, m/z: [M+H]⁺ Calcd for C₁₃H₁₀N₃O 224.0824, found 224.0824 (Scheme S4b).

Scheme S4. Isolation/Detection of intermediate 7 and 7'

Figure S2. High resolution mass spectrum of intermediate 7' (from 1a)

Procedure for isolation of intermediate 7: 2-phenyl-1-(pyridin-2-yl)-1*H*-indole **1ab** (49 mg, 0.25 mmol) and Cu(OAc)₂.H₂O (10 mg, 20 mol%) were weighed into a tube, followed by the addition of 2 mL of a mixture of dioxane-H₂O (10:1). Then, TBN (0.03 mL, 1 equiv) was added and the mixture was allowed to stir for a minute at room temperature (green coloration of reaction mixture is observed which becomes intensified). Afterwards, the solvent was evaporated and the crude mixture was purified by column chromatography to give 3-nitroso-2-phenyl-1-(pyridin-2-yl)-1*H*-indole **7** as a light green solid (12.7 mg, 17% yield). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 8.72 (s, 1H), 8.25 – 7.93 (m, 2H), 7.81 – 7.56 (m, 4H), 7.45 (m, 6H). ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 136.1, 133.9, 132.30, 132.27, 132.1, 131.8, 131.7, 130.7, 128.7, 128.6, 128.5, 128.1, 126.7, 124.1, 124.0. HRMS (ESI-TOF) *m/z*: [M+1]⁺ calcd for C₁₉H₁₄N₃O 300.1137, found 300.1146.

(ii) Evidence for the intermediacy of hydroxyimino compound (8)

The intercepted 3-nitrosoindole 7 underwent nucleophilic attack by H_2O to form the hydroxyimino intermediate 8 as shown in Scheme S5 below.

Scheme S5. Isolation of intermediate 8

Procedure for isolation of intermediate 8: 3-nitrosoindole 7 (75 mg, 0.25 mmol) was weighed into a tube followed by the addition of 2 mL of a mixture of dioxane-H₂O (10:1), and the mixture was allowed to stir for 6 hours at 60 °C. The reaction was stopped after 6 hours; the solvent was evaporated and the crude mixture was purified by column chromatography to give to afford 8 as a yellow solid (64.2 mg, 81%). ¹H NMR (DMSO-*d*₆, 400 MHz): δ 11.62 (s, 1H), 8.59 (d, *J* = 8.4 Hz, 1H), 8.39 – 8.25 (m, 1H), 8.23 – 8.09 (m, 1H), 7.66 (s, 1H), 7.48 – 7.43 (m, 1H), 7.42 – 7.33 (m, 3H), 7.29 – 7.23 (m, 2H), 7.22 – 7.16 (m, 1H), 7.06 – 6.93 (m, 2H), 6.88 – 6.77 (m, 1H). ¹³C NMR (DMSO-*d*₆, 100 MHz): δ 157.2, 153.6, 147.5, 147.5, 142.5, 137.0, 132.2, 128.7, 128.6, 128.0, 125.8, 121.0, 118.5, 116.9, 114.9, 113.9, 92.5. HRMS (ESI-TOF) *m/z*: [M]⁺ calcd for C₁₉H₁₅N₃O₂ 317.1164, found 317.1155.

(iii) Evidence for the intermediacy of hydroxyketone compound (9)

In the presence of TBN, the hydroxyimino intermediate **8** was easily oxidized to the corresponding hydroxyketone intermediate **9**, where the active oxidizing species is probably NO⁺ produced from the reaction of H₂O and TBN (Scheme S6a). Moreover, the intermediate **9'** (derived from substrate **1a**) was detected in the ESI-HRMS spectrum of the crude reaction mixture (i.e $[M+Na]^+ = 249.0665$) (Scheme S4b).

Scheme S6. Isolation/Detection of intermediate 9 and 9'

Figure S3. High resolution mass spectrum of intermediate 9' (from 1a)

Procedure for isolation of intermediate 9: Hydroxyimino intermediate **8** (79.3 mg, 0.25 mmol) and Cu(OAc)₂.H₂O (10 mg, 20 mol%) were weighed into a tube, followed by the addition of 2 mL of a mixture of dioxane-H₂O (10:1). Then, TBN (0.03 mL, 1 equiv) was added and the mixture was allowed to stir for 3 hours at room temperature. Afterwards, the solvent was evaporated and the crude mixture was purified by column chromatography to afford hydroxyketone **9** as a yellow solid (24.2 mg, 32% yield) alongside pyridoquinazolone **2a** (14 mg, 29% yield). Compound **9**: ¹**H NMR** (DMSO-*d*₆, 400 MHz): δ 8.82 (d, *J* = 8.5 Hz, 1H), 8.43 – 8.33 (m, 1H), 7.88 – 7.72 (m, 2H), 7.68 – 7.60 (m, 1H), 7.55 – 7.45 (m, 1H), 7.40 – 7.24 (m, 5H), 7.12 (t, *J* = 7.4 Hz, 1H), 6.99 – 6.84 (m, 2H). ¹³**C NMR** (DMSO-*d*₆, 100 MHz): δ 197.7, 155.2, 153.0, 147.7, 138.4, 137.5, 137.2, 129.3, 128.9, 126.1, 125.2, 122.0, 119.3, 117.5, 116.8, 113.5, 91.2. **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₉H₁₄N₂NaO₂ 325.0953, found 325.0960.

(iv) Oxidation of hydroxyketone intermediate (9) to pyridoquinazolone 2a

The intermediacy of 9 was further validated by its facile transformation into pyridoquinazolone 2a in 97% yield under standard conditions (Scheme S7). This process most probably occurred *via* the cleavage of the indole ring, however, attempts to isolate any ring-opening intermediate at room temperature were unsuccessful. The inability to observe any intermediate at this stage is suggestive of the occurrence of a highly reactive/short-lived intermediate species.

Scheme S7. Detection/isolation of intermediate during the transformation of compound 9 to 2a

Procedure for transformation of compound 9 to 2a: Hydroxyketone intermediate, 9 (75.5 mg, 0.25 mmol) and $Cu(OAc)_2.H_2O$ (10 mg, 20 mol%) were weighed into a tube, followed by the addition of 2 mL of a mixture of dioxane-H₂O (10:1). Then, TBN (0.03 mL, 1 equiv) was added and the mixture was allowed to stir for either 6 hours at room temperature or 1 hour at 60 °C (standard conditions). After the indicated periods elapsed, the solvent was evaporated and the crude mixture purified by column chromatography. The reaction at room temperature afforded pyridoquinazolone 2a (8.8 mg, 18% yield) and recovered hydroxyketone 9 (58 mg, 77% yield). Meanwhile, the reaction at 60 °C (i.e. standard conditions) furnished pyridoquinazolone 2a (47.5 mg, 97% yield).

(v) Synthesis of indole ring-cleavage compounds and their investigation as possible intermediates

In a bid to validate the occurrence of an indole C2–C3 bond cleavage process, possible intermediates arising from intermediates 8 (or 8') and 9 (or 9') were synthesized, and then subjected to the standard conditions (Scheme S8, 9).

Synthesis of *N*-(2-formylphenyl)-*N*-(pyridin-2-yl)benzamide **10** and *N*-(2-formylphenyl)-*N*-(pyridin-2-yl)formamide **10**':

Scheme S8. Synthesis of compounds 10 and 10'

Compounds 10 and 10' were synthesized according to a previously described method.¹

N-(2-formylphenyl)-*N*-(pyridin-2-yl)benzamide **10** was obtained as a brown oil (106 mg, 35% yield). ¹**H NMR** (CDCl₃, 400 MHz): δ 10.27 (s, 1H), 8.33 – 8.19 (m, 1H), 7.93 (dd, *J* = 7.7, 1.7 Hz, 1H), 7.66 – 7.56 (m, 2H), 7.50 – 7.42 (m, 3H), 7.36 – 7.30 (m, 1H), 7.29 – 7.20 (m, 4H), 7.12 – 7.00 (m, 1H). ¹³**C NMR** (CDCl₃, 100 MHz): δ 189.9, 171.3, 155.9, 148.9, 143.6, 137.9, 135.3, 134.9, 132.8, 130.9, 130.7, 130.2, 128.9, 128.2, 128.2, 121.5, 121.4.

N-(2-formylphenyl)-*N*-(pyridin-2-yl)formamide **10'** was obtained as a brown oil (11 mg, 5% yield) together with 84% recovery of the starting material. ¹**H NMR** (CDCl₃, 400 MHz): δ 9.99 (s, 1H), 9.77 (s, 1H), 8.42 – 8.35 (m, 1H), 8.12 – 8.00 (m, 1H), 7.79 – 7.73 (m, 1H), 7.67 – 7.56 (m, 2H), 7.37 – 7.29 (m, 1H), 7.17 – 7.08 (m, 1H), 6.59 –

6.40 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 189.1, 162.5, 148.7, 138.7, 135.6, 135.1, 134.2, 130.7, 130.3, 129.5, 127.3, 125.3, 120.8.

Investigation as possible reaction intermediates:

Compounds 10 and 10' bearing the *N*-benzoyl and *N*-formyl fragments, respectively were subjected to the standard conditions. Under these conditions, 10 barely reacted and was recovered almost quantitatively (Scheme S9a); on the other hand, 10' reacted to afford the product 2a in 84% yield (Scheme S9b). Although 10' underwent complete conversion to 2a under standard conditions, the poor conversion of 10 might point to the occurrence of a more reactive intermediate.

Scheme S9. Investigation of compounds 10 and 10' as possible reaction intermediates.

Synthesis of 2-(pyridin-2-ylamino)benzonitrile 11 and 2-(pyridin-2-ylamino)benzaldehyde 12:

Scheme S10. Synthesis of compounds 11 and 12

Compounds 11 and 12 were synthesized according to a literature procedure.²

2-(pyridin-2-ylamino)benzonitrile **11** was obtained as a yellow solid after 12 hours of reflux (162 mg, 83% yield). ¹H NMR (CDCl₃, 400 MHz): δ 9.07 – 9.02 (m, 1H), 8.35 – 8.22 (m, 1H), 7.91 – 7.83 (m, 1H), 7.70 – 7.58 (m, 2H), 7.45 – 7.30 (m, 2H), 7.30 – 7.18 (m, 1H), 6.71 – 6.55 (m, 1H). ¹³C NMR (CDCl₃, 100 MHz): δ 155.8, 147.9, 144.8, 134.2, 133.0, 127.9, 127.2, 125.7, 124.6, 124.0, 115.4, 111.1.

2-(pyridin-2-ylamino)benzaldehyde **12** was obtained as a yellow solid after 2 hours of reflux (152 mg, 77% yield). ¹H NMR (CDCl₃, 400 MHz): δ 10.88 (s, 1H), 9.87 (s, 1H), 9.05 – 8.68 (m, 1H), 8.50 – 8.16 (m, 1H), 7.79 – 7.45 (m, 2H), 7.09 – 6.95 (m, 1H), 6.93 – 6.72 (m, 1H).

Investigation as possible reaction intermediates:

Scheme S11. Investigation of compounds 11 and 12 as possible reaction intermediates

Compounds 11 and 12 bearing the cyano and formyl groups, respectively were subjected to the standard conditions. While 11 underwent facile transformation to produce 2a in excellent yield, the reaction of 12 was surprisingly sluggish, affording only 26% yield of 2a after 12 hours.

(e) Importance of the 2-pyridyl Auxiliary

The importance of the 2-pyridyl group was demonstrated by the loss of efficiency observed with the 3-pyridyl auxiliary group (Scheme S12).

Scheme S12. Investigation of 3-pyridyl auxiliary group.

(f) Evidence that C3-position is the Primary Site of Radical Attack

Due to the blockage of the C-3 position of indole, no transannulation occurred with 3-phenylindole (1ad) which ultimately proves the importance of a free C3 position for this reaction (Scheme S13).

Scheme S13. Investigation of the reaction of 3-phenylindole

Control experiments for the formation of 5a

(a) Evidence of a Radical Process: Involvement of NO₂ Radicals

The addition of 1,1-diphenylethene (DPE) or butylated hydroxytoluene (BHT) to the reaction involving **4a** totally inhibited the formation of product **5a** (Scheme S14a,b). Meanwhile, 2-nitro-1,1-diphenylethene (**6**, 41%) was isolated from the reaction involving DPE which indicated the participation of nitro radicals.

Scheme S14. Radical trapping experiments involving 5a

(b) Experiment to rule out direct Cu^{II} coordination at C2 position

According to **GP4**, the successful nitration of 2-substituted indoles 4z, 4aa, 4ab to give the corresponding 3nitroindoles rules out any possible copper coordination at C2 position of the indole moiety.

Scheme S15. C3-nitration of 2-substituted indoles.

(c) Factors Responsible for the Dissociation of 2-Pyridoyl Auxiliary Group: Role of Cu(OAc)₂.H₂O

In order to determine the factors responsible for the dissociation of 2-pyridoyl auxiliary, some reactions involving substrate **4a** were carried out as described below.

Firstly, it was speculated that the relative acidity of the reaction mixture might promote the hydrolysis of 2-pyridoyl. So, a mixture of compound **4a** (56 mg, 0.25 mmol) and 37% (w/w) HCl (0.061 mL, 3 equiv) was stirred in dioxane (2 mL) at 60 °C. After 24 hours, indole **4a** remained unconsumed which rules out any possible acid-promoted hydrolysis of the 2-pyridoyl auxiliary (Scheme S16).

Scheme S16. Attempted hydrolysis of 2-pyridoyl group under acidic conditions.

Secondly, a mixture of **4a** (56 mg, 0.25 mmol) and Cu(OAc)₂.H₂O (25 mg, 50 mol%) in dioxane (2 mL) was stirred at 60 °C. After 12 hours, a sizeable portion (52%) of **4a** had been degraded to the parent indole (39 mg, 33% yield). This indicates that Cu(OAc)₂.H₂O is responsible for the dissociation of the 2-pyridoyl auxiliary group *via* its coordination with 2-pyridoyl group, which weakens the amide bond.⁵

Scheme S17. Reaction of indole 4a with Cu(OAc)₂.H₂O.

(d) Deuterium Incorporation Experiment:

The deuterium incorporation at C3 position confirms the strong reactivity at that position (Scheme S18).

Scheme S18. Deuterium incorporation experiment involving indole 4a.

N-(2-pyridoyl) indole **4a** (28 mg, 0.125 mmol) and anhydrous Cu(OAc)₂ (11.3 mg, 50 mol%) were weighed into a tube followed by the addition of 1 mL of a mixture of dry dioxane-D₂O (9:1). The tube was capped and the mixture was stirred at 60 °C for 24 hours. ¹H NMR integration revealed 22% deuterium incorporation at C3 position of indole.

Figure S4. ¹H NMR of Deuterium experiment involving 4a.

(e) Competition Experiment

Competition experiment involving equimolar amounts of substrates 4g and 4m indicate that electron-deficient indoles tend to react faster than their electron-rich counterparts, which clearly rules out an electrophilic aromatic substitution (S_EAr) pathway (Scheme S19).⁶

Scheme S19. Competition experiment involving indoles 4g and 4m.

Figure S5. ¹H NMR spectra showing product distribution between 5g and 5m.

Experimental procedure: 5-Methyl-substituted indole **4g** (23.6 mg, 0.1 mmol) and 5-methoxycarbonylsubsituted indole **4m** (28 mg, 0.1 mmol) and Cu(OAc)₂.H₂O (12.5 mg, 50 mol%) were weighed into a tube followed by the addition of 2 mL of dioxane. Then, TBN (0.036 mL, 3 equiv) was added, the tube was capped and the mixture was stirred at 60 °C. After 6 hours, the reaction mixture was cooled and diluted with 10 mL of 3 M aqueous NH₃ solution. After separation of the two layers, the aqueous layer was extracted with EtOAc (15 mL × 3). The combined organic extract were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. The ¹H NMR analysis of the product distribution was determined by integration using 1,3,5-trimethoxybenzene as an internal standard.

(f) Importance of the Co-ordinating 2-pyridoyl Auxiliary

The promoting as well as stabilizing effect of the 2-pyridoyl auxiliary was confirmed by the lack of efficiency demonstrated by some substrates. For instance, indole or 1-methylindole did not furnish the desired products even though TLC indicated both substrates were completely consumed in the reaction.

Moreover, similar results were obtained with 1-(pyridin-2-ylmethyl)-1*H*-indole. However, (1*H*-indol-1-yl)(pyridin-3-yl)methanone failed to react under the standard conditions. These results proves the importance of the coordinating oxygen and nitrogen atoms of the 2-pyridoyl auxiliary.

Scheme S20. Importance of the 2-pyridoyl auxiliary

(g) Effect of Copper Salt Concentration on the Formation of 5a with Time

The reaction was monitored under standard conditions using different concentrations of $Cu(OAc)_2.H_2O$ (see table below). Firstly, $Cu(OAc)_2.H_2O$ (25 mol%) was not enough to drive the reaction to completion, even after 72 hours (entries 1 & 2). Meanwhile, higher loadings of $Cu(OAc)_2.H_2O$ (i.e. 75 & 100 mol%) appeared to increase the rate of reaction (**4a** was completely consumed in 12 h and 7 h, respectively), albeit with a drop in the yields of **5a** (compare entries 3 vs 4 & 5). The higher loading of the copper salt presumably increases the rate of dissociation of 2-pyridoyl relative to nitration; the resulting parent indole undergoes oxidative decomposition, thus limiting reaction efficiency.

Table S4: Effect of Cu(OAc)₂.H₂O Concentration on the Formation of 5a^a

^aConditions: **4a** (0.5 mmol) in 3 mL of dioxane at 60 °C. ^bAmount of recovered **4a** in parenthesis.

(h) Evidence for the Dependence of the Nitration Reaction on the Rate of Amide Bond Dissociation

The success of this reaction lies in the prior dissociation of the 2-pyridoyl auxiliary as illustrated by the reaction profile of **4a** shown below. This was demonstrated by monitoring substrate conversion/product formation with time over a 6-hour period (Figure S6). The induction period observed in the product formation appeared to correlate with the rate of dissociation of the 2-pyridoyl auxiliary in the substrate.

Figure S6. Reaction profile of 4a showing rate of consumption versus rate of formation of 5a.

Experimental procedure: Several independent reactions of **4a** (0.1 mmol each) were carried out under the optimized nitration conditions, and quenched at the indicated time points. The reaction mixture was cooled and diluted with 10 mL of 3 M aqueous NH_3 solution. After separation of the two layers, the aqueous layer was extracted with EtOAc (15 mL × 3). The combined organic extract were dried over anhydrous Na_2SO_4 , filtered, and concentrated in vacuo. The concentrations of product and starting material were determined by ¹H NMR using 1,3,5-trimethoxybenzene (0.1 mmol) as internal standard.

7. Gram–Scale Synthesis of 2a and 5a

(a) Procedure for the preparation of 2a on a 110 mmol scale

Experimental procedure: N-(pyridin-2-yl)indole **1a** (21.37 g, 110 mmol) and Cu(OAc)₂.H₂O (2.19 g, 10 mol%) were weighed into 1000 mL flask, followed by the addition of 700 mL of a mixture of dioxane-H₂O (1:3). The flask was covered and the mixture stirred at 60 °C for 96 hours. Meanwhile, TBN (52 mL, 4 equiv) was added in portions over the duration of reaction, the tube was capped. After the reaction was complete (as indicated by TLC), the mixture was cooled and the solvent evaporated under vacuum, followed by dilution of the residue with 500 mL of saturated NH₄Cl solution (containing 1% aqueous ammonia). The aqueous mixture was extracted with EtOAc (200 mL × 5), and the combined organic extract was washed with saturated NaCl solution (100 mL × 3), and dried over anhydrous Na₂SO₄. The dried extract was concentrated under vacuum and purified by column chromatography on silica gel to afford the pure product **2a** (14.82 g, 72%).

(b) Procedure for the preparation of 5a on a 20 mmol scale

Experimental procedure: N-(2-pyridoyl) indole **4a** (4.44 g, 20 mmol) and Cu(OAc)₂.H₂O (2.00 g, 50 mol%) were weighed into a flask followed by the addition of 120 mL of dioxane. After TBN (7.10 mL, 3 equiv) was added, the flask was covered and the mixture was stirred at 60 °C for 36 hours under argon atmosphere. After the reaction was complete (indicated by TLC), the reaction mixture was cooled and diluted with 100 mL of 3 M aqueous NH₃ solution. After separation of the two layers, the aqueous layer was extracted with EtOAc (100 mL × 3). The combined organic extract were dried over anhydrous Na₂SO₄, filtered, and concentrated in vacuo. Purification of crude product by column chromatography on silica gel afforded the pure product **5a** (2.37 g, 73%).

8. Unsuccessful Substrates

Figure S7. Unsuccessful substrates under both protocols.

9. Preparation and Characterization of Unknown Starting Materials

Preparation of substrates 1a-q and 1aa-1am⁷

To a screw-cap test tube, was added CuI (9.5 mg, 5 mol %), indole (1 mmol), and K_3PO_4 (445 mg, 2.1 mmol), and the reaction vessel was fitted with a rubber septum. The vessel was evacuated and back-filled with argon twice. Then the heteroaryl halide (1.0 mmol), *N*,*N'*-dimethyl-ethylenediamine (0.022 mL, 20 mol %), and toluene (3 mL) were then successively added under a stream of argon. The reaction tube was sealed and the mixture was stirred in at 110 °C. After 24 h, the reaction mixture was cooled, diluted with ethyl acetate (3 mL), and filtered through a plug of silica gel, eluting with additional ethyl acetate (20 mL). The filtrate was concentrated and the resulting residue was purified by column chromatography to provide the pure compounds **1**.

5-(Benzyloxy)-1-(pyridin-2-yl)-1H-indole (1g)

1g was obtained as a solid; Mp: 103–105 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.58 – 8.53 (m, 1H), 8.24 – 8.17 (m, 1H), 7.82 – 7.76 (m, 1H), 7.70 (d, J = 3.4 Hz, 1H), 7.54 – 7.48 (m, 2H), 7.47 – 7.38 (m, 3H), 7.37 – 7.31 (m, 1H), 7.23 – 7.20 (m, 1H), 7.16 – 7.11 (m, 1H), 7.07 – 7.02 (m, 1H), 6.65 (d, J = 3.4 Hz, 1H), 5.15 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 154.2, 152.5, 148.9, 138.4, 137.6, 131.1, 130.4, 128.6, 127.8, 127.6, 126.3, 119.8, 114.2, 113.9, 113.5, 105.4, 104.5, 70.7; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₂₀H₁₇N₂O 301.1341, found 301.1338.

1-(5-Fluoropyridin-2-yl)-1H-indole (1ae)

1ae was obtained as a solid; Mp: 79–81 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.41 – 8.39 (m, 1H), 8.10 – 8.07 (m, 1H), 7.67 – 7.64 (m, 1H), 7.61 (d, J = 3.5 Hz, 1H), 7.54 – 7.49 (m, 1H), 7.44 – 7.41 (m, 1H), 7.31 – 7.26 (m, 1H), 7.22 – 7.18 (m, 1H), 6.71 – 6.69 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.2, 155.7, 148.7 (d, J_{C-F} = 2.4 Hz), 136.7, 136.4, 135.0, 130.3, 126.1, 125.6 (d, J_{C-F} = 20.2 Hz), 123.2, 121.3 (d, J_{C-F} = 16.8 Hz), 115.5 (d, J_{C-F} = 4.5 Hz), 112.5, 105.6; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₀FN₂ 213.0828, found 213.0841.

1-(5-Chloropyridin-2-yl)-1H-indole (1af)

1af was obtained as a solid; Mp: 57–59 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.53 – 8.50 (m, 1H), 8.19 – 8.16 (m, 1H), 7.79 – 7.76 (m, 1H), 7.68 – 7.65 (m, 2H), 7.46 – 7.43 (m, 1H), 7.34 – 7.29 (m, 1H), 7.25 – 7.21 (m, 1H), 6.74 – 6.72 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 150.7, 147.5, 138.1, 135.0, 130.4, 127.5, 125.7, 123.4, 121.5, 121.2, 114.9, 113.0, 106.1; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₀ClN₂ 229.0533, found 229.0543.

1-(4-Chloropyridin-2-yl)-1H-indole (1ag)

1ag was obtained as yellow oil; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.44 (d, J = 5.4 Hz, 1H), 8.25 – 8.22 (m, 1H), 7.68 – 7.63 (m, 2H), 7.49 (d, J = 1.7 Hz, 1H), 7.34 – 7.29 (m, 1H), 7.24 – 7.20 (m, 1H), 7.17 – 7.13 (m, 1H), 6.74 – 6.71 (m, 1H); ¹³**C NMR** (CDCl₃, 150 MHz): δ 153.5, 149.7, 145.7, 135.1, 130.6, 125.6, 123.5, 121.7, 121.2, 120.2, 114.3, 113.3, 106.4; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₁₀ClN₂ 229.0533, found 229.0542.

1-(5-Cyanopyridin-2-yl)-1H-indole (1ai)

1ai was obtained as a solid; Mp: 122–124 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.82 – 8.77 (m, 1H), 8.41 – 8.36 (m, 1H), 8.01 – 7.97 (m, 1H), 7.71 (d, J = 3.7 Hz, 1H), 7.68 – 7.64 (m, 1H), 7.55 – 7.50 (m, 1H), 7.38 – 7.33 (m, 1H), 7.29 – 7.25 (m, 1H), 6.80 – 6.77 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 154.5, 152.4, 141.2, 135.1, 131.0, 125.0, 124.2, 122.7, 121.4, 116.9, 114.5, 112.7, 108.3, 104.5; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₄H₁₀N₃ 220.0875, found 220.0864.

1-(3-Trifluoromethylpyridin-2-yl)-1*H*-indole (1ak)

1ak was obtained as colorless oil. ¹**H NMR** (CDCl₃, 400 MHz): δ 8.83 – 8.78 (m, 1H), 8.26 – 8.20 (m, 1H), 7.71 – 7.65 (m, 1H), 7.52 – 7.47 (m, 1H), 7.43 – 7.39 (m, 1H), 7.37 – 7.33 (m, 1H), 7.26 – 7.18 (m, 2H), 6.75 – 6.70 (m, 1H). ¹³**C NMR** (CDCl₃, 100 MHz): δ 151.9, 149.3, 137.0 (q, *J* = 4.7 Hz), 136.9, 128.7, 127.7 (q, *J* = 2.6 Hz), 122.5, 122.3 (q, *J* = 273.3 Hz), 121.9, 121.5 (q, *J* = 32.8 Hz), 120.7, 120.5, 111.0, 104.5. **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₄H₁₀F₃N₂ 263.0796, found 263.0791.

2-(1H-indol-1-yl)quinoline (1al)

1al was obtained as a white solid; Mp: 111–113 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.62 – 8.57 (m, 1H), 8.24 – 8.19 (m, 1H), 8.12 – 8.07 (m, 1H), 7.83 – 7.78 (m, 2H), 7.75 – 7.66 (m, 2H), 7.62 (d, *J* = 8.8 Hz, 1H), 7.51 – 7.46 (m, 1H), 7.38 – 7.33 (m, 1H), 7.27 – 7.22 (m, 1H), 6.78 – 6.71 (m, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 151.2, 147.3, 138.7, 135.4, 130.6, 130.3, 128.4, 127.5, 125.9, 125.8, 125.6, 123.4, 121.6, 121.0, 114.2, 113.9, 106.1; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₇H₁₃N₂ 245.1079, found 245.1088.

2-(1H-indol-1-yl)thiazole (1am)

1am was obtained as pale yellow oil; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.33 – 8.28 (m, 1H), 7.70 – 7.60 (m, 3H), 7.40 – 7.34 (m, 1H), 7.27 – 7.24 (m, 1H), 7.06 (d, *J* = 3.6 Hz, 1H), 6.74 – 6.70 (m, 1H); ¹³**C NMR** (CDCl₃, 100 MHz): δ 160.7, 140.0, 135.0, 130.1, 126.5, 124.1, 122.2, 121.3, 113.2, 112.9, 107.1; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₁H₉N₂S 201.0486, found 201.0479.

Preparation of *N*-(2-pyridoyl) indoles 4⁸

To a solution of the picolinic acid (4.2 mmol) in dichloromethane (8 mL) at room temperature was added thionyl chloride (0.8 mL) and one drop of dry DMF. The reaction was allowed to stir at 40 $^{\circ}$ C for 4 hours. The solvent was then removed under reduced pressure to afford the corresponding crude acid chloride. Then dichloromethane (10 mL) was added and the solution was cooled to 0 $^{\circ}$ C followed by dropwise addition of triethylamine (1.4 mL), 4-dimethylaminopyridine (0.1 mmol) and indole derivative (4.0 mmol, 1 equiv). The reaction mixture was stirred for 12 hours at room temperature. After completion of reaction as indicated by TLC, the mixture was extracted by dichloromethane and the organic layer was dried over Na₂SO₄ and the solvent was evaporated. Purification by flash column chromatography on silica gel afforded the substrates **4**.

(1*H*-indol-1-yl)(pyridin-2-yl)methanone (4a)

4a was obtained as a white solid; Mp: 82–84 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.76 – 8.70 (m, 1H), 8.55 (d, J = 8.2 Hz, 1H), 8.10 – 8.04 (m, 1H), 7.98 (d, J = 3.8 Hz, 1H), 7.91 (td, J = 7.7, 1.5 Hz, 1H), 7.62 – 7.58 (m, 1H), 7.52 – 7.46 (m, 1H), 7.43 – 7.37 (m, 1H), 7.35 – 7.30 (m, 1H), 6.64 (d, J = 3.8 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 165.7, 152.3, 148.5, 137.4, 136.4, 130.7, 128.5, 126.1, 125.7, 124.9, 124.2, 120.8, 116.9, 109.1; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₄H₁₁N₂O 223.0871, found 223.0868.

(4-Methyl-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4b)

4b was obtained as pale yellow oil; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.76 – 8.72 (m, 1H), 8.40 – 8.34 (m, 1H), 8.09 – 8.05 (m, 1H), 7.95 (d, J = 3.9 Hz, 1H), 7.91 (td, J = 7.8, 1.8 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.32 – 7.27 (m, 1H), 7.15 – 7.11 (m, 1H), 6.69 – 6.66 (m, 1H), 2.55 (s, 3H); ¹³**C NMR** (CDCl₃, 150 MHz): δ 165.8, 152.4, 148.5, 137.3, 136.1, 130.2, 130.1, 127.8, 126.1, 125.7, 125.0, 124.6, 114.4, 107.5, 18.5; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₃N₂O 237.1028, found 237.1047.

(4-Methoxy-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4c)

4c was obtained as a white solid; Mp: 137–139 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.75 – 8.72 (m, 1H), 8.14 (d, J = 8.3 Hz, 1H), 8.08 – 8.05 (m, 1H), 7.94 – 7.89 (m, 1H), 7.88 (d, J = 3.8 Hz, 1H), 7.52 – 7.47 (m, 1H), 7.32 (t, J = 8.2 Hz, 1H), 6.79 – 6.76 (m, 2H), 3.96 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 166.0, 152.9, 152.5, 148.7, 137.8, 137.5, 127.0, 126.2, 126.0, 125.8, 120.9, 110.1, 106.2, 104.9, 55.6; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₂N₂NaO₂ 275.0796, found 275.0804.

(4-Fluoro-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4d)

4d was obtained as a white solid; Mp: 154–156 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.76 – 8.72 (m, 1H), 8.32 (d, *J* = 8.3 Hz, 1H), 8.14 – 8.09 (m, 1H), 8.03 (d, *J* = 3.9 Hz, 1H), 7.98 – 7.92 (m, 1H), 7.55 – 7.50 (m, 1H), 7.36 – 7.28 (m, 1H), 7.04 – 6.97 (m, 1H), 6.76 – 6.73 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.2, 155.1 (d, *J*_{C-F} = 247.6 Hz), 151.4, 148.1, 138.0 (d, *J*_{C-F} = 9.3 Hz), 137.0, 128.1, 125.9, 125.5, 125.3 (d, *J*_{C-F} = 7.2 Hz), 118.9 (d, *J*_{C-F} = 22.0 Hz), 112.5 (d, *J*_{C-F} = 3.8 Hz), 109.1 (d, *J*_{C-F} = 18.6 Hz), 103.9; **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₄H₉FN₂NaO 263.0597, found 263.0599.

(4-Bromo-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4e)

4e was obtained as a white solid; Mp: 73–75 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.80 – 8.76 (m, 1H), 8.53 (d, J = 8.3 Hz, 1H), 8.16 – 8.12 (m, 2H), 8.01 – 7.95 (m, 1H), 7.59 – 7.54 (m, 1H), 7.53 – 7.49 (m, 1H), 7.31 – 7.27 (m, 1H), 6.74 (dd, J = 3.9, 0.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.7, 151.8, 148.6, 137.5, 136.8, 131.3, 129.2, 127.1, 126.4, 126.0, 125.9, 115.9, 114.5, 108.7; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₉BrN₂NaO 322.9796, found 322.9776.

Methyl 1-picolinoyl-1*H*-indole-4-carboxylate (4f)

4f was obtained as a white solid; Mp: 118–120 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.79 – 8.73 (m, 2H), 8.14 – 8.08 (m, 2H), 8.06 – 8.03 (m, 1H), 7.97 – 7.91 (m, 1H), 7.55 – 7.50 (m, 1H), 7.43 (t, *J* = 8.0 Hz, 1H), 7.36 – 7.34 (m, 1H), 3.98 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 166.8, 165.3, 151.4, 148.1, 137.0, 136.6, 130.4, 129.9, 126.2, 125.9, 125.5, 123.9, 121.4, 120.9, 109.0, 51.5; **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₆H₁₂N₂NaO₃ 303.0746, found 303.0737.

(5-Methyl-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4g)

4g was obtained as a white solid; Mp: 78–80 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.76 – 8.72 (m, 1H), 8.41 (d, J = 8.4 Hz, 1H), 8.09 – 8.06 (m, 1H), 7.96 – 7.90 (m, 2H), 7.52 – 7.48 (m, 1H), 7.39 – 7.36 (m, 1H), 7.22 – 7.19 (m, 1H), 6.58 – 6.56 (m, 1H), 2.47 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.5, 152.5, 148.5, 137.4, 134.6, 133.8, 130.9, 128.5, 126.2, 126.0, 125.7, 120.8, 116.5, 109.0, 21.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₂N₂NaO 259.0847, found 259.0852.

(5-Methoxy-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4h)

4h was obtained as a white solid; Mp: 118–120 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.75 – 8.71 (m, 1H), 8.44 (d, J = 9.0 Hz, 1H), 8.10 – 8.06 (m, 1H), 7.98 (d, J = 3.8 Hz, 1H), 7.95 – 7.91 (m, 1H), 7.54 – 7.48 (m, 1H), 7.06 (d, J = 2.5 Hz, 1H), 7.01 – 6.96 (m, 1H), 6.58 – 6.56 (m, 1H), 3.88 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 164.8, 156.4, 151.9, 148.0, 136.9, 131.3, 130.5, 128.7, 125.6, 125.3, 117.2, 112.6, 108.6, 103.3, 55.2; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₂N₂NaO₂ 275.0796, found 275.0802.

(5-(Benzyloxy)-1H-indol-1-yl)(pyridin-2-yl)methanone(4i)

4i was obtained as a white solid; Mp: 131–133 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.75 – 8.71 (m, 1H), 8.46 (d, J = 9.0 Hz, 1H), 8.10 – 8.06 (m, 1H), 7.99 (d, J = 3.8 Hz, 1H), 7.92 (td, J = 7.8, 1.7 Hz, 1H), 7.52 – 7.47 (m, 3H), 7.43 – 7.38 (m, 2H), 7.36 – 7.31 (m, 1H), 7.15 – 7.13 (m, 1H), 7.10 – 7.06 (m, 1H), 6.56 (d, J = 3.8 Hz, 1H), 5.15 (s, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.3, 156.0, 152.4, 148.5, 1374, 137.2, 131.8, 131.2, 129.2, 128.6, 127.9, 127.5, 126.1, 125.7, 117.7, 113.9, 109.1, 105.1, 70.5; **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₂₁H₁₆N₂NaO₂ 351.1109, found 351.1119.

(5-Chloro-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4j)

4j was obtained as a white solid; Mp: 143–144 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.75 – 8.70 (m, 1H), 8.47 (d, J = 8.8 Hz, 1H), 8.12 – 8.06 (m, 2H), 7.96 – 7.91 (m, 1H), 7.56 – 7.49 (m, 2H), 7.35 – 7.30 (m, 1H), 6.58 – 6.55 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 164.9, 151.4, 148.1, 137.0, 134.3, 131.5, 129.4, 129.1, 125.9, 125.5, 124.5, 119.9, 117.4, 107.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₉ClN₂NaO 279.0301, found 279.0275.

(5-Bromo-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4k)

4k was obtained as a white solid; Mp: 134–136 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.78 (d, J = 4.8 Hz, 1H), 8.53 (d, J = 8.3 Hz, 1H), 8.18 – 8.11 (m, 2H), 8.01 – 7.95 (m, 1H), 7.59 – 7.54 (m, 1H), 7.51 (d, J = 7.8 Hz, 1H), 7.32 – 7.27 (m, 1H), 6.74 (d, J = 3.9 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 164.9, 151.3, 148.0, 137.0, 134.7, 132.0, 129.3, 127.2, 125.9, 125.5, 123.0, 117.8, 116.9, 107.6; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₄H₁₀BrN₂O 300.9977, found 300.9969.

(5-Iodo-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4l)

41 was obtained as a white solid; Mp: 141–143 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.75 – 8.72 (m, 1H), 8.30 (d, J = 8.7 Hz, 1H), 8.12 – 8.09 (m, 1H), 8.03 (d, J = 3.9 Hz, 1H), 7.97 – 7.92 (m, 2H), 7.67 – 7.64 (m, 1H), 7.54 – 7.51 (m, 1H), 6.57 – 6.54 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.5, 151.9, 148.5, 137.5, 135.7, 133.4, 132.9, 129.6, 129.4, 126.4, 126.0, 118.7, 107.9, 88.4; **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₄H₉IN₂NaO 370.9657, found 370.9653.

Methyl 1-picolinoyl-1*H*-indole-5-carboxylate (4m)

4m was obtained as a white solid; Mp: 155–157 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.77 – 8.71 (m, 1H), 8.55 (d, *J* = 8.7 Hz, 1H), 8.31 (d, *J* = 1.7 Hz, 1H), 8.14 – 8.06 (m, 3H), 7.98 – 7.91 (m, 1H), 7.56 – 7.50 (m, 1H), 6.69 (d, *J* = 3.9 Hz, 1H), 3.95 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 166.9, 165.2, 151.3, 148.1, 138.6, 137.0, 130.0, 129.4, 126.0, 125.8, 125.6, 125.5, 122.4, 116.0, 108.7, 51.6; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₆H₁₂N₂NaO₃ 303.0746, found 303.0743.

(5-Cyano-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4n)

4n was obtained as a white solid; Mp: 144–146 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.79 – 8.72 (m, 1H), 8.63 (d, J = 8.6 Hz, 1H), 8.25 (d, J = 3.8 Hz, 1H), 8.19 – 8.13 (m, 1H), 7.98 (td, J = 7.8, 1.7 Hz, 1H), 7.95 – 7.90 (m, 1H), 7.67 – 7.61 (m, 1H), 7.60 – 7.54 (m, 1H), 6.69 (d, J = 3.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.6, 151.3, 148.7, 138.4, 137.7, 130.9, 130.7, 128.1, 126.8, 126.3, 125.4, 119.6, 117.6, 108.2, 107.4; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₉N₃NaO 270.0643, found 270.0653.

1-Picolinoyl-1*H*-indole-5-carbaldehyde (40)

40 was obtained as a white solid; Mp: 147–149 °C; ¹H NMR (CDCl₃, 400 MHz): δ 10.15 (s, 1H), 8.83 – 8.80 (m, 1H), 8.71 (d, J = 8.6 Hz, 1H), 8.23 – 8.18 (m, 3H), 8.05 – 8.00 (m, 1H), 7.99 – 7.96 (m, 1H), 7.64 – 7.59 (m, 1H), 6.80 (d, J = 3.9 Hz, 1H); ¹³C NMR (CDCl₃, 150 MHz): δ 192.3, 165.8, 151.7, 148.8, 140.2, 137.7, 133.0, 131.1, 130.6, 126.8, 126.4, 126.3, 123.6, 117.4, 109.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₅H₁₁N₂O₂ 251.0821, found 251.0821.

(6-Methyl-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4p)

4p was obtained as an off-white solid; Mp: 64-66 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.81 – 8.77 (m, 1H), 8.45 (s, 1H), 8.14 – 8.10 (m, 1H), 7.98 (td, J = 7.8, 1.7 Hz, 1H), 7.93 (d, J = 3.8 Hz, 1H), 7.57 – 7.53 (m, 1H), 7.52 (d, J = 7.9 Hz, 1H), 7.20 (d, J = 7.8 Hz, 1H), 6.64 (d, J = 3.8 Hz, 1H), 2.58 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.7, 152.4, 148.5, 137.3, 136.8, 135.0, 128.4, 127.8, 126.0, 125.6, 125.5, 120.3, 117.2, 109.0, 22.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₂N₂NaO 259.0847, found 259.0858.

(6-Fluoro-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4q)

4q was obtained as a white solid; Mp: 98–100 °C; **¹H NMR** (CDCl₃, 400 MHz): δ 8.77 – 8.73 (m, 1H), 8.33 – 8.26 (m, 1H), 8.13 – 8.09 (m, 1H), 8.03 (d, *J* = 3.9 Hz, 1H), 7.98 – 7.92 (m, 1H), 7.55 – 7.48 (m, 2H), 7.11 – 7.04 (m, 1H), 6.63 – 6.58 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.6, 161.2 (d, *J*_{C-F} = 240.4 Hz), 152.0, 148.5, 137.5, 136.6 (d, *J*_{C-F} = 12.9 Hz), 128.9 (d, *J*_{C-F} = 4.0 Hz), 126.9 (d, *J*_{C-F} = 1.6 Hz), 126.3, 125.9, 121.2 (d, *J*_{C-F} = 9.8 Hz, 1H), 112.2 (d, *J*_{C-F} = 24.1 Hz), 108.7, 104.5 (d, *J*_{C-F} = 28.7 Hz); **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₁₄H₉FN₂NaO 263.0597, found 263.0604.

(6-Chloro-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4r)

4r was obtained as a white solid; Mp: 137–139 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.76 – 8.72 (m, 1H), 8.62 – 8.57 (m, 1H), 8.12 – 8.04 (m, 2H), 7.97 – 7.91 (m, 1H), 7.54 – 7.47 (m, 2H), 7.31 – 7.27 (m, 1H), 6.60 (d, *J* = 3.7 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.0, 151.4, 148.1, 137.0, 136.3, 130.3, 128.7, 128.6, 125.9, 125.5, 124.2, 120.9, 116.7, 108.2; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₄H₉ClN₂NaO 279.0301, found 279.0291.

(7-Methyl-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4s)

4s was obtained as a white solid; Mp: 97–99 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.79 – 8.76 (m, 1H), 8.18 – 8.14 (m, 1H), 7.97 – 7.92 (m, 1H), 7.56 – 7.52 (m, 1H), 7.49 (d, J = 3.8 Hz, 1H), 7.46 – 7.42 (m, 1H), 7.26 – 7.22 (m, 1H), 7.18 (d, J = 7.3 Hz, 1H), 6.61 (d, J = 3.7 Hz, 1H), 2.52 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.1, 151.6, 149.1, 137.4, 135.8, 132.1, 129.4, 127.7, 126.7, 126.5, 126.2, 124.3, 118.5, 108.7, 21.9; **HRMS** (ESI-TOF) *m/z*: calcd for C₁₅H₁₂N₂NaO [M+Na]⁺ 259.0847, found 259.0853.

(7-Chloro-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4t)

4t was obtained as pale yellow oil; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.74 – 8.69 (m, 1H), 8.24 – 8.18 (m, 1H), 7.96 – 7.89 (m, 1H), 7.65 (d, J = 3.7 Hz, 1H), 7.55 – 7.50 (m, 2H), 7.35 – 7.30 (m, 1H), 7.25 – 7.20 (m, 1H), 6.65 (d, J = 3.7 Hz, 1H); ¹³**C NMR** (CDCl₃, 150 MHz): δ 164.8, 150.8, 149.1, 137.4, 134.1, 133.5, 130.2, 127.1, 126.27, 126.25, 124.5, 121.1, 119.6, 107.9; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₄H₉ClN₂NaO 279.0301, found 279.0323.

Methyl 1-picolinoyl-1*H*-indole-7-carboxylate (4u)

4u was obtained as a white solid; Mp: 74–76 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.78 – 8.69 (m, 1H), 8.17 – 8.08 (m, 1H), 7.96 – 7.85 (m, 1H), 7.83 – 7.75 (m, 1H), 7.77 – 7.63 (m, 2H), 7.56 – 7.46 (m, 1H), 7.38 – 7.28 (m, 1H), 6.70 – 6.63 (m, 1H), 3.77 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 167.7, 165.3, 150.4, 148.6, 136.9, 132.3, 131.8, 129.5, 126.4, 125.7, 124.8, 123.8, 123.0, 121.2, 107.8, 51.5; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₆H₁₃N₂O₃ 281.0926, found 281.0921.

(3-Methyl-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4v)

4v was obtained as a white solid; Mp: 119–121 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.73 (d, J = 4.7 Hz, 1H), 8.53 (d, J = 8.0 Hz, 1H), 8.05 – 8.01 (m, 1H), 7.92 – 7.86 (m, 1H), 7.70 (d, J = 1.1 Hz, 1H), 7.55 – 7.51 (m, 1H), 7.49 – 7.45 (m, 1H), 7.42 – 7.37 (m, 1H), 7.37 – 7.32 (m, 1H), 2.27 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 165.4, 152.7, 148.5, 137.3, 136.7, 131.8, 126.0, 125.5, 125.0, 124.9, 124.0, 118.8, 118.4, 116.9, 9.8; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₅H₁₂N₂NaO 259.0847, found 259.0857.

Methyl 1-picolinoyl-1*H*-indole-3-carboxylate (4w)

4w was obtained as a white solid; Mp: 129–131 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.57 – 8.52 (m, 1H), 8.26 – 8.18 (m, 2H), 7.94 – 7.88 (m, 1H), 7.71 – 7.66 (m, 1H), 7.49 – 7.40 (m, 2H), 7.36 – 7.29 (m, 2H), 3.45 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 167.0, 161.4, 151.8, 147.9, 138.3, 136.9, 131.3, 127.1, 127.0, 125.9, 124.7, 123.5, 121.9, 115.1, 114.4, 51.4; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₆H₁₃N₂O₃ 281.0926, found 281.0917.

(3-Cyano-1*H*-indol-1-yl)(pyridin-2-yl)methanone (4x)

4x was obtained as a white solid; Mp: 124–126 °C; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.95 (s, 1H), 8.81 – 8.77 (m, 1H), 8.58 – 8.54 (m, 1H), 8.26 – 8.22 (m, 1H), 8.00 (td, *J* = 7.8, 1.7 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.63 – 7.59 (m, 1H), 7.54 – 7.49 (m, 1H), 7.49 – 7.44 (m, 1H); ¹³**C NMR** (CDCl₃, 100 MHz): δ 164.6, 150.5, 148.7, 137.8, 136.9, 135.7, 127.8, 127.2, 126.8, 126.7, 125.5, 119.6, 117.3, 114.2, 93.9; **HRMS** (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₀N₃O 248.0824, found 248.0820.

1-Picolinoyl-1*H*-indole-3-carbaldehyde (4y)

4y was obtained as a white solid; Mp: 114–116 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 10.12 (s, 1H), 8.95 (s, 1H), 8.80 – 8.76 (m, 1H), 8.54 – 8.50 (m, 1H), 8.34 – 8.29 (m, 1H), 8.25 – 8.21 (m, 1H), 8.02 – 7.97 (m, 1H), 7.62 – 7.57 (m, 1H), 7.50 – 7.41 (m, 2H); ¹³C NMR (CDCl₃, 100 MHz): δ 185.7, 164.7, 150.4, 148.2, 139.5, 137.3, 136.9, 126.6, 126.2, 126.1, 125.6, 125.2, 122.2, 121.5, 116.3; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₅H₁₁N₂O₂ 251.0821, found 251.0823.

10. Characterization Data for Synthesized Products 2 and 3

11*H*-pyrido[2,1-b]quinazolin-11-one (2a)⁹

According to **GP2**, the reaction of 1-(pyridin-2-yl)indole (**1a**) (97 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **2a** as a yellow solid (87 mg, 89% yield); Mp: 209–211 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.89 (d, J = 7.3 Hz, 1H), 8.46 (d, J = 8.0 Hz, 1H), 7.90 – 7.76 (m, 2H), 7.56 – 7.46 (m, 3H), 6.91 – 6.84 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.0, 148.5, 147.7, 135.1, 134.1, 127.3, 126.9, 126.7, 126.3, 125.2, 116.3, 112.5; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₉N₂O 197.0715, found 197.0706.

1-Methyl-11*H*-pyrido[2,1-b]quinazolin-11-one (2b)¹⁰

According to **GP2**, the reaction of 7-methyl-1-(pyridin-2-yl)indole (**1b**) (105 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **2b** as a yellow solid (84 mg, 80% yield). **Melting point**: 143–145 °C. ¹**H NMR** (CDCl₃, 400 MHz): δ 8.85 (d, J = 7.5 Hz, 1H), 7.72 – 7.59 (m, 2H), 7.54 – 7.43 (m, 2H), 7.23 (d, J = 7.0 Hz, 1H), 6.86 – 6.80 (m, 1H), 2.98 (s, 3H). ¹³**C NMR** (CDCl₃, 100 MHz): δ 158.4, 149.5, 147.1, 141.1, 133.64, 133.59, 127.0, 126.0, 125.5, 124.5, 114.5, 111.7, 23.2. **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₁₁N₂O 211.0871, found 211.0879.

2-Methyl-11*H*-pyrido[2,1-b]quinazolin-11-one (2c)¹¹

According to **GP2**, the reaction of 5-methyl-1-(pyridin-2-yl)indole (**1c**) (105 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **2c** as a yellow solid (86 mg, 82% yield); Mp: 138–140 °C; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.92 – 8.83 (m, 1H), 8.38 – 8.30 (m, 1H), 7.62 – 7.46 (m, 3H), 7.35 – 7.38 (m, 1H), 6.85 (s, 1H), 2.55 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.9, 147.2, 146.7, 136.9, 135.4, 133.6, 126.8, 126.7, 126.4, 126.3, 116.1, 112.4, 21.4; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₁₁N₂O 211.0871, found 211.0878.

3-Methyl-11*H*-pyrido[2,1-b]quinazolin-11-one (2d)¹¹

According to **GP2**, the reaction of 6-methyl-1-(pyridin-2-yl)indole (**1d**) (105 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **2d** as a yellow solid (91 mg, 86% yield); Mp: 146–147 °C; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.87 (d, J = 7.4 Hz, 1H), 8.34 (d, J = 8.3 Hz, 1H), 7.58 (s, 1H), 7.52 – 7.46 (m, 2H), 7.34 – 7.29 (m, 1H), 6.87 – 6.76 (m, 1H), 2.50 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.7, 147.6, 146.8, 145.2, 133.0, 126.2, 126.0, 125.7, 125.1, 112.9, 111.3, 21.1; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₁N₂O 211.0871, found 211.0875.

4-Methyl-11*H*-pyrido[2,1-b]quinazolin-11-one (2e)¹¹

According to **GP2**, the reaction of 7-methyl-1-(pyridin-2-yl)indole (**1e**) (105 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **2e** as a yellow solid (75 mg, 71% yield); Mp: 179–181 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.86 (d, J = 6.9 Hz, 1H), 8.31 (d, J = 7.8 Hz, 1H), 7.69 (d, J = 6.3 Hz, 1H), 7.60 – 7.42 (m, 2H), 7.42 – 7.32 (m, 1H), 6.90 – 6.79 (m, 1H), 2.70 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.9, 147.0, 146.2, 134.9, 134.6, 132.9, 126.4, 126.1, 124.4, 124.3, 115.7, 111.9, 17.2; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₁N₂O 211.0871, found 211.0863.

2-Methoxy-11*H*-pyrido[2,1-b]quinazolin-11-one (2f)¹²

According to **GP2**, the reaction of 5-methoxy-1-(pyridin-2-yl)indole (**1f**) (113 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **2f** as a yellow solid (70 mg, 62% yield); Mp: 175–177 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.88 (d, J = 7.4 Hz, 1H), 7.78 – 7.71 (m, 2H), 7.53 – 7.42 (m, 3H), 6.90 – 6.81 (m, 1H), 3.96 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 157.4, 146.1, 143.7, 132.9, 128.7, 126.9, 126.42, 126.40, 116.9, 112.6, 105.1, 55.9; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₃H₁₁N₂O₂ 227.0821, found 227.0820.

2-Benzyloxy-11*H*-pyrido[2,1-b]quinazolin-11-one (2g)¹³

According to **GP2**, the reaction of 5-(benzyloxy)-1-(pyridin-2-yl)indole (**1g**) (150 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **2g** as a yellow solid (118 mg, 78% yield); Mp: 164–166 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.89 – 8.84 (m, 1H), 7.86 (d, J = 2.9 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.58 – 7.54 (m, 1H), 7.52 – 7.48 (m, 3H), 7.48 – 7.44 (m, 1H), 7.44 – 7.39 (m, 2H), 7.38 – 7.34 (m, 1H), 6.91 – 6.80 (m, 1H), 5.21 (s, 2H); ¹³C NMR

(CDCl₃, 100 MHz): δ 158.2, 155.9, 145.6, 143.3, 135.8, 132.4, 128.3, 128.1, 127.7, 127.2, 126.7, 125.92, 125.90, 116.3, 112.1, 105.9, 70.1; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₉H₁₅N₂O₂ 303.1134, found 303.1132.

2-Chloro-11*H*-pyrido[2,1-b]quinazolin-11-one (2h)¹³

According to **GP2**, the reaction of 5-chloro-1-(pyridin-2-yl)indole (**1h**) (114 mg, 0.5 mmol) in dioxane-H₂O (3:1) for 12 hours afforded **2h** as a yellow solid (95 mg, 83% yield); Mp: 176–178 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.93 – 8.82 (m, 1H), 8.41 (s, 1H), 7.81 – 7.70 (m, 2H), 7.60 – 7.47 (m, 2H), 6.97 – 6.85 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.6, 147.3, 146.6, 135.2, 134.0, 130.3, 128.2, 126.3, 125.9, 125.8, 116.5, 112.5; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₈ClN₂O 231.0325, found 231.0323.

3-Chloro-11*H***-pyrido**[**2**,**1-b**]**quinazolin-11-one** (**2i**)⁹

According to **GP2**, the reaction of 6-chloro-1-(pyridin-2-yl)indole (**1i**) (114 mg, 0.5 mmol) in dioxane-H₂O (3:1) for 12 hours afforded **2i** as a yellow solid (94 mg, 82% yield); Mp: 199–201 °C; ¹**H NMR** (CDCl₃, 400 MHz): δ 8.85 (d, J = 6.8 Hz, 1H), 8.35 (d, J = 8.5 Hz, 1H), 7.74 (s, 1H), 7.61 – 7.45 (m, 2H), 7.43 – 7.35 (m, 1H), 6.95 – 6.85 (m, 1H); ¹³C **NMR** (CDCl₃, 100 MHz): δ 157.4, 148.3, 147.5, 140.3, 133.8, 127.8, 125.7, 125.2, 125.1, 124.9, 113.5, 111.9; **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₈ClN₂O 231.0325, found 231.0318.

1-Bromo-11H-pyrido[2,1-b]quinazolin-11-one (2j)

According to **GP2**, the reaction of 4-bromo-1-(pyridin-2-yl)indole (**1j**) (136 mg, 0.5 mmol) in dioxane-H₂O (3:1) for 12 hours afforded **2j** as a yellow solid (110 mg, 80% yield); Mp: 146–148 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.89 (d, *J* = 7.3 Hz, 1H), 7.76 – 7.70 (m, 2H), 7.62 – 7.53 (m, 2H), 7.47 (d, *J* = 9.1 Hz, 1H), 6.94 – 6.87 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.5, 150.2, 147.4, 134.6, 134.0, 131.1, 126.5, 126.4, 125.5, 121.3, 113.8, 112.5; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₂H₇BrN₂NaO 296.9639, found 296.9637.

2-Bromo-11*H*-pyrido[2,1-b]quinazolin-11-one (2k)¹⁰

According to **GP2**, the reaction of 5-bromo-1-(pyridin-2-yl)indole (**1k**) (136 mg, 0.5 mmol) in dioxane-H₂O (3:1) for 12 hours afforded **2k** as a yellow solid (115 mg, 84% yield); Mp: 166–168 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.90 – 8.86 (m, 1H), 8.58 (d, *J* = 2.2 Hz, 1H), 7.92 – 7.88 (m, 1H), 7.69 – 7.65 (m, 1H), 7.60 – 7.50 (m, 2H), 6.94 – 6.89 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.9, 147.8, 147.3, 138.2, 134.5, 129.5, 128.7, 126.7, 126.4, 118.3, 117.4, 113.0; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₈BrN₂O 274.9820, found 274.9820.

1-Fluoro-11*H*-pyrido[2,1-b]quinazolin-11-one (2l)¹⁰

According to **GP2**, the reaction of 4-fluoro-1-(pyridin-2-yl)indole (**1**) (106 mg, 0.5 mmol) in dioxane-H₂O (3:1) for 12 hours afforded **21** as a yellow solid (81 mg, 76% yield); Mp: 167–169 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.90 (d, J = 7.3 Hz, 1H), 7.79 – 7.72 (m, 1H), 7.60 – 7.54 (m, 2H), 7.52 – 7.46 (m, 1H), 7.14 – 7.06 (m, 1H), 6.94 – 6.87 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 163.0, 160.3, 155.9 (d, $J_{C-F} = 4.6$ Hz), 150.4, 148.4, 135.2, 135.1, 126.4 (d, $J_{C-F} = 46.7$ Hz), 122.8 (d, $J_{C-F} = 4.4$ Hz), 112.8, 110.8 (d, $J_{C-F} = 20.6$ Hz), 106.5 (d, $J_{C-F} = 6.5$ Hz); HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₁₂H₈FN₂O 215.0621, found 215.0634.

3-Fluoro-11*H*-pyrido[2,1-b]quinazolin-11-one (2m)⁹

According to **GP2**, the reaction of 6-fluoro-1-(pyridin-2-yl)indole (**1m**) (106 mg, 0.5 mmol) in dioxane-H₂O (3:1) for 12 hours afforded **2m** as a yellow solid (89 mg, 83% yield); Mp: 220–222 °C; ¹H **NMR** (CDCl₃, 400 MHz): δ 8.89 (d, J = 7.3 Hz, 1H), 8.50 – 8.44 (m, 1H), 7.61 – 7.53 (m, 1H), 7.52 – 7.48 (m, 1H), 7.43 – 7.38 (m, 1H), 7.24 – 7.18 (m, 1H), 6.94 – 6.88 (m, 1H); ¹³C **NMR** (CDCl₃, 100 MHz): δ 167.1 (d, $J_{C-F} = 255.4$ Hz), 158.3, 150.7 (d, $J_{C-F} = 14.0$ Hz), 148.6, 134.9, 130.3 (d, $J_{C-F} = 11.2$ Hz), 126.8, 126.1, 114.8 (d, $J_{C-F} = 24.5$ Hz), 113.1, 112.8, 111.3 (d, $J_{C-F} = 21.5$ Hz); **HRMS** (ESI-TOF) m/z: [M+H]⁺ calcd forC₁₂H₈FN₂O 215.0621, found 211.0630.

2-Cyano-11H-pyrido[2,1-b]quinazolin-11-one (2n)

According to **GP2**, the reaction of 5-cyano-1-(pyridin-2-yl)indole (**1n**) (110 mg, 0.5 mmol) in DMSO with the addition of 6 equiv of TBN in 4 portions over 30 hours, afforded **2n** as a yellow solid (78 mg, 71% yield); Mp: 269–271 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.95 – 8.90 (m, 1H), 8.78 (d, J = 1.7 Hz, 1H), 7.98 – 7.94 (m, 1H),
7.84 – 7.80 (m, 1H), 7.73 – 7.65 (m, 1H), 7.61 – 7.57 (m, 1H), 7.05 – 6.99 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.4, 150.3, 149.0, 135.8, 135.6, 133.1, 127.8, 126.6, 126.1, 117.9, 115.6, 113.4, 107.5; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₈N₃O 222.0667, found 222.0676.

2-Nitro-11*H*-pyrido[2,1-b]quinazolin-11-one (20)¹¹

According to **GP2**, the reaction of 5-nitro-1-(pyridin-2-yl)indole (**1o**) (120 mg, 0.5 mmol) in DMSO with the addition of 6 equiv of TBN in 4 portions over 30 hours, afforded **2o** as a yellow solid (95 mg, 79% yield); Mp: 261–262 °C; ¹**H NMR** (CDCl₃, 400 MHz): δ 9.35 (d, *J* = 2.5 Hz, 1H), 8.95 (d, *J* = 7.4 Hz, 1H), 8.61 – 8.56 (m, 1H), 7.85 (d, *J* = 9.3 Hz, 1H), 7.77 – 7.69 (m, 1H), 7.64 – 7.59 (m, 1H), 7.06 (t, *J* = 6.8 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.3, 152.2, 149.8, 143.9, 136.8, 128.8, 128.4, 127.2, 126.6, 124.8, 115.3, 114.1; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₈N₃O₃ 242.0566, found 242.0577.

Methyl 11-oxo-11*H*-pyrido[2,1-b]quinazoline-1-carboxylate (2p)

According to **GP2**, the reaction of methyl 1-(pyridin-2-yl)-1*H*-indole-4-carboxylate (**1p**) (126 mg, 0.5 mmol) in DMSO with the addition of 6 equiv of TBN in 4 portions over 30 hours, afforded **2p** as a yellow solid (51 mg, 40% yield); Mp: 169–171 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.87 – 8.83 (m, 1H), 7.92 – 7.77 (m, 2H), 7.63 – 7.49 (m, 2H), 7.45 – 7.42 (m, 1H), 6.94 – 6.88 (m, 1H), 4.06 (s, 3H); ¹³C NMR (CDCl₃, 150 MHz): δ 170.0, 157.4, 148.9, 148.0, 134.9, 134.3, 134.2, 128.6, 126.6, 126.2, 123.8, 113.0, 112.6, 53.0; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₄H₁₁N₂O₃ 255.0770, found 255.0774.

Methyl 11-oxo-11*H*-pyrido[2,1-b]quinazoline-2-carboxylate (2q)

According to **GP2**, the reaction of methyl 1-(pyridin-2-yl)-1*H*-indole-5-carboxylate (**1q**) (126 mg, 0.5 mmol) in dioxane-H₂O (3:1) with the addition of 6 equiv of TBN in 4 portions over 30 hours, afforded **2q** as a yellow solid (104 mg, 82% yield); Mp: 230–232 °C; ¹**H NMR** (CDCl₃, 400 MHz): δ 9.15 (s, 1H), 8.92 (d, *J* = 6.7 Hz, 1H), 8.43 (d, *J* = 7.9 Hz, 1H), 7.79 (d, *J* = 8.2 Hz, 1H), 7.67 – 7.52 (m, 2H), 7.00 – 6.91 (m, 1H), 3.99 (s, 3H); ¹³C NMR

(CDCl₃, 100 MHz): *δ* 165.7, 158.3, 150.9, 148.6, 135.1, 134.5, 130.0, 126.7, 126.6, 126.01, 125.98, 115.1, 112.8, 51.9; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₄H₁₁N₂O₃ 255.0770, found 255.0780.

7-Methyl-11*H*-pyrido[2,1-b]quinazolin-11-one (3a)⁹

According to **GP2**, the reaction of 1-(4-methylpyridin-2-yl)-1*H*-indole (**1aa**) (105 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3a** as a yellow solid (63 mg, 60% yield); Mp: 135–137 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.79 (d, *J* = 7.3 Hz, 1H), 8.43 (d, *J* = 7.9 Hz, 1H), 7.86 – 7.73 (m, 2H), 7.44 (t, *J* = 7.1 Hz, 1H), 7.30 (s, 1H), 6.72 (d, *J* = 7.1 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.0, 148.8, 147.9, 146.0, 135.1, 127.3, 126.6, 126.0, 124.8, 123.6, 116.0, 115.7, 21.5; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₃H₁₁N₂O 211.0871, found 211.0868.

8-Methyl-11*H*-pyrido[2,1-b]quinazolin-11-one (3b)⁹

According to **GP2**, the reaction of 1-(5-methylpyridin-2-yl)-1*H*-indole (**1ab**) (105 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3b** as a yellow solid (76 mg, 72% yield); Mp: 129–131 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.68 (s, 1H), 8.49 – 8.42 (m, 1H), 7.86 – 7.75 (m, 2H), 7.50 – 7.43 (m, 2H), 7.41 – 7.37 (m, 1H), 2.37 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.8, 148.4, 146.9, 137.5, 134.8, 127.3, 126.8, 125.7, 125.0, 123.5, 122.4, 116.2, 18.3; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₃H₁₁N₂O 211.0871, found 211.0869.

2,8-Dimethyl-11*H*-pyrido[2,1-b]quinazolin-11-one (3c)¹³

According to **GP2**, the reaction of 5-methyl-1-(5-methylpyridin-2-yl)-1*H*-indole (**1ac**) (111 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3c** as a yellow solid (68 mg, 61% yield); Mp: 196–198 °C; ¹H **NMR** (CDCl₃, 400 MHz): δ 8.71 – 8.66 (m, 1H), 8.26 – 8.23 (m, 1H), 7.72 – 7.64 (m, 2H), 7.47 – 7.43 (m, 1H), 7.38 – 7.33 (m, 1H), 2.53 (s, 3H), 2.36 (s, 3H); ¹³C **NMR** (CDCl₃, 100 MHz): δ 158.2, 146.1, 145.9, 136.5, 136.2, 134.7, 126.1, 125.7, 125.3, 123.0, 121.7, 115.5, 20.9, 17.8; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₄H₁₃N₂O 225.1028, found 225.1027.

8-Methoxy-11H-pyrido[2,1-b]quinazolin-11-one (3d)

According to **GP2**, the reaction of 1-(5-methoxypyridin-2-yl)-1*H*-indole (**1ad**) (114 mg, 0.5 mmol) in DMSO for 12 hours afforded **3d** as a pale yellow solid (46 mg, 41% yield); Mp: 167–169 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.47 (d, *J* = 7.7 Hz, 1H), 8.39 – 8.35 (m, 1H), 7.88 – 7.76 (m, 2H), 7.54 – 7.46 (m, 2H), 7.40 – 7.34 (m, 1H), 3.94 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 148.7, 148.0, 145.6, 134.6, 131.1, 127.1, 126.8, 125.3, 115.7, 105.3, 56.3; **HRMS** (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₃H₁₁N₂O₂ 227.0821, found 227.0832.

8-Fluoro-11*H*-pyrido[2,1-b]quinazolin-11-one (3e)¹¹

According to **GP2**, the reaction of 1-(5-fluoropyridin-2-yl)-1*H*-indole (**1ae**) (106 mg, 0.5 mmol) in DMSO for 12 hours afforded **3e** as a yellow solid (48 mg, 45% yield); Mp: 173–175 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 8.82 – 8.78 (m, 1H), 8.48 – 8.44 (m, 1H), 7.91 – 7.85 (m, 1H), 7.84 – 7.79 (m, 1H), 7.60 – 7.45 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.3 (d, $J_{C-F} = 2.1$ Hz), 152.3 (d, $J_{C-F} = 243.1$ Hz), 148.0, 145.6, 135.0, 128.2 (d, $J_{C-F} = 7.5$ Hz), 127.6 (d, $J_{C-F} = 27.3$ Hz), 127.02, 126.98, 125.8, 115.5, 112.0 (d, $J_{C-F} = 41.8$ Hz); **HRMS** (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₂H₈FN₂O 215.0621, found 215.0631.

8-Chloro-11*H*-pyrido[2,1-b]quinazolin-11-one (3f)¹³

According to **GP2**, the reaction of 1-(5-chloropyridin-2-yl)-1*H*-indole (**1af**) (136 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3f** as a yellow solid (74 mg, 64% yield); Mp: 166–168 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.94 – 8.86 (m, 1H), 8.49 – 8.41 (m, 1H), 7.91 – 7.76 (m, 2H), 7.57 – 7.40 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.0, 148.1, 145.9, 135.5, 135.3, 127.5, 127.4, 127.2, 125.9, 124.2, 121.1, 116.2; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₈ClN₂O 231.0325, found 231.0335.

7-Chloro-11H-pyrido[2,1-b]quinazolin-11-one (3g)

According to **GP2**, the reaction of 1-(4-chloropyridin-2-yl)-1*H*-indole (**1ag**) (114 mg, 0.5 mmol) in DMSO for 12 hours afforded **3g** as a yellow solid (65 mg, 56% yield); Mp: 165–167 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.81 (d, *J* = 7.8 Hz, 1H), 8.46 – 8.41 (m, 1H), 7.89 – 7.83 (m, 1H), 7.79 – 7.74 (m, 1H), 7.54 – 7.46 (m, 2H), 6.83 – 6.79 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 148.7, 147.1, 141.3, 135.5, 127.7, 127.4, 127.1, 125.7, 124.2, 116.3, 114.4; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₂H₈ClN₂O 231.0325, found 231.0317.

8-Bromo-11*H*-pyrido[2,1-b]quinazolin-11-one (3h)¹³

According to **GP2**, the reaction of 1-(5-bromopyridin-2-yl)-1*H*-indole (**1ai**) (136 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3i** as a yellow solid (69 mg, 50% yield); Mp: 165–167 °C; ¹H NMR (CDCl₃, 400 MHz): δ 9.00 (d, *J* = 1.9 Hz, 1H), 8.47 – 8.41 (m, 1H), 7.90 – 7.84 (m, 1H), 7.81 – 7.76 (d, *J* = 8.2 Hz, 1H), 7.55 – 7.48 (m, 2H), 7.41 -7.36 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 156.8, 147.0, 144.8, 136.5, 134.3, 126.4, 126.3, 126.1, 125.5, 124.9, 115.2, 106.6; HRMS (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₂H₈BrN₂O 274.9820, found 274.9822.

8-Cyano-11*H*-pyrido[2,1-b]quinazolin-11-one (3i)¹³

According to **GP2**, the reaction of 1-(5-cyanopyridin-2-yl)-1*H*-indole (**1ai**) (110 mg, 0.5 mmol) in DMSO for 12 hours afforded **3i** as a pale yellow solid (73 mg, 66% yield); Mp: 237–239 °C; ¹**H** NMR (CDCl₃, 400 MHz): δ 9.27 – 9.25 (m, 1H), 8.49 – 8.44 (m, 1H), 7.96 – 7.91 (m, 1H), 7.84 – 7.81 (m, 1H), 7.62 – 7.55 (m, 1H), 7.52 – 7.48 (m, 1H), 7.46 – 7.42 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 157.8, 147.9, 145.5, 136.2, 134.5, 131.6, 127.8, 127.7, 127.6, 126.8, 116.6, 115.6, 98.8; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₈N₃O 222.0667, found 222.0668.

6-Methyl-11*H*-pyrido[2,1-b]quinazolin-11-one (3j)¹¹

According to **GP3**, the reaction of 1-(3-methylpyridin-2-yl)-1*H*-indole (**1aj**) (105 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3j** as a yellow solid (77 mg, 73% yield); Mp: 127–129 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.79 (d, J = 7.3 Hz, 1H), 8.46 – 8.40 (m, 1H), 7.85 – 7.80 (m, 2H), 7.49 – 7.43 (m, 1H), 7.38 – 7.33 (m, 1H), 6.76 (t, J = 7.0 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (CDCl₃, 100 MHz): δ 159.0, 147.8, 147.1, 134.2, 134.0, 131.7, 127.0, 126.7, 124.6, 124.3, 115.6, 111.6, 18.1; HRMS (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₃H₁₀N₂ONa 233.0691, found 233.0685.

6-Trifluoromethyl-11H-pyrido[2,1-b]quinazolin-11-one (3k)

According to **GP3**, the reaction of 1-(3-(trifluoromethyl)pyridin-2-yl)-1*H*-indole (**1ak**) (131 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3k** as a yellow solid (70 mg, 53% yield); Mp: 189–191 °C; ¹H **NMR** (CDCl₃, 400 MHz): δ 9.02 – 8.97 (m, 1H), 8.46 – 8.41 (m, 1H), 7.93 – 7.86 (m, 3H), 7.57 – 7.51 (m, 1H), 6.86 (t, *J* = 7.1 Hz, 1H); ¹³C **NMR** (CDCl₃, 100 MHz): δ 158.1, 147.0, 142.4, 135.0, 133.4 (q, *J*_{C-F} = 5.5 Hz), 130.0, 127.6, 126.7, 125.8, 125.0 (q, *J*_{C-F} = 31.6 Hz), 121.8 (q, *J*_{C-F} = 271.7 Hz), 116.2, 109.3; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₃H₈F₃N₂O 265.0589, found 265.0586.

12*H*-quinolino[2,1-b]quinazolin-12-one (3l)¹⁰

According to **GP3**, the reaction of 2-(1*H*-indol-1-yl)quinolone (**1al**) (122 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3l** as a yellow solid (76 mg, 62% yield); Mp: 156–158 °C; ¹H NMR (CDCl₃, 400 MHz): δ 9.58 (d, J = 9.0 Hz, 1H), 8.45 (d, J = 7.8 Hz, 1H), 7.89 – 7.70 (m, 2H), 7.66 – 7.55 (m, 3H), 7.54 – 7.42 (m, 2H), 7.31 – 7.18 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 163.1, 148.0, 146.5, 135.6, 135.2, 134.6, 129.5, 128.1, 127.5, 126.5, 126.4, 126.2, 125.1, 124.4, 121.9, 120.0; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₆H₁₁N₂O 247.0871, found 247.0869.

5*H*-thiazolo[2,3-b]quinazolin-5-one (3m)¹⁰

According to **GP3**, the reaction of 2-(1*H*-indol-1-yl)thiazole (**1am**) (100 mg, 0.5 mmol) in dioxane-H₂O (10:1) for 12 hours afforded **3m** as a yellow solid (87 mg, 87% yield); Mp: 148–150 °C; ¹**H** NMR (400 MHz, CDCl₃): δ 8.41 – 8.37 (m, 1H), 7.94 (d, *J* = 5.1 Hz, 1H), 7.83 – 7.77 (m, 1H), 7.71 – 7.66 (m, 1H), 7.50 – 7.44 (m, 1H), 6.84 (d, *J* = 5.1 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz): δ 158.7, 158.0, 148.4, 134.9, 127.1, 126.2, 125.4, 121.2, 116.5, 109.5; **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₁₀H₆N₂NaOS 225.0099, found 225.0091.

11. Characterization Data for Synthesized Product 5

3-Nitro-1*H***-indole** (5a)¹⁴

According to **GP4**, the reaction of 1-(2-pyridoyl)indole (**4a**) (111 mg, 0.5 mmol) afforded **5a** as a yellow solid (71 mg, 87% yield); Mp: 207–209 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.66 (brs, 1H), 8.66 (s, 1H), 8.13 – 8.07 (m, 1H), 7.62 – 7.55 (m, 1H), 7.40 – 7.33 (m, 2H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 135.0, 130.5, 128.4, 124.2, 123.7, 119.8, 119.4, 113.4; **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₈H₆N₂NaO₂ 185.0327, found 185.0310.

4-Methyl-3-nitro-1*H*-indole (5b)

According to **GP4** under argon atmosphere, the reaction of 4-methyl-1-(2-pyridoyl)indole (**4b**) (118 mg, 0.5 mmol) afforded **5b** as a yellow solid (55 mg, 62% yield); Mp: 186–187 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.56 (brs, 1H), 8.61 (s, 1H), 7.40 –7.38 (d, J = 8.1 Hz, 1H), 7.24 –7.20 (t, J = 7.7 Hz, 1H), 7.10 –7.09 (d, J = 7.2 Hz, 1H), 2.75 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 135.9, 131.4, 130.3, 130.0, 125.6, 124.1, 118.1, 111.0, 22.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₉H₉N₂O₂ 177.0664, found 177.0651.

4-Methoxy-3-nitro-1*H*-indole (5c)

According to **GP4** under argon atmosphere, the reaction of 4-methoxy-1-(2-pyridoyl)indole (**4c**) (126 mg, 0.5 mmol) afforded **5c** as a yellow solid (56 mg, 58% yield); Mp: 171–173 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.06 (brs, 1H), 8.78 (s, 1H), 8.03 (d, *J* = 1.9 Hz, 1H), 7.53 (d, *J* = 1.8 Hz, 1H), 4.00 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 152.9, 145.1, 135.4, 134.3, 113.7, 103.3, 98.8, 56.7; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₉H₈N₂NaO₃ 215.0433, found 215.0437.

4-Fluoro-3-nitro-1*H*-indole (5d)

According to **GP4**, the reaction of 4-fluoro-1-(2-pyridoyl)indole (**4d**) (120 mg, 0.5 mmol) afforded **5d** as a yellow solid (79 mg, 88% yield); Mp: 243–245 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.86 (brs, 1H), 8.69 (s, 1H), 7.42 – 7.38 (m, 1H), 7.36 – 7.29 (m, 1H), 7.14 – 7.08 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 154.5 (d, *J*_{C-F} = 251.4 Hz), 138.4 (d, *J*_{C-F} = 8.6 Hz), 131.9, 128.5, 125.4 (d, *J*_{C-F} = 7.8 Hz), 110.1 (d, *J*_{C-F} = 4.0 Hz), 109.7 (d, *J*_{C-F} = 21.1 Hz), 108.3 (d, *J*_{C-F} = 17.8 Hz); **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₈H₅FN₂NaO₂ 203.0233, found 203.0245.

4-Bromo-3-nitro-1*H*-indole (5e)

According to **GP4**, the reaction of 4-bromo-1-(2-pyridoyl)indole (**4e**) (151 mg, 0.5 mmol) afforded **5e** as a yellow solid (91 mg, 75% yield); Mp: 201–202 °C; ¹**H** NMR (400 MHz, DMSO-*d*₆): δ 12.85 (brs, 1H), 8.70 (s, 1H), 7.63 – 7.55 (m, 2H), 7.28 – 7.22 (m, 1H); ¹³**C** NMR (150 MHz, DMSO-*d*₆): δ 142.1, 137.2, 134.3, 133.8, 130.2, 123.2, 118.1, 116.7; **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₈H₅BrN₂NaO₂ 262.9432, found 262.9432.

Methyl 3-nitro-1H-indole-4-carboxylate (5f)

According to **GP4**, the reaction of methyl 1-(2-pyridoyl)indole-4-carboxylate (**4f**) (140 mg, 0.5 mmol) afforded **5f** as a yellow solid (98 mg, 89% yield); Mp: 193–194 °C; ¹**H NMR** (400 MHz, DMSO- d_6): δ 12.89 (brs, 1H), 8.72 (s, 1H), 7.76 – 7.73 (m, 1H), 7.50 – 7.47 (m, 1H), 7.45 – 7.39 (m, 1H), 3.82 (s, 3H); ¹³C **NMR** (150 MHz, DMSO- d_6): δ 173.6, 140.7, 136.9, 134.2, 130.3, 128.9, 128.4, 121.2, 120.7, 57.0; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₀H₈N₂NaO₄ 243.0382, found 243.0378.

5-Methyl-3-nitro-1*H*-indole (5g)

According to **GP4** under argon atmosphere, the reaction of 5-methyl-1-(2-pyridoyl)indole (**4g**) (118 mg, 0.5 mmol) afforded **5g** as a yellow solid (69 mg, 78% yield); Mp: 206–207 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.59 (brs, 1H), 8.63 (s, 1H), 7.94 (s, 1H), 7.53 – 7.47 (m, 1H), 7.23 – 7.19 (m, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 138.6, 138.2, 135.5, 133.2, 130.8, 125.3, 124.2, 118.2, 26.5; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₉H₈N₂NaO₂ 199.0483, found 199.0470.

5-Methoxy-3-nitro-1*H*-indole (5h)

According to **GP4** under argon atmosphere, the reaction of 5-methoxy-1-(2-pyridoyl)indole (**4h**) (126 mg, 0.5 mmol) afforded **5h** as a yellow solid (76 mg, 79% yield); Mp: 162–163 °C; ¹**H** NMR (400 MHz, DMSO-*d*₆): δ 12.56 (brs, 1H), 8.57 (d, *J* = 3.4 Hz, 1H), 7.57 – 7.54 (m, 1H), 7.50 – 7.46 (m, 1H), 6.99 – 6.95 (m, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 156.8, 130.3, 129.8, 128.2, 120.7, 114.4, 114.0, 101.0, 55.4; **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₉H₈N₂NaO₃ 215.0433, found 215.0435.

5-(Benzyloxy)-3-nitro-1H-indole (5i)

According to **GP4** under argon atmosphere, the reaction of 5-(benzyloxy)-1-(2-pyridoyl)indole (**4i**) (164 mg, 0.5 mmol) afforded **5i** as a yellow solid (92 mg, 69% yield); Mp: 239–241 °C; ¹H **NMR** (400 MHz, DMSO-*d*₆): δ 12.58 (brs, 1H), 8.58 (d, *J* = 3.4 Hz, 1H), 7.68 (d, *J* = 2.3, 1H), 7.53 – 7.48 (m, 3H), 7.44 – 7.39 (m, 2H), 7.37 – 7.31 (m, 1H), 7.08 – 7.04 (m, 1H), 5.19 (s, 2H); ¹³C **NMR** (100 MHz, DMSO-*d*₆): δ 155.8, 137.1, 130.4, 130.0, 128.4, 128.3, 127.8, 127.6, 120.7, 114.6, 114.4, 102.6, 69.7; **HRMS** (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₅H₁₃N₂O₃ 269.0929, found 269.0945.

5-Chloro-3-nitro-1*H*-indole (5j)¹⁴

According to **GP4**, the reaction of 5-chloro-1-(2-pyridoyl)indole (**4j**) (128 mg, 0.5 mmol) afforded **5j** as a yellow solid (83 mg, 85% yield); Mp: 256–258 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 12.79 (brs, 1H), 8.67 (s, 1H), 8.00 (s, 1H), 7.61 – 7.52 (m, 1H), 7.37 – 7.28 (m, 1H); ¹³**C NMR** (100 MHz, DMSO-*d*₆): δ 133.6, 131.8, 128.4, 127.9, 124.3, 120.9, 118.5, 115.2; **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₈H₅ClN₂NaO₂ 218.9937, found 218.9931.

5-Bromo-3-nitro-1*H*-indole (5k)¹⁴

According to **GP4**, the reaction of 5-bromo-1-(2-pyridoyl)indole (**4k**) (151 mg, 0.5 mmol) afforded **5k** as a yellow solid (104 mg, 86% yield); Mp: 240–241 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.84 (brs, 1H), 8.71 (s, 1H), 8.22 – 8.19 (m, 1H), 7.57 – 7.53 (m, 1H), 7.51 – 7.47 (m, 1H); ¹³C NMR (100 MHz, DMSO- d_6): δ 133.8, 131.5, 127.7, 126.9, 121.5, 121.4, 116.5, 115.5; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₈H₆BrN₂O₂ 240.9613, found 240.9609.

5-Iodo-3-nitro-1H-indole (5l)

According to **GP4**, the reaction of 5-iodo-1-(2-pyridoyl)indole (**4**I) (178 mg, 0.5 mmol) afforded **5**I as a yellow solid (105 mg, 73% yield); Mp: 230–231 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.86 (brs, 1H), 8.84 – 8.62 (m, 1H), 8.56 – 8.15 (m, 1H), 7.72 – 7.57 (m, 1H), 7.56 – 7.41 (m, 1H); ¹³C NMR (150 MHz, DMSO- d_6): δ 134.6, 132.8, 131.6, 128.0, 127.8, 122.4, 116.1, 89.0; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₈H₅IN₂NaO₂ 310.9293, found 310.9310.

Methyl 3-nitro-1*H*-indole-5-carboxylate (5m)¹⁴

According to **GP4**, the reaction of methyl 1-(2-pyridoyl)indole-5-carboxylate (**4m**) (140 mg, 0.5 mmol) afforded **5m** as a yellow solid (89 mg, 81% yield); Mp: 291–293 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 12.95 (brs, 1H), 8.84 – 8.69 (m, 2H), 7.98 – 7.89 (m, 1H), 7.72 – 7.63 (m, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 166.9, 137.9, 132.7, 129.5, 125.32, 125.28, 121.9, 119.9, 114.0, 52.6; **HRMS** (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₁₀H₉N₂O₄ 221.0562, found 221.0569.

5-Cyano-3-nitro-1H-indole (5n)

According to **GP4**, the reaction of 5-cyano-1-(2-pyridoyl)indole (**4n**) (124 mg, 0.5 mmol) afforded **5n** as a yellow solid (76 mg, 81% yield); Mp: 284–285 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 13.10 (brs, 1H), 8.86 (s, 1H), 8.46 (s, 1H), 7.78 – 7.71 (m, 2H); ¹³**C NMR** (150 MHz, DMSO-*d*₆): δ 137.2, 133.2, 129.0, 127.4, 124.9, 120.0, 119.9, 115.4, 106.5; **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₉H₅N₃NaO₂ 210.0279, found 210.0281.

3-Nitro-1*H*-indole-5-carbaldehyde (50)

According to **GP4**, the reaction of 1-picolinoyl-1*H*-indole-3-carbaldehyde (**4o**) (125 mg, 0.5 mmol) afforded **5o** as a yellow solid (67.4 mg, 71% yield); Mp: 263–265 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 13.03 (brs, 1H), 10.13 (s, 1H), 8.83 (s, 1H), 8.69 – 8.66 (m, 1H), 7.87 (m, 1H), 7.74 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 192.9, 138.2, 132.5, 132.3, 129.3, 123.84, 123.78, 119.8, 114.3; **HRMS** (ESI-TOF) *m/z*: [M+Na]⁺ calcd for C₉H₆N₂O₃Na 213.0276, found 213.0285.

6-Methyl-3-nitro-1*H*-indole (5p)

According to **GP4** under argon atmosphere, the reaction of 6-methyl-1-(2-pyridoyl)indole (**4p**) (118 mg, 0.5 mmol) afforded **5p** as a yellow solid (67 mg, 76% yield); Mp: 201–203 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.53 (brs, 1H), 8.58 (d, J = 3.5 Hz, 1H), 7.96 (d, J = 8.2, 1H), 7.36 (s, 1H), 7.20 (d, J = 8.1, 1H), 2.44 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 135.5, 133.7, 130.0, 128.4, 125.3, 119.1, 117.7, 113.0, 21.1; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₉H₈N₂NaO₂ 199.0483, found 199.0472.

6-Fluoro-3-nitro-1*H*-indole (5q)

According to **GP4**, the reaction of 6-fluoro-1-(2-pyridoyl)indole (**4q**) (120 mg, 0.5 mmol) afforded **5q** as a yellow solid (77 mg, 85% yield); Mp: 249–251 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.70 (brs, 1H), 8.67 (s, 1H), 8.11 – 8.06 (m, 1H), 7.41 – 7.38 (m, 1H), 7.28 – 7.21 (m, 1H); ¹³C NMR (100 MHz, DMSO-*d*₆): δ 159.7 (d, *J*_{C-F} = 239.2 Hz), 135.1 (d, *J*_{C-F} = 12.7 Hz), 131.1 (d, *J*_{C-F} = 2.2 Hz), 128.4, 120.8 (d, *J*_{C-F} = 10.1 Hz), 116.6, 112.1 (d, *J*_{C-F} = 24.4 Hz), 99.7 (d, *J*_{C-F} = 26.2 Hz); **HRMS** (ESI-TOF) *m*/*z*: [M+H]⁺ calcd for C₈H₆FN₂O₂ 181.0413, found 181.0415.

6-Chloro-3-nitro-1*H*-indole (5r)¹⁴

According to **GP4**, the reaction of 6-chloro-1-(2-pyridoyl)indole (**4r**) (128 mg, 0.5 mmol) afforded **5r** as a yellow solid (80 mg, 82% yield); Mp: 259–261 °C; **¹H NMR** (400 MHz, DMSO-*d*₆): δ 12.75 (brs, 1H), 8.69 (s, 1H), 8.07 (d, J = 8.5 Hz, 1H), 7.63 (s, 1H), 7.42 – 7.37 (m, 1H); ¹³C **NMR** (100 MHz, DMSO-*d*₆): δ 140.2, 136.1, 133.4, 133.1, 128.7, 125.5, 123.3, 117.8; **HRMS** (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₈H₆ClN₂O₂ 197.0118, found 197.0111.

7-Methyl-3-nitro-1*H*-indole (5s)¹⁴

According to **GP4** under argon atmosphere, the reaction of 7-methyl-1-(2-pyridoyl)indole (**4s**) (118 mg, 0.5 mmol) afforded **5s** as a yellow solid (66 mg, 75% yield); Mp: 193–194 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.70 (brs, 1H), 8.66 (J = 3.5 Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.27 (t, J = 7.6 Hz, 1H), 7.15 (d, J = 7.2 Hz, 1H), 2.53 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 134.5, 130.1, 128.8, 124.7, 123.8, 122.9, 119.7, 116.9, 16.3; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₉H₉N₂O₂ 177.0664, found 177.0651.

7-Chloro-3-nitro-1H-indole (5t)

According to **GP4**, the reaction of 7-chloro-1-(2-pyridoyl)indole (**4t**) (128 mg, 0.5 mmol) afforded **5t** as a yellow solid (78 mg, 80% yield); Mp: 187–189 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 13.13 (brs, 1H), 8.71 (s, 1H), 8.10 – 8.03 (m, 1H), 7.49 – 7.42 (m, 1H), 7.40 – 7.34 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 132.3, 131.6, 129.5, 125.1, 124.2, 122.1, 118.8, 118.1; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₈H₆ClN₂O₂ 197.0118, found 197.0111.

According to **GP4**, the reaction of methyl 1-(2-pyridoyl)indole-7-carboxylate (**4u**) (140 mg, 0.5 mmol) afforded **5u** as a yellow solid (89 mg, 81% yield); Mp: 183–184 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.42 (brs, 1H), 8.54 (s, 1H), 8.42 – 8.36 (m, 1H), 7.99 – 7.92 (m, 1H), 7.53 – 7.46 (m, 1H), 3.98 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6): δ 165.9, 133.3, 131.7, 129.2, 126.9, 125.4, 123.9, 121.6, 115.1, 52.8; HRMS (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₀H₈N₂NaO₄ 243.0382, found 243.0378.

3-Methyl-2-nitro-1*H*-indole (5v)¹⁵

According to **GP4**, the reaction of 3-methyl-1-(2-pyridoyl)indole (**4v**) (118 mg, 0.5 mmol) afforded **5v** as a yellow solid (16 mg, 18% yield); Mp: 140–142 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 11.17 (brs, 1H), 7.48 (d, *J* = 7.5 Hz, 1H), 7.43 – 7.38 (m, 1H), 7.10 – 7.06 (m, 1H), 6.99 (d, *J* = 7.8 Hz, 1H), 1.92 (s, 3H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 170.7, 143.1, 132.0, 127.2, 124.3, 123.2, 111.3, 90.2, 19.8; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₉H₉N₂O₂ 177.0664, found 177.0657.

Methyl 2-nitro-1*H*-indole-3-carboxylate (5w)

According to **GP4**, the reaction of methyl 1-(2-pyridoyl)indole-3-carboxylate (**4w**) (140 mg, 0.5 mmol) afforded **5w** as a yellow solid (63 mg, 57% yield); Mp: 234–235 °C; ¹**H NMR** (400 MHz, DMSO- d_6): δ 12.59 (brs, 1H), 8.48 (d, J = 3.1 Hz, 1H), 8.42 – 8.41 (m, 1H), 8.17 – 8.15 (m, 1H), 8.10 – 8.07 (m, 1H), 3.87 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6): δ 164.0, 142.8, 137.9, 135.0, 130.4, 120.6, 116.3, 109.0, 107.2, 51.0; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₀H₈N₂NaO₄ 243.0382, found 243.0378.

3-Cyano-2-nitro-1*H*-indole (5x)

According to **GP4**, the reaction of 3-cyano-1-(2-pyridoyl)indole (**4x**) (124 mg, 0.5 mmol) afforded **5x** as a yellow solid (51 mg, 54% yield); Mp: 178–179 °C; ¹**H NMR** (400 MHz, DMSO-*d*₆): δ 12.84 (brs, 1H), 8.64 – 8.62 (m, 1H), 8.47 – 8.45 (m, 1H), 8.11 – 8.08 (m, 1H), 7.87 – 7.85 (m, 1H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 144.1, 140.4, 134.3, 131.9, 119.5, 117.1, 115.6, 110.1, 85.9; **HRMS** (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₉H₅N₃NaO₂ 210.0279, found 210.0281.

3-Nitro-1*H***-indole** (5a)¹⁴

According to **GP4**, the reaction of 1-picolinoyl-1*H*-indole-3-carbaldehyde (**4y**) (125 mg, 0.5 mmol) afforded **5a** as a yellow solid (19 mg, 23% yield); Mp: 207–209 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.67 (brs, 1H), 8.66 (s, 1H), 8.12 – 8.09 (m, 1H), 7.60 – 7.57 (m, 1H), 7.39 – 7.34 (m, 2H); ¹³C NMR (150 MHz, DMSO- d_6): δ 140.2, 135.6, 133.6, 129.3, 128.9, 125.0, 124.6, 118.6; HRMS (ESI-TOF) *m*/*z*: [M+Na]⁺ calcd for C₈H₆N₂NaO₂ 185.0327, found 185.0312.

2-Methyl-3-nitro-1*H*-indole (5z)¹⁶

According to **GP4**, the reaction of (2-methyl-1*H*-indol-1-yl)(pyridin-2-yl)methanone (**4z**) (118 mg, 0.5 mmol) afforded **5z** as a yellow solid (39 mg, 44% yield); Mp: 245–246 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 12.60 (brs, 1H), 8.08 – 8.04 (m, 1H), 7.49 – 7.46 (m, 1H), 7.34 – 7.27 (m, 2H), 2.78 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6): δ 143.8, 133.3, 125.7, 124.2, 123.7, 121.6, 119.8, 112.7, 15.0; HRMS (ESI-TOF) m/z: [M+H]⁺ calcd for C₉H₉N₂O₂ 177.0664, found 177.0651.

3-Nitro-2-phenyl -1*H*-indole (5aa)^{16,17}

According to **GP4**, the reaction of 2-phenyl-1-(2-pyridoyl)indole (**4aa**) (150 mg, 0.5 mmol) afforded **5aa** as a yellow solid (68 mg, 57% yield); Mp: 226–228 °C; ¹H NMR (400 MHz, DMSO-*d*₆): δ 12.84 (brs, 1H), 8.20 – 8.15 (m, 1H), 7.80 – 7.74 (m, 2H), 7.61 – 7.52 (m, 4H), 7.42 – 7.35 (m, 2H); ¹³C NMR (150 MHz, DMSO-*d*₆): δ 146.9, 138.8, 135.2, 135.1, 134.9, 133.4, 129.6, 129.0, 126.7, 125.3, 125.2, 118.0; HRMS (ESI-TOF) *m/z*: [M+H]⁺ calcd for C₁₄H₁₁N₂O₂ 239.0821, found 239.0818.

Methyl 3-nitro-1*H*-indole-2-carboxylate (5ab)¹⁷

According to **GP4**, the reaction of methyl 1-(2-pyridoyl)indole-2-carboxylate (**4ab**) (140 mg, 0.5 mmol) afforded **5ab** as a yellow solid (90 mg, 82% yield); Mp: 262–263 °C; ¹H NMR (400 MHz, DMSO- d_6): δ 13.42 (brs, 1H), 8.08 – 8.04 (m, 1H), 7.65 – 7.60 (m, 1H), 7.49 – 7.41 (m, 2H), 4.00 (s, 3H); ¹³C NMR (150 MHz, DMSO- d_6): δ 160.5, 133.7, 128.5, 127.6, 126.5, 125.1, 120.4, 120.3, 114.2, 53.8; **HRMS** (ESI-TOF) m/z: [M+Na]⁺ calcd for C₁₀H₈N₂NaO₄ 243.0382, found 243.0382.

12. References

- 1. X. Ji, D. Li, Z. Wang, M. Tan, H. Huang and G. J. Deng, Eur. J. Org. Chem. 2017, 6652.
- 2. J. Balog, Z. Riedl, G. Hajós, Z. Miskolczy and L. Biczók, Arkivoc 2012, 109.
- 3. G. Berti, A. Da Settimo and O. Livi, Tetrahedron 1964, 20, 1397.
- 4. W.-L. Chen, S.-Y. Wu, X.-L. Mo, L.-X. Wei, C. Liang, and D.-L. Mo, Org. Lett. 2018, 20, 3527.
- (a) M. C. Bröhmer, S. Mundinger, S. Bräse and W. Bannswarth, *Angew. Chem. Int. Ed.*, 2011, **50**, 6175; (b)
 S. Mundinger, U. Jakob and W. Bannswarth, *Chem. Eur. J.*, 2014, **20**, 1258; (c) Y. Yang, C. Lu, H. Wa.
 Hollanders, C. Gadais, W. A. Herrebout, S. Ballet and B. U. W. Maes, *ACS Catal.*, 2018, **8**, 203; (d) Y.
 Yang, C. Lu, H. Wang and X. Liu, *Dalton Trans.*, 2016, **45**, 10289.
- 6. S. I. Gorelsky, D. Lapointe and K. Fagnou, J. Am. Chem. Soc. 2008, 130, 10848.
- 7. J. C. Antilla, A. Klapars and S. L. Buchwald, J. Am. Chem. Soc. 2002, 124, 11684.
- 8. J. Zhou, B. Li, Z. C. Qian and B. F. Shi, Adv. Synth. Catal. 2014, 356, 1038
- 9. J. Chen, K. Natte, A. Spannenberg, H. Neumann, P. Langer, M. Beller and X. F. Wu, *Angew. Chem. Int. Ed.* 2014, **53**, 7579.
- 10. Y. Yang, C. Zhu, M. Zhang, S. Huang, J. Lin, X. Pan and W. Su, Chem. Commun. 2016, 52, 12869.
- 11. M. Liu, M. Shu, C. Yao, G. Yin, D. Wang and J. Huang, Org. Lett. 2016, 18, 824.
- 12. D. Liang, Y. He and Q. Zhu, Org. Lett. 2014, 16, 2748.
- 13. J. Sun, Q. Tan, W. Yang, B. Liu and B. Xu, Adv. Synth. Catal. 356, 388-394 (2014).
- 14. B. J. Stokes, S. Liu and T. G. Driver, J. Am. Chem. Soc. 2011, 133, 4702.
- 15. J. Jiang and G. W. Gribble, Tetrahedron Lett. 2002, 43, 4115.
- 16. H. H. Nguyen and M. J. Kurth, Org. Lett. 2013, 15, 362.
- 17. A. Shoberu, C. K. Li, Z. K. Tao, G. Y. Zhang and J. P. Zou, Adv. Synth. Catal. 2019, 361, 2255.

13. Copies of ¹H NMR and ¹³C NMR Spectra of all Synthesized and Isolated Compounds

8.88

-8.45 -8.45 7.87 7.85 7.85 7.84 -7.84 -7.84 -7.51 7.51 7.51 7.51 7.51 6.88 6.88 6.88 6.85 6.85

Figure S8. ¹³C NMR spectrum of 2a

Figure S10. ¹³C NMR spectrum of 2b

Figure S14. ¹³C NMR spectrum of 2d

Figure S18. ¹³C NMR spectrum of 2f

Figure S20. ¹³C NMR spectrum of 2g

Figure S22. ¹³C NMR spectrum of 2h

8.88 8.88 7.74 7.72 7.56 7.56 7.56 7.56 7.56 7.56 6.92 6.92 6.92 6.92 6.89

8.91 8.89 7.77 7.77 7.77 7.77 7.55 7.77 7.55 7

88.90 88.44 88.44 84.45 84.55 <

2n - ¹H NMR (CDCl₃)

Figure S34. ¹³C NMR spectrum of 2n

8

3a - ¹H NMR (CDCl₃)

110 100 . 190 . 170 . 150 Figure S42. ¹³C NMR spectrum of 3a

— 2.42

S69

8.82 8.80 8.845 8.845 7.88 7.73 8.845 7.84 7.84 7.73 7.51 7.51 7.51 7.51 7.51 7.51 7.51 6.82 6.82 6.80 6.80

3g -1H NMR (CDCl₃)

7.50 7.50 7.50 7.50 7.51 7.51 7.52 7.53 7.55 <t

3h - ¹H NMR (CDCl₃)

-9.27 -9.26 -9.26 -9.26 -9.26 -9.26 -9.26 -9.26 -7.93 -7.73 -7.93 -7.74 -7.755 -7.75

3i - 1H NMR (CDCl₃)

Figure S58. ¹³C NMR spectrum of 3i

Figure S62. ¹³C NMR spectrum of 3k

9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.59 9.57 9.59 9.57</l

8.40 8.38 7.7.95 7.7.93 7.7.98 7.7.98 7.7.98 7.7.98 7.7.79 7.779 7.7777 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.779 7.7777 7.779 7.77777 7.779

Figure S70. ¹³C NMR spectrum of 5b

Figure S84. ¹³C NMR spectrum of 5i

Figure S88. ¹³C NMR spectrum of **5**k o

8.65 8.41 8.40 8.40 7.65 7.65 7.64 7.62 7.62 7.62 7.43

— 12.80

Figure S94. ¹³C NMR spectrum of **5n**

Figure S96. ¹³C NMR spectrum of **50**

Figure S102. ¹³C NMR spectrum of 5r

S99

Figure S106. ¹H NMR spectrum of **5**t

Figure S108. ¹³C NMR spectrum of **5**u

Figure S110. ¹H NMR spectrum of 5v

- 12.8

5x -1Η NMR (DMSO-d₆)

Figure S116. ¹³C NMR spectrum of 5a obtained from indole 4y

S107

Figure S124. ¹³C NMR spectrum of 6

¹³C NMR spectrum of 7

Compound 8

¹H NMR spectrum of 8

Compound $8-d_2$

¹³C NMR spectrum of 8

Compound 9

S112

¹³C NMR spectrum of 9