Supporting Information

Mechanisms and Origins of Regioselectivities of Nickel-Catalyzed β,δ-

Vinylarylation of Alkenyl Esters with Vinyl Triflates and Arylzinc Reagents

Yupan Li, Wan Xu, Ting Wang, Hui Chen and Juan Li*

Department of Chemistry, Guangdong Provincial Key Laboratory of Functional

Supramolecular Coordination Materials and Applications, Jinan University,

Guangzhou, Guangdong 510632, P. R. China

*Corresponding author. Email: tchjli@jnu.edu.cn (J. Li)

Section 1	Other possible isomers and conformers (Schemes S1-S9)	S2
Section 2	Optimization with D3 dispersion correction (Fig. S1)	S6
Section 3	Optimization with M06 and B97D methods (Fig. S2)	S6
Section 4	Two-4-PhPy-coordination mode (Scheme S10)	S 7
Section 5	Optimization along quartet state (Scheme S11)	S 7
Section 6	Other possible pathways to afford product 2a (Figs. S3-S4)	S 8
Section 7	Other possible pathways to afford product 4a (Fig. S5)	S9
Section 8	Other possible pathways to afford regioisomer 5a (Figs. S6-S8)	S9
Section 9	Other possible pathways to afford regioisomer 6a (Fig. S9)	S11
Section 10	Other possible pathways to afford regioisomer 7a (Fig. S10)	S11
Section 11	Pathway to afford regioisomer 8a (Fig. S11)	S12
Section 12	α-H elimination step (Fig. S12)	S13
Section 13	Relaxed energy scans for MECP (Fig. S13)	S14
Section 14	Calculated Ph-migration processes for substrates lacking an α -H (Fig. S14)	S14
Section 15	Optimized structures of TS5a-2, TS7a and TS11a (Fig. S15)	S15
Section 16	Energies (in hartree) for all TSs and intermediates	S15
Section 17	Calculated imaginary frequencies of all transition states species	S21

Table of Contents

Scheme S1 Other possible isomers of intermediate IN3a-1 and IN4a-1. Values shown are relative free energies in kcal/mol.

Scheme S2 Other possible conformers of transition states TS2a-1 and TS2a-2. Values shown are relative free energies in kcal/mol.

Scheme S3 Other possible conformers of transition state TS3a-1. Values shown are relative free energies in kcal/mol.

Scheme S4 Other possible isomers of transition states TS5a-1 and TS5a-2. Values shown are relative free energies in kcal/mol.

Scheme S5 Other possible isomers of transition states TS7a. Values shown are relative free energies in kcal/mol.

Scheme S6 Other possible isomers of transition states TS11a. Values shown are relative free energies in kcal/mol.

Scheme S7 Other possible isomers and conformers of transition state TS13a. Values shown are relative free energies in kcal/mol.

Scheme S8 Other possible isomers of transition state TS14a. Values shown are relative free energies in kcal/mol.

Scheme S9 Conformers for transition states of the carbometallation step. Values shown are relative free energies in kcal/mol.

Section 2. Optimization with D3 dispersion correction

Fig. S1 Calculated free energy difference for key species using the M06/BS2//B3LYP/BS1 and M06/BS2//B3LYP-D3/BS1 levels. Values shown are relative free energies in kcal/mol.

Section 3. Optimization with M06 and B97D methods

Fig. S2 Calculated free energy difference for key species using the M06/BS2//M06/BS1 and M06/BS2//B97D/BS1 levels. Values shown are relative free energies in kcal/mol.

Scheme S10 Two-4-PhPy-coordination mode for key intermediates and transition states. Values shown are relative free energies in kcal/mol.

Section 5. Optimization along quartet state

Scheme S11 Optimized key intermediates and transition states in quartet state. Values shown are relative free energies in kcal/mol.

Section 6. Other possible pathways to afford product 2a

Fig. S3 Calculated energy profiles for β -H elimination, δ -H elimination and oxidative addition steps from IN2, respectively. Values shown are relative free energies in kcal/mol.

Fig. S4 Calculated energy profiles for carbometallation and β-H elimination steps

from IN25a, respectively. Values shown are relative free energies in kcal/mol.

Section 7. Other possible pathways to afford product 4a

Fig. S5 Calculated energy profiles for carbometallation step from IN39a. Values shown are relative free energies in kcal/mol.

Section 8. Other possible pathways to afford regioisomer 5a

Fig. S6 Calculated energy profiles for β -H elimination and Ni-H reinsertion steps from IN4a-2, respectively. Values shown are relative free energies in kcal/mol.

Fig. S7 Calculated energy profiles for affording regioisomer **5a** from **IN29a**. Values shown are relative free energies in kcal/mol.

Fig. S8 Calculated energy profiles for β -H elimination step from IN40a. Values shown are relative free energies in kcal/mol.

Fig. S9 Calculated energy profiles for carbometallation step from **IN3a-1** and **IN28a**, respectively. Values shown are relative free energies in kcal/mol.

Section 10. Other possible pathways to afford regioisomer 7a

Fig. S10 Calculated energy profiles for carbometallation step from IN28a. Values shown are relative free energies in kcal/mol.

Section 11. Pathway to afford 8a

Fig. S11 Calculated energy profiles for oxidative addition step from **IN27a**, respectively. Values shown are relative free energies in kcal/mol.

Section 12. a-H elimination step

Fig. S12 Calculated energy profiles for α -H elimination step from IN3a-1 and IN3a-2, respectively. Values shown are relative free energies in kcal/mol.

Fig. S13 Relaxed energy scan in the singlet (blue line) and triplet (red line) states for the comproportionation of Ni^{II} with Ni⁰. The structure of MECP is show. Energies are relative to ¹INf and in kcal/mol. Distance of Ni1-Cl2 is given in angstroms.

Section 14. Calculated Ph-migration processes for substrates lacking an α-H

Fig. S14 Calculated Ph-migration processes for three substrates with different C_{α} position of substituents. Values shown are relative free energies in kcal/mol.

Section 15. Optimized structures of TS5a-2, TS7a and TS11a

Fig. S15 Optimized structures of TS5a-2, TS7a and TS11a along with interatomic distances (in angstroms).

Geometry	Eo	Е	H _{353 15}	G _{353 15}	E(sol M06)
	-516.456370	-516.440027	-516.438909	-516.506770	-516.444743
1b	-424.232083	-424.218012	-424.216894	-424.279251	-424.249780
1c	-655.198602	-655.178152	-655.177033	-655.255526	-655.176042
1d	-691.350366	-691.328552	-691.327433	-691.409598	-691.368612
1e	-555.752405	-555.734109	-555.732991	-555.803916	-555.748430
1f	-615.694112	-615.676640	-615.675521	-615.745520	-615.681416
1g	-608.687623	-608.668844	-608.667726	-608.740763	-608.6446672
1h	-520.792271	-520.774534	-520.773415	-520.844736	-520.760875
2a	-981.952362	-981.921613	-981.920495	-982.021801	-981.927886
3a	-747.441045	-747.418336	-747.417218	-747.502775	-747.385300
4a	-981.969542	-981.938597	-981.937479	-982.041936	-981.945684
5a	-981.959786	-981.928902	-981.927784	-982.029989	-981.934521
6a	-981.967326	-981.936479	-981.935361	-982.037066	-981.945419
7a	-981.970675	-981.939721	-981.938602	-982.041839	-981.946571
8a	-465.480142	-465.466285	-465.465167	-465.524864	-465.452253
¹ NiCl ₂ L ₂	-2049.850884	-2049.817652	-2049.816534	-2049.926846	-2049.706394
³ NiCl ₂ L ₂	-2049.825881	-2049.791806	-2049.790688	-2049.905467	-2049.699410
² NiClL ₂	-1589.616899	-1589.585474	-1589.584356	-1589.691374	-1589.470057
NiHL ₂	-1783.977728	-1783.953658	-1783.952540	-1784.036759	-1129.771129
Ph ₂ Zn	-690.279288	-690.263561	-690.262443	-690.329488	-690.234900
PhZnCl	-918.984410	-918.974209	-918.973091	-919.026074	-918.975145
Ph-Ph	-463.127090	-463.114714	-463.113595	-463.170160	-463.053761

Section 16. Energies (in hartree) of All TSs and Intermediates.

					1-0.00.6
4-PhPy	-479.176056	-479.163918	-479.162800	-479.219097	-479.096557
ZnCl ₂	-1147.676799	-1147.670982	-1147.669863	-1147.710595	-1147.700701
cyclohexenyl triflate	-1195.282107	-1195.263981	-1195.262863	-1195.334945	-1195.292094
-OTf	-961.531547	-961.522154	-961.521035	-961.571627	-961.550777
PhZnOTf	-1420.147292	-1420.128091	-1420.126973	-1420.203646	-1420.140780
¹ INa	-2740.133900	-2740.082147	-2740.081028	-2740.241872	-2739.951457
³ INa	-2740.160688	-2740.108274	-2740.107156	-2740.271999	-2739.965399
¹ TSa	-2740.102239	-2740.051647	-2740.050529	-2740.201567	-2739.936521
³ TSa	-2740.142840	-2740.094783	-2740.093665	-2740.238901	-2739.964205
¹ INb	-2740.140812	-2740.089383	-2740.088265	-2740.245628	-2739.968843
³ INb	-2740.142967	-2740.091106	-2740.089987	-2740.245956	-2739.967456
¹ TSb	-2740.115412	-2740.064786	-2740.063668	-2740.217108	-2739.948136
³ TSb	-2740.129818	-2740.079607	-2740.078489	-2740.231234	-2739.950616
¹ INc	-2740.134439	-2740.083841	-2740.082722	-2740.231503	-2739.973642
³ INc	-2740.136747	-2740.084814	-2740.083695	-2740.240229	-2739.956971
¹ INd	-1592.447185	-1592.403326	-1592.402207	-1592.537296	-1592.240233
³ INd	-1592.432459	-1592.387664	-1592.386545	-1592.526339	-1592.210460
¹ TSc	-1592.414885	-1592.371560	-1592.370441	-1592.503218	-1592.216987
³ TSc	-1592.383082	-1592.339117	-1592.337999	-1592.474091	-1592.171923
¹ INe	-1592.452492	-1592.409073	-1592.407955	-1592.541337	-1592.256100
³ INe	-1592.443375	-1592.398989	-1592.397871	-1592.536036	-1592.237534
¹ NiL ₂	-1129.327416	-1129.298817	-1129.297699	-1129.396456	-1129.186178
³ NiL ₂	-1129.317633	-1129.289073	-1129.287955	-1129.388285	-1129.166492
¹ INf	-3179.199153	-3179.134565	-3179.133447	-3179.319611	-3178.934333
MECP	-3179.197337	-3179.135743	-3179.134624	-3179.312943	-3178.933717
³ INf	-3179.243456	-3179.177446	-3179.176328	-3179.373636	-3178.963654
TS1	-2279.871402	-2279.825164	-2279.824046	-2279.966212	-2279.71897
IN1	-2279.896272	-2279.846606	-2279.845487	-2279.996745	-2279.724435
IN2	-1360.888290	-1360.851035	-1360.849917	-1360.974329	-1360.705736
IN3a-1	-1398.175485	-1398.135118	-1398.134000	-1398.262039	-1398.068617
TS2a-1	-1398.140100	-1398.100720	-1398.099601	-1398.227074	-1398.045576
IN4a-1	-1398.197093	-1398.157748	-1398.156629	-1398.283755	-1398.087865
IN3a-2	-1398.170371	-1398.129957	-1398.128839	-1398.257971	-1398.059603
TS2a-2	-1398.130145	-1398.091031	-1398.089913	-1398.214618	-1398.034639
IN4a-2	-1398.185181	-1398.146113	-1398.144995	-1398.269765	-1398.077403
IN3a-3	-1877.355901	-1877.300850	-1877.299732	-1877.464130	-1877.178510
TS2a-3	-1877.308089	-1877.254310	-1877.253191	-1877.412949	-1877.1407645
IN4a-3	-1877.385169	-1877.331261	-1877.330142	-1877.491130	-1877.209635
TS3a-1	-1398.141906	-1398.102733	-1398.101615	-1398.228583	-1398.054215
IN5a-1	-1398.180693	-1398.140578	-1398.139459	-1398.268701	-1398.064375
TS3a-2	-1398.140622	-1398.101517	-1398.100398	-1398.226412	-1398.038259
IN5a-2	-1398.173804	-1398.134559	-1398.133440	-1398.258079	-1398.055795

IN6a-1	-1398.177871	-1398.137924	-1398.136805	-1398.264681	-1398.064628
IN6a-2	-1398.176959	-1398.137710	-1398.136592	-1398.260278	-1398.058918
TS4a-1	-1398.159245	-1398.119905	-1398.118786	-1398.246582	-1398.054838
IN7a-1	-1398.200836	-1398.161457	-1398.160339	-1398.288582	-1398.090341
TS4a-2	-1398.146166	-1398.107165	-1398.106046	-1398.230332	-1398.041118
IN7a-2	-1398.195135	-1398.155985	-1398.154866	-1398.280526	-1398.088297
IN8a-1	-2593.475109	-2593.415964	-2593.414846	-2593.585677	-2593.399341
IN8a-2	-2593.469738	-2593.410742	-2593.409624	-2593.579260	-2593.391719
TS5a-1	-2593.462133	-2593.403143	-2593.402025	-2593.574006	-2593.377832
TS5a-2	-2593.464188	-2593.405344	-2593.404226	-2593.574511	-2593.383227
IN9a-1	-2593.512596	-2593.452563	-2593.451444	-2593.625598	-2593.424619
IN9a-2	-2593.513185	-2593.453732	-2593.452613	-2593.623422	-2593.426610
TS6a-1	-2593.500580	-2593.441144	-2593.440026	-2593.613663	-2593.423268
TS6a-2	-2593.500893	-2593.442207	-2593.441088	-2593.610224	-2593.424405
IN10a-1	-2593.556814	-2593.497863	-2593.496744	-2593.667457	-2593.491289
IN10a-2	-2593.566030	-2593.507422	-2593.506303	-2593.674959	-2593.491965
IN11a	-2090.798177	-2090.757424	-2090.756306	-2090.887731	-2090.655183
IN12a	-2593.470279	-2593.411229	-2593.410111	-2593.580856	-2593.396202
IN13a	-2593.459304	-2593.399926	-2593.398808	-2593.569992	-2593.382252
TS7a	-2593.455712	-2593.397004	-2593.395885	-2593.565331	-2593.373699
IN14a	-2593.478708	-2593.419236	-2593.418118	-2593.587599	-2593.397409
IN15a	-2593.515047	-2593.455334	-2593.454215	-2593.625305	-2593.428915
TS8a	-2593.502192	-2593.443126	-2593.442007	-2593.613314	-2593.423379
IN16a	-2593.574995	-2593.515699	-2593.514581	-2593.687810	-2593.503022
TS9a	-1398.154068	-1398.114729	-1398.113610	-1398.242218	-1398.052068
IN17a	-1398.177545	-1398.137515	-1398.136397	-1398.265941	-1398.061788
IN18a	-1398.179739	-1398.139756	-1398.138638	-1398.268356	-1398.064186
TS10a	-1398.159535	-1398.120300	-1398.119182	-1398.246572	-1398.056871
IN19a	-1398.197556	-1398.158238	-1398.157119	-1398.284812	-1398.089728
IN20a	-2593.460510	-2593.401473	-2593.400355	-2593.569718	-2593.386579
IN21a	-2593.456841	-2593.397919	-2593.396801	-2593.565138	-2593.382856
TS11a	-2593.455560	-2593.396457	-2593.395339	-2593.565612	-2593.372817
IN22a	-2593.494764	-2593.435231	-2593.434113	-2593.604838	-2593.412599
IN23a	-2593.511210	-2593.451269	-2593.450150	-2593.621764	-2593.423573
TS12a	-2593.499300	-2593.440057	-2593.438938	-2593.610801	-2593.421846
IN24a	-2593.559846	-2593.500600	-2593.499482	-2593.671847	-2593.489916
IN25a	-1398.185030	-1398.143989	-1398.142871	-1398.275125	-1398.068498
IN26a	-2593.454210	-2593.393214	-2593.392095	-2593.569355	-2593.369669
TS13a	-2593.446900	-2593.386051	-2593.384933	-2593.561633	-2593.357476
IN27a	-2593.468455	-2593.407187	-2593.406069	-2593.583998	-2593.372996
IN28a	-2593.452610	-2593.391888	-2593.390770	-2593.565487	-2593.371546
TS14a	-2593.452838	-2593.394331	-2593.393213	-2593.560681	-2593.374852
IN29a	-2593.510729	-2593.450944	-2593.449826	-2593.622813	-2593.425425

				1	
TS15a	-2593.497198	-2593.437825	-2593.436706	-2593.610417	-2593.422899
IN30a	-2593.590690	-2593.531273	-2593.530154	-2593.704663	-2593.503779
TS16a	-2593.457720	-2593.398419	-2593.397301	-2593.569291	-2593.366355
IN31a	-2593.456298	-2593.396070	-2593.394951	-2593.569441	-2593.365733
IN32a	-2593.458372	-2593.399350	-2593.398232	-2593.569312	-2593.369999
TS17a	-2593.456794	-2593.397592	-2593.396473	-2593.569574	-2593.365982
IN33a	-2593.510826	-2593.451162	-2593.450044	-2593.622631	-2593.428375
TS18a	-2593.498426	-2593.439252	-2593.438133	-2593.609739	-2593.425074
IN34a	-2593.588454	-2593.530015	-2593.528897	-2593.701405	-2593.498042
TS2b	-1305.902144	-1305.864876	-1305.863758	-1305.986927	-1305.830443
TS2c	-1536.866927	-1536.823493	-1536.822375	-1536.958169	-1536.761429
TS2d	-1573.020391	-1572.975708	-1572.974589	-1573.114426	-1572.954494
IN1h	-1609.235812	-1609.188991	-1609.187872	-1609.327804	-1609.089004
IN2h	-1130.050433	-1130.017759	-1130.016640	-1130.125586	-1129.975887
TS1h	-1130.003637	-1129.972255	-1129.971137	-1130.075102	-1129.935280
IN3h	-1130.044372	-1130.012795	-1130.011677	-1130.116034	-1129.974790
TS2h	-2325.312249	-2325.259141	-2325.258023	-2325.413705	-2325.252141
IN4h	-2325.316302	-2325.262917	-2325.261799	-2325.415857	-2325.256062
IN5h	-2325.344419	-2325.291200	-2325.290082	-2325.443035	-2325.296048
TS3h	-2325.301554	-2325.249710	-2325.248592	-2325.399832	-2325.260143
IN6h	-2325.389977	-2325.337988	-2325.336870	-2325.489422	-2325.333624
IN7h	-2325.344721	-2325.291573	-2325.290455	-2325.443595	-2325.296068
TS4h	-2325.311215	-2325.259448	-2325.258330	-2325.408601	-2325.267524
IN8h	-2325.387561	-2325.335427	-2325.334309	-2325.488152	-2325.332466
IN3a-4	-1398.164651	-1398.123483	-1398.122364	-1398.253553	-1398.046762
IN3a-5	-1398.166232	-1398.125329	-1398.124211	-1398.255094	-1398.049008
IN3a-6	-1398.167590	-1398.127008	-1398.125890	-1398.254924	-1398.058867
IN4a-4	-1398.196965	-1398.157681	-1398.156563	-1398.283045	-1398.093427
TS5a-1-1	-2593.462418	-2593.403244	-2593.402126	-2593.574873	-2593.375867
TS5a-1-2	-2593.458014	-2593.398998	-2593.397879	-2593.567560	-2593.378415
TS5a-1-3	-2593.460624	-2593.402704	-2593.401585	-2593.571679	-2593.376820
TS5a-2-1	-2593.457398	-2593.398661	-2593.397543	-2593.568224	-2593.372427
TS5a-2-2	-2593.456006	-2593.397199	-2593.396080	-2593.564964	-2593.371919
TS5a-2-3	-2593.463518	-2593.405047	-2593.403929	-2593.569753	-2593.379897
TS7a-1	-2593.459534	-2593.400623	-2593.399504	-2593.569816	-2593.379467
TS7a-2	-2593.457528	-2593.398438	-2593.397320	-2593.569236	-2593.375083
TS7a-3	-2593.453433	-2593.394032	-2593.392914	-2593.566102	-2593.375663
TS7a-4	-2593.455112	-2593.396013	-2593.394894	-2593.565765	-2593.376369
TS7a-5	-2593.455587	-2593.396684	-2593.395565	-2593.565281	-2593.374393
TS7a-6	-2593.444734	-2593.385598	-2593.384480	-2593.556346	-2593.358854
TS7a-7	-2593.449330	-2593.390744	-2593.389626	-2593.556011	-2593.371462
TS11a-1	-2593.453970	-2593.394978	-2593.393860	-2593.563388	-2593.373233
TS11a-2	-2593.451684	-2593.392544	-2593.391426	-2593.562263	-2593.371669

TS11a-3	-2593.452200	-2593.393282	-2593.392163	-2593.562314	-2593.370654
TS11a-4	-2593.452153	-2593.393111	-2593.391992	-2593.561924	-2593.372344
TS11a-5	-2593.447944	-2593.389109	-2593.387990	-2593.554697	-2593.368653
TS11a-6	-2593.446555	-2593.387616	-2593.386497	-2593.554848	-2593.368172
TS11a-7	-2593.446750	-2593.387933	-2593.386814	-2593.555576	-2593.365349
TS13a-1	-2593.446340	-2593.385739	-2593.384621	-2593.559418	-2593.353897
TS13a-2	-2593.437496	-2593.376753	-2593.375635	-2593.549464	-2593.353035
TS13a-3	-2593.442750	-2593.381936	-2593.380817	-2593.556387	-2593.350482
TS13a-4	-2593.446714	-2593.385758	-2593.384639	-2593.562244	-2593.353035
TS13a-5	-2593.444228	-2593.383273	-2593.382155	-2593.561006	-2593.353753
TS13a-6	-2593.445352	-2593.384471	-2593.383352	-2593.559622	-2593.353441
TS13a-7	-2593.442853	-2593.381849	-2593.380731	-2593.559710	-2593.349918
TS13a-8	-2593.446693	-2593.386092	-2593.384973	-2593.559714	-2593.357564
TS13a-9	-2593.446997	-2593.386443	-2593.385325	-2593.559987	-2593.354505
TS13a-10	-2593.439780	-2593.378922	-2593.377803	-2593.552878	-2593.347798
TS13a-11	-2593.443804	-2593.382991	-2593.381872	-2593.557669	-2593.352470
TS13a-12	-2593.447031	-2593.386179	-2593.385061	-2593.561735	-2593. 353305
TS13a-13	-2593.443987	-2593.383190	-2593.382072	-2593.558316	-2593.354041
TS13a-14	-2593.445531	-2593.384727	-2593.383609	-2593.560320	-2593.355756
TS13a-15	-2593.443107	-2593.382295	-2593.381176	-2593.557342	-2593.349958
TS13a-16	-2593.445886	-2593.385058	-2593.383940	-2593.560523	-2593.354162
TS13a-17	-2593.445415	-2593.384523	-2593.383405	-2593.560866	-2593. 352151
TS13a-18	-2593.437442	-2593.376433	-2593.375315	-2593.551723	-2593.342556
TS13a-19	-2593.442213	-2593.381325	-2593.380206	-2593.557754	-2593.350673
TS13a-20	-2593.446158	-2593.385060	-2593.383942	-2593.563579	-2593.352581
TS13a-21	-2593.443569	-2593.383605	-2593.382486	-2593.556650	-2593.350456
TS13a-22	-2593.444720	-2593.383882	-2593.382764	-2593.558473	-2593.352885
TS13a-23	-2593.441874	-2593.380890	-2593.379772	-2593.558614	-2593.348028
TS8a-1	-2593.450107	-2593.390494	-2593.389375	-2593.561048	-2593.371231
TS8a-2	-2593.443235	-2593.383765	-2593.382646	-2593.551937	-2593.362987
TS8a-3	-2593.432924	-2593.374164	-2593.373045	-2593.540178	-2593.352296
TS8a-4	-2593.436115	-2593.376276	-2593.375158	-2593.549587	-2593.351079
TS8a-5	-2593.443038	-2593.382950	-2593.381832	-2593.555215	-2593.362908
IN3a-1-D3	-1398.240342	-1398.200374	-1398.199255	-1398.325146	-1398.083039
IN3a-2-D3	-1398.236621	-1398.196913	-1398.195795	-1398.319106	-1398.076463
IN4a-4-D3	-1398.258470	-1398.219585	-1398.218467	-1398.341874	-1398.107421
IN4a-2-D3	-1398.250026	-1398.211519	-1398.210401	-1398.331161	-1398.092401
IN5a-1-D3	-1398.239239	-1398.199299	-1398.198181	-1398.326259	-1398.075881
IN5a-2-D3	-1398.235946	-1398.197189	-1398.196070	-1398.317539	-1398.068852
IN7a-1-D3	-1398.259534	-1398.220574	-1398.219456	-1398.344700	-1398.102245
IN7a-2-D3	-1398.257231	-1398.218429	-1398.217310	-1398.340091	-1398.102731
TS3a-3	-1877.336333	-1877.283459	-1877.282341	-1877.440864	-1877.157161
TS4a-3	-1877.341236	-1877.287462	-1877.286343	-1877.447820	-1877.162924

TS19a	-1398.132667	-1398.092482	-1398.091363	-1398.221221	-1398.018412
IN35a	-1398.140641	-1398.100518	-1398.099400	-1398.225210	-1398.025778
TS20a	-1398.124404	-1398.085246	-1398.084128	-1398.209677	-1398.008088
IN36a	-1398.123808	-1398.083329	-1398.082211	-1398.211305	-1398.006501
IN37a	-2076.982985	-2076.940784	-2076.939666	-2077.070175	-2076.898652
TS21a	-2076.972169	-2076.930105	-2076.928986	-2077.059387	-2076.880338
IN38a	-2076.984809	-2076.941266	-2076.940148	-2077.075572	-2076.888024
IN39a	-2593.452778	-2593.392185	-2593.391067	-2593.564831	-2593.370731
TS22a	-2593.452174	-2593.392685	-2593.391567	-2593.562405	-2593.372587
IN40a	-2593.489360	-2593.429672	-2593.428554	-2593.600838	-2593.407788
TS23a	-2593.455940	-2593.396724	-2593.395606	-2593.566232	-2593.365092
IN41a	-2593.455419	-2593.395132	-2593.394014	-2593.570768	-2593.363753
IN42a	-1631.884001	-1631.834938	-1631.833819	-1631.979463	-1631.783263
TS24a	-1631.879320	-1631.831468	-1631.830349	-1631.971975	-1631.782797
TS25a	-2593.452323	-2593.392916	-2593.391797	-2593.562361	-2593.371096
IN43a	-2593.509643	-2593.450003	-2593.448885	-2593.619732	-2593.430390
TS26a	-1398.144800	-1398.105722	-1398.104603	-1398.230163	-1398.044964
IN44a	-1398.166094	-1398.126515	-1398.125396	-1398.249157	-1398.054341
IN45a	-1398.172444	-1398.132808	-1398.131690	-1398.256782	-1398.058148
TS27a	-1398.149779	-1398.110692	-1398.109574	-1398.235106	-1398.048712
IN46a	-1398.187162	-1398.148079	-1398.146960	-1398.270542	-1398.081288
TS28a	-2593.468012	-2593.409743	-2593.408625	-2593.577180	-2593.380014
IN47a	-2593.467845	-2593.407857	-2593.406739	-2593.579273	-2593.381082
IN48a	-2593.468334	-2593.409013	-2593.407895	-2593.582145	-2593.379066
TS29a	-2593.469569	-2593.410616	-2593.409498	-2593.578438	-2593.383613
IN49a	-2593.520876	-2593.461115	-2593.459997	-2593.632625	-2593.442329
TS30a	-2593.500505	-2593.441360	-2593.440241	-2593.613130	-2593.430576
TS31a	-2593.460306	-2593.402177	-2593.401059	-2593.567807	-2593.371962
IN50a	-2593.459622	-2593.400370	-2593.399251	-2593.571142	-2593.368232
IN51a	-1398.165132	-1398.124446	-1398.123327	-1398.254333	-1398.058867
TS32a	-1398.124645	-1398.085473	-1398.084354	-1398.209060	-1398.029085
IN52a	-1398.183348	-1398.143997	-1398.142879	-1398.270152	-1398.075101
TS33a	-2593.451540	-2593.391975	-2593.390856	-2593.561666	-2593.371215
IN53a	-2593.513313	-2593.453403	-2593.452284	-2593.625379	-2593.430626
TS34a	-1631.880901	-1631.832976	-1631.831858	-1631.974211	-1631.784863
TS35a	-2593.500480	-2593.439687	-2593.438568	-2593.615404	-2593.410083
IN54a	-2593.557957	-2593.496540	-2593.495422	-2593.676910	-2593.471261
IN55a	-1877.355603	-1877.300189	-1877.299071	-1877.467496	-1877.169439
TS36a	-1877.332695	-1877.278178	-1877.277060	-1877.439919	-1877.146525
IN56a	-1877.330200	-1877.275177	-1877.274058	-1877.439201	-1877.149379
IN57a	-1877.351839	-1877.296541	-1877.295423	-1877.462061	-1877.163244
TS37a	-1877.330016	-1877.275986	-1877.274868	-1877.433628	-1877.141063
IN58a	-1877.329623	-1877.275213	-1877.274094	-1877.433686	-1877.146369

TS38a	-1398.115987	-1398.075701	-1398.074583	-1398.200951	-1397.989398
IN59a	-1398.116421	-1398.075885	-1398.074767	-1398.202756	-1397.984857
TS2a-1-1	-1398.140339	-1398.101067	-1398.099949	-1398.225736	-1398.040010
TS2a-1-2	-1398.141336	-1398.102124	-1398.101006	-1398.227355	-1398.044318
TS2a-1-3	-1398.139998	-1398.100595	-1398.099476	-1398.226249	-1398.045406
TS2a-2-1	-1398.127599	-1398.088354	-1398.087235	-1398.213854	-1398.029168
TS3a-1-1	-1398.154031	-1398.114799	-1398.113680	-1398.240266	-1398.053694
TS3a-1-2	-1398.152841	-1398.113634	-1398.112516	-1398.239131	-1398.048811
TS3a-1-3	-1398.152775	-1398.113515	-1398.112397	-1398.239476	-1398.050712
TS2b-1	-1305.901926	-1305.865137	-1305.864018	-1305.982863	-1305.835423
TS2b-2	-1305.901544	-1305.864564	-1305.863446	-1305.984393	-1305.831116
TS2c-1	-1536.864452	-1536.821174	-1536.820056	-1536.954288	-1536.759565
TS2c-2	-1536.867963	-1536.824464	-1536.823346	-1536.960417	-1536.757848
TS2c-3	-1536.868936	-1536.825463	-1536.824344	-1536.960241	-1536.759609
TS2d-1	-1573.018135	-1572.973581	-1572.972462	-1573.110526	-1572.950641
TS2d-2	-1573.020180	-1572.975288	-1572.974169	-1573.116537	-1572.950196
TS2e	-1437.425894	-1437.384585	-1437.383467	-1437.512417	-1437.338233
TS2f	-1497.370593	-1497.330116	-1497.328998	-1497.457444	-1497.271410
TS2g	-1490.364621	-1490.322775	-1490.321657	-1490.453822	-1490.237160
⁴ NiClL ₂	-1589.556950	-1589.526269	-1589.525151	-1589.630205	-1360.653042
⁴ TS2a-1	-1398.090296	-1398.050412	-1398.049294	-1398.176116	-1397.984317
⁴ TS3a-1	-1398.097413	-1398.057325	-1398.056207	-1398.186757	-1397.979947
⁴ TS4a-1	-1398.099613	-1398.059795	-1398.058677	-1398.186817	-1397.980651
⁴ IN8a-2	-2593.438663	-2593.378507	-2593.377389	-2593.553791	-2593.333642
⁴ TS6a-1	-2593.463431	-2593.403289	-2593.402170	-2593.579856	-2593.369061
⁴ IN22a	-2593.425156	-2593.362872	-2593.361753	-2593.546418	-2593.3131686

 E_0 = Sum of electronic and zero-point energies calculated by B3LYP in solvent

E = Sum of electronic and thermal energies calculated by B3LYP in solvent

 $H_{353.15}$ = Sum of electronic and thermal enthalpies calculated by B3LYP in solvent

 $G_{353.15}$ = Sum of electronic and thermal free energies calculated by B3LYP in solvent

 $E_{(M06)}$ = Single point energies calculated by M06 in solvent

Section 17. Calculated imaginary frequencies of all transition states species.

¹ TSa	-131.33
³ TSa	-47.76
¹ TSb	-71.75
³ TSb	-81.21
¹ TSc	-252.56
³ TSc	-257.67
TS1	-73.32
TS2a-1	-359.19
TS2a-2	-336.60
TS2a-3	-350.42
TS3a-1	-941.87
TS3a-2	-879.42
TS4a-1	-874.38
TS4a-2	-831.87
TS5a-1	-310.14
TS5a-2	-289.56
TS6a-1	-217.43
TS6a-2	-259.21
TS7a	274.82
TS8a	-214.50
TS9a	-917.39
TS10a	-891.68
TS11a	-266.88
TS12a	-236.96
TS13a	-273.28
TS14a	-164.50
TS15a	-262.84
TS16a	-107.16
TS17a	-31.22
TS18a	-204.13
TS19a	-820.11
TS20a	-407.95
TS21a	-318.52
TS22a	-114.82
TS23a	-52.84
TS24a	-219.10
TS25a	-97.34
TS26a	-855.15
TS27a	-938.36
TS28a	-256.22
TS29a	-29.12
TS30a	-211.46
TS31a	-47.25

TS32a	-346.90
TS33a	-163.52
TS34a	-171.17
TS35a	-172.13
TS36a	-890.11
TS37a	-1223.77
TS38a	-469.10
TS3a-3	-867.11
TS4a-3	-849.58
TS5a-1-1	-295.66
TS5a-1-2	-330.08
TS5a-1-3	-261.11
TS5a-2-1	-267.57
TS5a-2-2	-248.56
TS5a-2-3	-272.42
TS7a-1	-324.03
TS7a-2	-251.77
TS7a-3	-246.26
TS7a-4	-334.79
TS7a-5	-267.87
TS7a-6	-166.41
TS7a-7	-265.91
TS11a-1	-335.21
TS11a-2	-330.62
TS11a-3	-251.93
TS11a-4	-311.16
TS11a-5	-283.55
TS11a-6	-248.84
TS11a-7	-202.56
TS13a-1	-245.31
TS13a-2	-259.66
TS13a-3	-238.34
TS13a-4	-258.70
TS13a-5	-239.46
TS13a-6	-292.30
TS13a-7	-182.97
TS13a-8	-275.74
TS13a-9	-248.40
TS13a-10	-268.77
TS13a-11	-242.72
TS13a-12	-260.65
TS13a-13	-241.10
TS13a-14	-289.78

TS13a-15	-180.23
TS13a-16	-281.94
TS13a-17	-242.92
TS13a-18	-264.51
TS13a-19	-246.05
TS13a-20	-255.28
TS13a-21	-241.28
TS13a-22	-288.72
TS13a-23	-184.32
TS8a-1	-339.89
TS8a-2	-102.01
TS8a-3	-423.98
TS8a-4	-397.09
TS8a-5	-412.55
TS2b	-381.67
TS2c	-351.18
TS2d	-352.38
TS1h	-391.86
TS2h	-321.93
TS3h	-377.57
TS4h	-378.88
TS2a-1-1	-361.82
TS2a-1-2	-346.79
TS2a-1-3	-362.22
TS2a-2-1	-365.78
TS3a-1-1	-941.87
TS3a-1-2	-918.13
TS3a-1-3	-898.09
TS2b-1	-355.94
TS2b-2	-391.25
TS2c-1	-350.53
TS2c-2	-368.80
TS2c-3	-358.75
TS2d-1	-350.49
TS2d-2	-380.04
TS2e	-348.90
TS2f	-342.03
TS2g	-336.89
⁴ TS2a-1	-369.51
⁴ TS3a-1	-907.52
⁴ TS4a-1	-906.72
4TS6a-1	-408.83