Supporting Information

Two- and three-dimensional β , β '-*N*-heterocycle fused porphyrins:

concise construction, singlet oxygen production and electrocatalytic

hydrogen evolution reaction

Yan Fan,^a Zhiming Zeng,^a Hui Shu,^a Mingbo Zhou,^{*a} Ling Xu,^a Yutao, Rao,^a Tingting Gu,^b Xu Liang,^b Weihua Zhu,^b and Jianxin Song^{*a}

^a Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, P. R. China.

E-mail: zhoumingbo@hnnu.edu.cn and jxsong@hunnu.edu.cn

^b School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China

Table of Contents

Instrumentation and Materials
General Procedures
Compound Data
NMR Spectra of Compounds
UV/Vis Absorption Spectra
Electrochemical Data
X-Ray Crystal Data
DFT Calculations
Singlet Oxygen Production
Electrocatalytic Hydrogen Evolution Reaction
References

Instrumentation and Materials

¹H NMR (500 MHz) and ¹³C NMR (126 MHz) spectra were taken on a Bruker AVANCE-500 spectrometer, and chemical shifts were reported as the delta scale in ppm. The residual peak of CDCl₃ was used as internal reference for ¹H NMR (δ = 7.26 ppm) and the solvent CDCl₃ was used as internal reference for ¹³C NMR (δ = 77.0 ppm). UV/Vis absorption spectra were recorded on a Shimadzu UV-3600 spectrometer. MALDI-TOF mass spectra were obtained with a Bruker ultrafle Xtreme MALDI-TOF/TOF spectrometer with matrix. X-Ray data were taken on a Bruker SMART APEX X-Ray diffractometer equipped with a large area CCD detector. Cyclic voltammetry was performed in a three-electrode cell using the Chi-730D electrochemistry station. Compounds **1M-2Br**, **1M-4Br**, **1M-8Br** and **2c-2f** were prepared according to the literature procedure^[S1, S2]. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification.

General Procedures

Synthesis of 3Ni, 3Zn, 3H: A *p*-Xylene solution (3 mL) of 1M-2Br (0.05 mmol), $Pd_2(dba)_3$ (9.2 mg, 0.01 mmol), Xantphos (11.6 mg, 0.02 mmol), 1,2-diaminobenzene 2a (5.4 mg, 0.05 mmol), *t*-BuONa (28.8 mg, 0.3 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. Then the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. After removal of the solvent in vacuo, the residue of the reaction was dissolved in CH₂Cl₂ (20 mL). Then, MnO₂ (173.9 mg, 2.0 mmol) was added to the solution. After stirring at room temperature for 4 h, the reaction mixture was passed through short Celite® pad to remove the solids of MnO₂, concentrated in vacuo, and purified by silica gel column chromatography eluting with CH₂Cl₂/hexane. Recrystallization from CH₂Cl₂/MeOH afforded **3Ni** (38.3 mg, 0.03 mmol, 63% yield), **3Zn** (17.2 mg, 0.014 mmol, 28% yield) and **3H** (15.2 mg, 0.013 mmol, 26% yield), respectively.

Synthesis of 4Ni, 4Zn, 4H: Replacing 2a with 2b (7.9 mg, 0.05 mmol), the procedures of synthesis of 4Ni, 4Zn, 4H are the same with that of synthesis of 3Ni. Recrystallization from CH₂Cl₂/MeOH afforded 4Ni (24.2 mg, 0.019 mmol, 38% yield), 4Zn (7.0 mg, 0.0055 mmol, 11% yield) and 4H (3.7 mg, 0.003 mmol, 6% yield), respectively.

Synthesis of 5Ni, 5Zn, 5H: A *p*-Xylene solution (3 mL) of 1M-4Br (0.05 mmol), Pd₂(dba)₃ (9.2 mg, 0.01 mmol), Xantphos (11.6 mg, 0.02 mmol), 1,2-diaminobenzene 2a (9.7 mg, 0.09 mmol), *t*-BuONa (28.8 mg, 0.3 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. Then the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. After removal of the solvent in vacuo, the residue of the reaction was dissolved in CH₂Cl₂ (20 mL). Then, MnO₂ (173.9 mg, 2.0 mmol) was added to the solution. After stirring at room temperature for 4 h, the reaction mixture was passed through short Celite® pad to remove the solids of MnO₂, concentrated in vacuo, and purified by silica gel column chromatography eluting with CH₂Cl₂/hexane. Recrystallization from CH₂Cl₂/MeOH afforded 5Ni (22.1 mg, 0.017 mmol, 37% yield), 5Zn (19.2 mg, 0.014 mmol, 32% yield), 5H (10.3 mg, 0.0081 mmol, 18% yield), respectively.

Synthesis of 6Ni: Replacing 2a with 2b (14.2 mg, 0.09 mmol), the procedures of synthesis of 6Ni is the same with that of synthesis of 5Ni. Recrystallization from $CH_2Cl_2/MeOH$ afforded 6Ni (11.5 mg, 0.0081 mmol, 18% yield).

Synthesis of 7Ni: A *p*-Xylene solution (3 mL) of 1Ni-8Br (87.7 mg, 0.05 mmol), $Pd_2(dba)_3$ (9.2 mg, 0.01 mmol), Xantphos (11.6 mg, 0.02 mmol), 1,2-diaminobenzene 2a (19.5 mg, 0.18 mmol), *t*-BuONa (57.7 mg, 0.6 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. Then the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. After removal of the solvent in vacuo, the residue of the reaction was dissolved in CH₂Cl₂ (20 mL). Then, MnO₂ (173.9 mg, 2.0 mmol) was added to the solution. After stirring at room temperature for 4 h, the reaction mixture was passed through short Celite® pad to remove the solids of MnO₂, concentrated in vacuo, and purified by silica gel column chromatography eluting with CH₂Cl₂/hexane. Recrystallization from CH₂Cl₂/MeOH afforded 7Ni (17.2 mg, 0.011 mmol, 25% yield).

Synthesis of 8Ni: Replacing **2a** with **2b** (28.4mg, 0.18 mmol), the procedure of synthesis of **8Ni** is the same with that of synthesis of **7Ni**. Recrystallization from CH₂Cl₂/MeOH afforded **8Ni** (6.2 mg, 0.0036 mmol, 8% yield).

Synthesis of 9Ni: A *p*-Xylene solution (3 mL) of 1Ni-2Br (64.0 mg, 0.05 mmol), $Pd_2(dba)_3$ (9.2 mg, 0.01 mmol), Xantphos (11.6 mg, 0.02 mmol), 2c (14.2 mg, 0.05 mmol), *t*-BuONa (28.8 mg, 0.3 mmol), was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. Then the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. After removal of the solvent in vacuo, the residue of the reaction was dissolved in CH_2Cl_2 (20 mL). Then, MnO_2 (173.9 mg, 2.0 mmol) was added to the solution. After stirring at room temperature for 4 h, the reaction mixture was passed through short Celite® pad to remove the solids of MnO_2 , concentrated in vacuo, and purified by silica gel column chromatography eluting with $CH_2Cl_2/hexane$. Recrystallization from $CH_2Cl_2/MeOH$ afforded **9Ni** (49.3 mg, 0.035 mmol, 70% yield).

Synthesis of 9H: 9Ni (15.6 mg, 0.011 mmol) was dissolved in CH_2Cl_2 (10 mL) and concentrated sulfuric acid (0.4 mL) was added. After stirring at room temperature for 6 h, the reaction mixture was washed with water, Na_2CO_3 aq., and water. The crude product was extracted with CH_2Cl_2 , and the organic extract was dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica-gel column chromatography (CH_2Cl_2 /hexane as an eluent) and recrystallization with CH_2Cl_2 /MeOH provided 9H (14.2 mg, 0.011 mmol, 95% yield).

Synthesis of 10Ni: A *p*-Xylene solution (3 mL) of 1Ni-2Br (64.0 mg, 0.05 mmol), $Pd_2(dba)_3$ (9.2 mg, 0.01 mmol), BINAP (12.5 mg, 0.02 mmol), 2e (14.5 mg, 0.025 mmol), *t*-BuONa (57.7 mg, 0.6 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. Then the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. After stirring at room temperature for 4 h, the reaction mixture was passed through short Celite® pad to remove the solids of MnO₂, concentrated in vacuo, and purified by silica gel column chromatography eluting with CH₂Cl₂/hexane. Recrystallization from CH₂Cl₂/MeOH afforded 10Ni (15.4 mg, 0.0055 mmol, 22% yield).

Synthesis of 11Ni: A *p*-Xylene solution (3 mL) of 1Ni-2Br (64.0 mg, 0.05 mmol), $Pd_2(dba)_3$ (9.2 mg, 0.01 mmol), BINAP (12.5 mg, 0.02 mmol), 2d (40.7 mg, 0.05 mmol), *t*-BuONa (28.8 mg, 0.3 mmol) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. Then the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. After stirring at room temperature for 4 h, the reaction mixture was passed through short Celite® pad to remove the solids of MnO₂, concentrated in vacuo, and purified by silica gel column chromatography eluting with CH₂Cl₂/hexane. Recrystallization from CH₂Cl₂/MeOH afforded 11Ni (20.2 mg, 0.011 mmol, 21% yield).

Synthesis of 12Ni: A *p*-Xylene solution (3 mL) of 1Ni-2Br (64.0 mg, 0.05 mmol), $Pd_2(dba)_3$ (9.2 mg, 0.01 mmol), BINAP (12.5 mg, 0.02 mmol), 2f (17.7 mg, 0.025 mmol), *t*-BuONa (57.7 mg, 0.6 mmol), triethylamine (0.1 mL) was degassed through three freeze-pump-thaw cycles, and the reaction flask was purged with argon. The resulting mixture was stirred at reflux for 48 h. Then the reaction mixture was diluted with CHCl₃, washed with water, and dried over anhydrous sodium sulfate. After stirring at room temperature for 4 h, the reaction mixture was passed through short Celite® pad to remove the solids of MnO₂, concentrated in vacuo, and purified by silica gel column chromatography eluting with CH₂Cl₂/hexane. Recrystallization from CH₂Cl₂/MeOH afforded **12Ni** (6.8 mg, 0.0018 mmol, 11% yield).

Synthesis of 12H: 12Ni (15.6 mg, 0.0042 mmol) was dissolved in CH_2Cl_2 (10 mL) and concentrated sulfuric acid (0.4 mL) was added. After stirring at room temperature for 6 h, the reaction mixture was washed with water, Na₂CO₃ aq., and water. The crude product was extracted with CH_2Cl_2 , and the organic extract was dried over anhydrous sodium sulfate. Evaporation of the solvent followed by silica-gel column chromatography (CH_2Cl_2 /hexane as an eluent) and recrystallization with CH_2Cl_2 /MeOH provided **12H** (11.9 mg, 0.0034 mmol, 80% yield).

Synthesis of 12Zn: 12H (10 mg, 0.0075 mmol) was added to a round-bottomed 50-mL flask and dissolved in CH_2Cl_2 (6 mL). An excess amount of saturated zinc(II) acetate in methanol was added. After stirring for 4 h, the complete metalation was confirmed by TLC. The reaction mixture was passed through a short silica-gel column, evaporated and recrystallized from $CH_2Cl_2/MeOH$ to give 12Zn (9.9 mg, 0.0071 mmol, 95%).

Compound Data

3Ni^[3]: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.91$ (d, 2H, J = 4.90 Hz, β -H), 8.77 (d, 2H, J = 4.90 Hz, β -H), 8.68 (s, 2H, β -H), 7.84 (br, 4H, Ar-H), 7.81 (br, 4H, *quinoxaline*-H and Ar-H), 7.75 (br, 2H, quinoxaline-H), 7.70 (br, 6H, Ar-H), 1.46 (br, 36H, *t*-Bu-H), 1.42 (br, 36H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 150.88$, 149.20, 149.13, 143.92, 141.86, 141.06, 140.60, 139.37, 139.06, 133.36, 133.07, 131.65, 131.26, 130.25, 128.92, 128.30, 127.65, 122.14, 121.29, 120.77, 116.66, 35.00, 34.92, 31.79, 31.68 ppm; HR-MS (MALDI-TOF-MS): $m/z = 1220.6861 [M]^+$, calcd for (C₈₂H₉₄N₆Ni)⁺ = 1220.6893; λ_{max} (ϵ [M⁻¹cm⁻¹]) = 406 (54525), 444 (55815), 556 (6826), 600 (7396).

3Zn^{[3]: 1}H NMR (500 MHz, CDCl₃): $\delta = 9.05$ (d, 2H, J = 4.65 Hz, β -H), 9.00 (d, 2H, J = 4.65 Hz, β -H), 8.90 (s, 2H, β -H), 8.09 (d, 4H, J = 1.85 Hz, Ar-H), 7.96 (d, 4H, J = 1.85 Hz, Ar-H), 7.92 (s, 2H, Ar-H), 7.91 (dd, 2H, J = 6.45, 3.45 Hz, *quinoxaline*-H), 7.80 (br, 4H, Ar-H and *quinoxaline*-H), 1.53 (s, 36H, *t*-Bu-H), 1.48 (s, 36H, *t*-Bu-H) ppm; HR-MS (MALDI-TOF-MS): $m/z = 1226.6839 [M]^+$, calcd for ($C_{82}H_{94}N_6Zn$)⁺ = 1226.6831; λ_{max} (ϵ [M⁻¹cm⁻¹]) = 415 (75239), 440 (80714), 530 (5105), 567 (10901), 610 (9176).

3H^[3]: ¹H NMR (500 MHz, CDCl₃): $\delta = 9.07$ (d, 2H, J = 4.90 Hz, β -H), 8.99 (d, 2H, J = 4.90 Hz, β -H), 8.79 (s, 2H, β -H), 8.10 (d, 4H, J = 1.85 Hz, Ar-H), 7.97 (br, 4H, Ar-H), 7.93 (s, 2H, Ar-H), 7.83 (br, 4H, Ar-H and *quinoxaline*-H), 7.74 (dd, 2H, J = 6.40, 3.35 Hz, *quinoxaline*-H), 1.53 (s, 36H, *t*-Bu-H), 1.48 (s, 36H, *t*-Bu-H), -2.51 (s, 2H, NH) ppm; HR-MS (MALDI-TOF-MS): $m/z = 1164.7668 [M]^+$, calcd for (C₈₂H₉₆N₆)⁺ = 1164.7696; λ_{max} (ε [M⁻¹cm⁻¹]) = 430 (132681), 528 (11734), 562 (4508), 597 (6396).

4Ni: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.82$ (d, 2H, J = 4.65 Hz, β -H), 8.72 (d, 2H, J = 4.60 Hz, β -H), 8.63 (s, 2H, β -H), 8.40 (s, 2H, *quinoxaline*-H), 8.13 (m, 2H, *quinoxaline*-H), 7.85 (m, 6H, Ar-H and quinoxaline-H), 7.72 (m, 6H, Ar-H and quinoxaline-H), 7.56 (m, 2H, *quinoxaline*-H), 1.46 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 151.86$, 149.31, 149.14, 144.26, 144.23, 141.86, 141.84, 140.30, 139.25, 139.23, 138.95, 138.13, 133.66, 133.52, 133.14, 131.40, 131.00, 128.51, 128.32, 128.21, 127.60, 125.97, 122.63, 121.30, 120.85, 116.17, 34.99, 34.94, 31.80, 31.67 ppm; HR-MS (MALDI-TOF-MS): m/z =

1270.6967 $[M]^+$, calcd for $(C_{86}H_{96}N_6Ni)^+ = 1270.7050; \lambda_{max} (\epsilon [M^{-1}cm^{-1}]) = 349 (36978), 420 (153332), 472 (59371), 634 (14488).$

4Zn: ¹H NMR (500 MHz, CDCl₃): δ = 9.01 (d, 2H, *J* = 4.85 Hz, β-H), 8.98 (d, 2H, *J* = 4.50 Hz, β-H), 8.86 (s, 2H, β-H), 8.49 (s, 2H, *quinoxaline*-H), 8.20 (m, 2H, *quinoxaline*-H), 8.09 (d, 4H, *J* = 1.5 Hz, Ar-H), 7.99 (s, 6H, Ar-H), 7.79 (s, 2H, Ar-H), 7.60 (m, 2H, *quinoxaline*-H), 1.53 (br, 36H, *t*-Bu-H), 1.51 (br, 36H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 152.95, 151.80, 149.66, 148.97, 148.64, 142.35, 141.65, 141.49, 138.14, 133.49, 132.43, 131.44, 131.26, 129.26, 128.63, 128.60, 128.20, 125.93, 125.21, 120.93, 120.64, 118.34, 35.07, 35.03, 31.94, 31.78 ppm; HR-MS (MALDI-TOF-MS): *m/z* = 1276.7101 [*M*]⁺, calcd for (C₈₆H₉₆N₆Zn)⁺ = 1276.6988; λ_{max} (ε [M⁻¹cm⁻¹]) = 395 (60291), 429 (185265), 472 (64002), 545 (10082), 587 (13829), 636 (20224).

4H: ¹H NMR (500 MHz, CDCl₃): δ = 9.07 (d, 2H, *J* = 4.85 Hz, β-H), 8.99 (d, 2H, *J* = 4.85 Hz, β-H), 8.78 (s, 2H, β-H), 8.42 (s, 2H, *quinoxaline*-H), 8.17 (m, 2H, *quinoxaline*-H), 8.11 (s, 4H, Ar-H), 8.01 (br, 6H, Ar-H), 7.81 (s, 2H, Ar-H), 7.58 (m, 2H, *quinoxaline*-H), 1.53 (br, 36H, *t*-Bu-H), 1.51 (br, 36H, *t*-Bu-H), -2.35 (s, 2H, NH) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 154.78, 153.51, 149.06, 148.80, 146.33, 141.10, 140.88, 139.80, 137.96, 137.92, 134.06, 133.51, 129.51, 128.71, 128.56, 128.44, 128.10, 128.01, 125.88, 123.00, 121.09, 120.88, 117.55, 35.06, 35.03, 31.91, 31.75 ppm; HR-MS (MALDI-TOF-MS):$ *m/z*= 1214.7865 [*M* $]⁺, calcd for (C₈₆H₉₈N₆)⁺ = 1214.7853; <math>\lambda_{max}$ (ε [M⁻¹cm⁻¹]) = 430 (184363), 537 (14799), 609 (10171).

5Ni^[3]: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.96$ (s, 4H, β -H), 7.82 (br, 8H, *quinoxaline*-H and Ar-H), 7.75 (br, 12H, *quinoxaline*-H and Ar-H), 1.43 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (125 MHz, CDCl₃): $\delta = 150.34$, 149.31, 141.57, 141.08, 138.47, 132.36, 131.89, 130.27, 129.00, 127.53, 120.95, 118.67, 34.93, 31.77 ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 150.32$, 149.28, 141.55, 141.06, 138.45, 132.34, 131.87, 130.25, 128.97, 127.51, 120.94, 118.65, 34.92, 31.77 ppm; HR-MS (MALDI-TOF-MS): $m/z = 1322.7009 [M]^+$, calcd for (C₈₈H₉₆N₈Ni)⁺ = 1322.7111; λ_{max} (ϵ [M⁻¹cm⁻¹]) = 357 (53577), 402 (49841), 461 (106709), 549 (6076), 617 (7746), 659.(16475).

5Zn^[3]: ¹H NMR (500 MHz, CDCl₃): δ = 9.12 (s, 4H, β-H), 8.00 (br, 8H, Ar-H), 7.95 (m, 8H, *quinoxaline*-H and Ar-H), 7.81 (br, 4H, *quinoxaline*-H), 1.50 (s, 72H, *t*-Bu-H) ppm; HR-MS (MALDI-TOF-MS): m/z = 1328.7080 [M]⁺, calcd for (C₈₈H₉₆N₈Zn)⁺ = 1328.7049; λ_{max} (ε [M^{-1} cm⁻¹]) = 343 (33752), 399 (82493), 459 (153398), 551 (7480), 603 (8044), 626 (9433), 653 (34013).

5H^[3]: ¹H NMR (500 MHz, CDCl₃): δ = δ 9.10 (s, 4H, β-H), 8.00 (br, 8H, Ar-H), 7.95 (br, 4H, Ar-H), 7.86 (m, 4H, *quinoxaline*-H), 7.76 (m, 4H, *quinoxaline*-H), 1.50 (br, 72H, *t*-Bu-H), - 2.47 (s, 2H, NH) ppm; HR-MS (MALDI-TOF-MS): $m/z = 1266.7923 [M]^+$, calcd for $(C_{88}H_{98}N_8)^+ = 1266.7914; \lambda_{max}$ (ε [M⁻¹cm⁻¹]) = 347 (33609), 445 (219791), 532 (19851), 612 (9962), 667 (8269).

6Ni: ¹H NMR (500 MHz, CDCl₃): δ = 8.90 (s, 4H, β-H), 8.44 (br, 4H, Ar-H), 8.16 (m, 4H, *quinoxaline*-H), 7.89 (br, 4H, *quinoxaline*-H), 7.77 (d, 8H, J = 1.65 Hz, Ar-H), 7.58 (m, 4H, *quinoxaline*-H), 1.48 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 151.13, 149.40, 141.56, 138.31, 138.12, 133.54, 132.62, 131.65, 128.50, 128.30, 127.46, 125.99, 121.04, 118.58, 34.95, 31.78 ppm; HR-MS (MALDI-TOF-MS): m/z = 1422.7351 [M]⁺, calcd for (C₉₆H₁₀₀N₈Ni)⁺ = 1422.7424; λ_{max} (ε [M⁻¹cm⁻¹]) = 336 (26007), 394 (72803), 482 (79325), 666 (7691), 725 (14032).

7Ni: ¹H NMR (500 MHz, CDCl₃): δ = 7.95 (m, 8H, *quinoxaline*-H), 7.88 (br, 4H, Ar-H), 7.79 (m, 8H, *quinoxaline*-H), 7.69 (br, 8H, Ar-H), 1.41 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 150.76, 149.36, 140.79, 136.52, 131.20, 130.33, 129.25, 127.21, 121.25, 117.68, 34.90, 31.89 ppm; HR-MS (MALDI-TOF-MS): m/z = 1526.7696 [*M*]⁺, calcd for (C₁₀₀H₁₀₀N₁₂Ni)⁺ = 1526.7547; λ_{max} (ε [M⁻¹cm⁻¹]) = 356 (76173), 422 (39986), 514 (68641), 649 (10905), 701 (39157).

8Ni: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.56$ (s, 8H, *quinoxaline*-H), 8.15 (m, 8H, *quinoxaline*-H), 7.80 (s, 4H, Ar-H), 7.74 (br, 8H, Ar-H), 7.57 (m, 8H, *quinoxaline*-H), 1.46 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 151.27$, 149.60, 137.81, 136.30, 133.76, 131.42, 128.59, 128.53, 127.20, 126.15, 121.44, 117.42, 34.98, 31.94 ppm; HR-MS (MALDI-TOF-MS): $m/z = 1726.8268 [M]^+$, calcd for $(C_{116}H_{108}N_{12}Ni)^+ = 1726.8173; \lambda_{max}$ (ϵ [M⁻¹cm⁻¹]) = 321 (53664), 384 (74720), 489 (82880), 561 (26955), 796 (34240).

9Ni: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.88$ (d, 2H, J = 5.05 Hz, β -H), 8.76 (d, 2H, J = 4.95 Hz, β -H), 8.71 (s, 2H, β -H), 7.85 (d, 6H, J = 2.05 Hz, Ar-H), 7.71 (m, 8H, triptycene aromatic C-H and Ar-H), 7.51 (br, 4H, triptycene aromatic C-H), 7.10 (br, 4H, triptycene aromatic C-H), 5.65 (s, 2H, triptycene aliphatic C-H), 1.47 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 150.50$, 149.07, 149.03, 145.31, 144.08, 143.79, 141.70, 140.49, 140.08, 139.36, 139.04, 133.31, 133.00, 131.59, 131.27, 128.29, 127.67, 125.88, 123.93, 123.52, 121.86, 121.21, 120.62, 116.51, 53.81, 34.97, 34.90, 31.80, 31.66 ppm; HR-MS (MALDI-TOF-MS): $m/z = 1396.7403 \ [M]^+$, calcd for (C₉₆H₁₀₂N₆Ni)⁺ = 1396.7519; λ_{max} ($\varepsilon \ [M^{-1}cm^{-1}]$) = 370 (96405), 408 (216154), 450 (290126), 556 (35041), 599 (31051).

9H: ¹H NMR (500 MHz, CDCl₃): δ = 9.02 (d, 2H, *J* = 4.95 Hz, β-H), 8.97 (d, 2H, *J* = 4.95 Hz, β-H), 8.77 (s, 2H, β-H), 8.08 (d, 4H, *J* = 1.85 Hz, Ar-H), 7.96 (br, 2H, Ar-H), 7.93 (d, 4H, *J* = 1.80 Hz, Ar-H), 7.79 (s, 2H, triptycene aromatic C-H), 7.66 (s, 2H, Ar-H), 7.51 (m, 4H, triptycene aromatic C-H), 7.08 (m, 4H, triptycene aromatic C-H), 5.65 (s, 2H, triptycene aliphatic C-H), 1.52 (br, 36H, *t*-Bu-H), 1.49 (br, 36H, *t*-Bu-H), -2.57 (s, 2H, NH) ppm; ¹³C NMR (126 MHz, CDCl₃): δ = 154.73, 152.45, 148.74, 146.04, 145.15, 144.28, 141.17, 140.93, 139.74, 139.66, 137.97, 134.08, 129.57, 128.49, 128.20, 127.86, 125.79, 123.90, 122.56, 121.03, 120.68, 118.15, 53.86, 35.05, 34.99, 34.91, 34.91, 31.75 ppm; HR-MS (MALDI-TOF-MS): m/z = 1340.8214 [*M*]⁺, calcd for (C₉₆H₁₀₄N₆)⁺ = 1340.8322; λ_{max} (ε [M⁻¹cm⁻¹]) = 369 (29536), 436 (196265), 527 (16223), 599 (8536).

10Ni: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.96$ (d, 4H, J = 5.05 Hz, β -H), 8.80 (d, 4H, J = 4.95 Hz, β -H), 8.73 (s, 4H, β -H), 8.27 (s, 2H, triptycene aromatic C-H), 7.96 (s, 4H, triptycene aromatic C-H), 7.90 (br, 4H, Ar-H,), 7.86 (br, 8H, Ar-H), 7.73 (s, 12H, Ar-H and Ar-H), 7.48 (d, 4H, J = 8.55 Hz, Ar-H), 6.91 (d, 4H, J = 8.55 Hz, Ar-H), 6.10 (s, 2H, triptycene aliphatic C-H), 3.86 (s, 6H, OMe-H), 1.53 (br, 72H, *t*-Bu-H), 1.49 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 160.15$, 152.83, 150.80, 149.19, 149.09, 144.04, 143.67, 142.95, 141.74, 140.53, 140.35, 139.27, 139.00, 133.11, 131.71, 131.29, 131.21, 128.27, 127.76, 124.58, 123.56, 122.00, 121.26, 120.54, 116.63, 113.79, 55.31, 53.31, 34.97, 31.89, 31.64 ppm; HR-MS (MALDI-TOF-MS): $m/z = 2803.4625 [M]^+$, calcd for (C₁₈₈H₂₀₂N₁₄Ni₂O₂)⁺ = 2803.4842; λ_{max} (ε [M⁻¹cm⁻¹]) = 411 (212123), 455 (193363), 560 (31516), 602 (26809).

11Ni: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.87$ (d, 2H, J = 4.95 Hz, β -H), 8.73 (d, 2H, J = 5.05 Hz, β -H), 8.67 (s, 2H, β -H), 8.22 (s, 4H, triptycene aromatic C-H), 7.86 (s, 2H, triptycene aromatic C-H), 7.83 (m, 6H, Ar-H) , 7.68 (m, 6H, Ar-H), 7.43 (d, 8H, J = 8.50 Hz, Ar-H), 6.85 (d, 8H, J = 8.50 Hz, Ar-H), 6.04 (s, 2H, triptycene aliphatic C-H), 3.82 (s, 12H, OMe-H), 1.44 (br, 72H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 160.13$, 152.78, 150.76, 149.18, 149.07, 143.80, 143.72, 142.90, 141.75, 140.55, 140.27, 139.27, 138.94, 133.05, 131.64, 131.60, 131.30, 131.19, 128.27, 127.65, 124.51, 123.59, 121.98, 121.24, 120.70, 116.66, 113.76, 55.32, 53.30, 53.27, 34.96, 34.93, 31.81 ppm; HR-MS (MALDI-TOF-MS): $m/z = 1924.9280 [M]^+$, calcd for (C₁₂₈H₁₂₆N₁₀NiO₄)⁺ = 1924.9317; λ_{max} (ϵ [M⁻¹cm⁻¹]) = 408 (141070), 453 (119086), 522 (11061), 559 (17416), 600 (15644).

12Ni: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.90$ (d, 6H, J = 4.95 Hz, β -H), 8.75 (d, 6H, J = 4.95 Hz, β -H), 8.67 (s, 6H, β -H), 7.93 (s, 6H, triptycene aromatic C-H), 7.84 (br, 6H, Ar-H), 7.80 (br, 12H, Ar-H), 7.68 (br, 18H, Ar-H), 6.04 (s, 2H, triptycene aliphatic C-H), 1.50 (br, 108H, *t*-Bu-H), 1.44 (br, 108H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 150.82$, 149.13, 149.07, 143.60, 143.06, 141.68, 140.47, 139.23, 139.01, 133.17, 133.03, 131.70, 131.23, 128.89, 128.23, 127.85, 124.58, 121.98, 121.25, 120.25, 116.53, 35.00, 34.96, 31.94, 31.64 ppm; HR-MS (MALDI-TOF-MS): $m/z = 3682.0347 [M]^+$, calcd for (C₂₄₈H₂₇₈N₁₈Ni₃)⁺ = 3682.0367; λ_{max} (ε [M⁻¹cm⁻¹]) = 376 (163718), 412 (431665), 461 (416424), 560 (69076), 601 (55064).

12H: ¹H NMR (500 MHz, CDCl₃): $\delta = 9.03$ (d, 6H, J = 5.15 Hz, β-H), 8.99 (d, 6H, J = 5.20 Hz, β-H), 8.78 (s, 6H, β-H), 8.12 (s, 6H, triptycene aromatic C-H), 8.09 (br, 12H, Ar-H), 7.99 (br, 12H, Ar-H), 7.92 (s, 6H, Ar-H), 7.80 (s, 6H, Ar-H), 6.08 (s, 2H, triptycene aliphatic C-H), 1.61 (br, 108H, *t*-Bu-H), 1.53 (br, 108H, *t*-Bu-H), -2.57 (s, 6H, NH) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 154.79$, 152.80, 148.80, 148.75, 145.74, 143.36, 141.11, 141.04, 140.14, 139.66, 138.02, 134.12, 129.56, 128.57, 128.28, 127.89, 124.79, 122.66, 121.04, 120.38, 118.12, 53.56, 35.11, 35.04, 32.09, 31.74 ppm; HR-MS (MALDI-TOF-MS): m/z = 3514.2580 [*M*]⁺, calcd for (C₂₄₈H₂₈₄N₁₈)⁺ = 3514.2776; λ_{max} (ε [M⁻¹cm⁻¹]) = 373 (43167), 441 (259426), 529 (25957), 565 (10392), 600 (15847).

12Zn: ¹H NMR (500 MHz, CDCl₃): $\delta = 8.97$ (s, 12H, β-H), 8.87 (s, 6H, β-H), 8.11 (s, 6H, triptycene aromatic C-H), 8.07 (d, 12H, J = 1.85 Hz, Ar-H), 7.99 (br, 6H, Ar-H), 7.96 (d, 12H, J = 1.85 Hz, Ar-H), 7.77 (br, 6H, Ar-H), 6.13 (s, 2H, triptycene aliphatic C-H), 1.51 (br, 216H, *t*-Bu-H) ppm; ¹³C NMR (126 MHz, CDCl₃): $\delta = 152.62$, 150.67, 149.91, 149.12, 148.73, 148.59, 143.32, 141.64, 140.48, 132.33, 131.59, 131.52, 129.35, 128.37, 124.71, 120.90, 120.14, 118.87, 35.12, 35.05, 32.12, 31.76 ppm; HR-MS (MALDI-TOF-MS): $m/z = 3700.0282 [M]^+$, calcd for (C₂₄₈H₂₇₈N₁₈Zn₃)⁺ = 3700.0181; λ_{max} (ε [M⁻¹cm⁻¹]) = 370 (116868), 423 (528138), 450 (540609), 532 (39181), 571 (95129), 612 (69093).

NMR Spectra of Compounds

Figure S1. ¹H NMR spectrum of 3Ni in CDCl₃ at 298 K

Figure S3. ¹H NMR spectrum of **3Zn** in CDCl₃ at 298 K

Figure S4. ¹H NMR spectrum of 3H in CDCl₃ at 298 K

Figure S5. ¹H NMR spectrum of 4Ni in CDCl₃ at 298 K

Figure S6. ¹³C NMR spectrum of 4Ni in CDCl₃ at 298 K

Figure S7. ¹H NMR spectrum of 4Zn in CDCl₃ at 298 K

Figure S8. ¹³C NMR spectrum of 4Zn in CDCl₃ at 298 K

Figure S9. ¹H NMR spectrum of 4H in CDCl₃ at 298 K

Figure S10. ¹³C NMR spectrum of 4H in CDCl₃ at 298 K

Figure S11. ¹H NMR spectrum of 5Ni in CDCl₃ at 298 K

Figure S12. ¹³C NMR spectrum of 5Ni in CDCl₃ at 298 K

Figure S13. ¹H NMR spectrum of 5Zn in CDCl₃ at 298 K

Figure S14. ¹H NMR spectrum of 5H in CDCl₃ at 298 K

<1.478 <1.475

Figure S15. ¹H NMR spectrum of 6Ni in CDCl₃ at 298 K

Figure S16. ¹³C NMR spectrum of 6Ni in CDCl₃ at 298 K

Figure S17. ¹H NMR spectrum of 7Ni in CDCl₃ at 298 K

Figure S18. $^{13}\mathrm{C}$ NMR spectrum of 7Ni in CDCl3 at 298 K

Figure S19. ¹H NMR spectrum of 8Ni in CDCl₃ at 298 K

Figure S20. ¹³C NMR spectrum of 8Ni in CDCl₃ at 298 K

Figure S21. ¹H NMR spectrum of 9Ni in CDCl₃ at 298 K

Figure S23. ¹H NMR spectrum of 9H in CDCl₃ at 298 K

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Figure S25. ¹H NMR spectrum of 10Ni in CDCl₃ at 298 K

Figure S26. ¹³C NMR spectrum of 10Ni in CDCl₃ at 298 K. S26

Figure S27. ¹H NMR spectrum of 11Ni in CDCl₃ at 298 K

Figure S29. ¹H NMR spectrum of 12Ni in CDCl₃ at 298 K

Figure S30. ¹³C NMR spectrum of **12Ni** in CDCl₃ at 298 K

Figure S31. ¹H NMR spectrum of 12H in CDCl₃ at 298 K

Figure S32. ¹³C NMR spectrum of **12H** in CDCl₃ at 298 K

Figure S33. ¹H NMR spectrum of **12Zn** in CDCl₃ at 298 K

<u>UV/Vis Absorption Spectra</u>

Compound	λ/nm	Compound	λ/nm	
3Ni	406, 444, 556, 600	7Ni	356, 422, 514, 649, 701	
3Н	430, 528, 562, 597	8Ni	321, 384, 489, 561, 796	
3Zn	415, 440, 530, 567, 610	9Ni	370, 408, 450, 556, 599	
4Ni	349, 420, 472, 634	9Н	369, 436, 527, 599	
4 H	430, 537, 609	10Ni	411, 455, 560, 602	
4Zn	395, 429, 472, 545, 587, 636	11Ni	408, 453, 522, 559, 600	
5Ni	357, 402, 461, 549, 617, 659	12Ni	376, 412, 461, 560, 601	
5H	347, 445, 532, 612, 667	12H	373, 441, 529, 565, 600	
5Zn	343, 399, 459, 551, 603, 626, 653	12Zn	370, 423, 450, 532, 571, 612	
6Ni	336, 394, 482, 666, 725			

Table S1. UV/Vis absorption data

Figure S36. UV/Vis absorption spectra of 4Ni, 4Zn and 4H in CH_2Cl_2 .

Figure S37. UV/Vis absorption spectra of 5Ni, 5Zn, 5H and 6Ni in CH₂Cl₂.

Figure S38. UV/Vis absorption spectra of 7Ni and 8Ni in CH_2Cl_2 .

Figure S40. UV/Vis absorption spectra of 10Ni, 12Ni, 12Zn and 12H in CH_2Cl_2 .

Electrochemical Data

Table S2. CV and DPV of **3Ni**, **4Ni**, **5Ni**, **7Ni**, **8Ni**, **9Ni** and **12Ni** in CH_2Cl_2 with 0.1 M tetra-*n*-butylammonium perchlorate (TBAP). Working electrode: glassy carbon; Counter electrode:Pt wire; Reference electrode: Ag/AgCl.

Compound	$E_{\rm ox.1}$	$E_{\rm red.1}$	$E_{\rm red.2}$	$\varDelta E_{ m HL}$
3Ni	0.99	-1.09	-1.54	2.08
4Ni	0.97	-1.02	-1.35	1.99
5Ni	0.95	-0.96	-1.38	1.91
6Ni	0.91	-0.86	-1.24	1.77
7Ni	0.92	-0.85	-1.39	1.77
8Ni	0.72	-0.77	-1.21	1.49
9Ni	0.98	-1.09	-1.56	2.07
12Ni	1.04	-1.07	-1.95	2.11

Figure S41. Cyclic voltammogram and differential pulse voltammogram of 3Ni.

Figure S42. Cyclic voltammogram and differential pulse voltammogram of 4Ni.

Figure S43. Cyclic voltammogram and differential pulse voltammogram of 5Ni.

Figure S44. Cyclic voltammogram and differential pulse voltammogram of 6Ni.

Figure S45. Cyclic voltammogram and differential pulse voltammogram of 7Ni.

Figure S46. Cyclic voltammogram and differential pulse voltammogram of 8Ni.

Figure S47. Cyclic voltammogram and differential pulse voltammogram of 9Ni.

Figure S48. Cyclic voltammogram and differential pulse voltammogram of 12Ni.

X-Ray Crystal Data

Single crystal of **5Ni**, **6Ni**, and **7Ni** were obtained by slow vapor diffusion of MeCN into a toluene solution. Single crystal of **8Ni** was obtained by slow vapor diffusion of ethanol into a chlorobenzene solution. Single crystal of **9Ni** was obtained by slow vapor diffusion of methanol into a toluene solution. Single crystal of **10Ni** was obtained by slow vapor diffusion of dimethylcarbinol into a *p*-xylene solution. Single crystal of **12Zn** was obtained by slow vapor diffusion was obtained by slow vapor diffusion of methanol into and toluene solution mixed with a drop of pyridine.

A suitable crystal of **5Ni-10Ni** and **12Zn** were selected and measured on a SuperNova, Dual, Cu at zero, EosS2 diffractometer. The crystal of **5Ni**, **7Ni**, **8Ni**, **10Ni** and **12Zn** were kept at 100.01(10) K during data collection. The crystal of **6Ni** and **9Ni** were kept at 100.00(11) K, 100.00(10) K during data collection, respectively. Using Olex⁴, the structure of **5Ni-10Ni** and **12Zn** were solved with the olex2.solve⁵ structure solution program using Charge Flipping and refined with the ShelXL⁶ refinement package using Least Squares minimisation.

Crystallographic data for **5Ni-10Ni** and **12Zn** have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication Nos. CCDC-2061480, 2061483, 2061481, 2061484, 2061485, 2061487 and 2061486, respectively.

Figure S49. X-ray crystal structure of **5Ni**. (a) Top view, (b) side view. The thermal ellipsoids are 50% probability level. *tert*-Butyl groups and solvent molecules are omitted for clarity.

Table S3. Crystal data and structure refinement for 5Ni

Identification code	exp_46_sq	
Empirical formula	C ₈₈ H ₉₆ N ₈ Ni	
Formula weight	1324.43	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 16.1391(3) Å	α=111.8529(19)°.
	b = 16.8531(4) Å	β=109.1654(17)°.
	c = 20.3578(4) Å	γ=96.7357(17)°.
Volume	4669.80(18) Å ³	
Z	2	
Density (calculated)	0.942 Mg/m ³	
Absorption coefficient	0.605 mm ⁻¹	
F(000)	1416	
Crystal size	$0.3 \ge 0.3 \ge 0.2 \text{ mm}^3$	
Theta range for data collection	4.367 to 66.598°.	
Index ranges	-19<=h<=19, -20<=k<=20, -18<=l<=24	
Reflections collected	48528	
Independent reflections	16484 [R(int) = 0.0555]	
Completeness to theta = 66.598°	100.0 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	1.00000 and 0.25268	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	16484 / 413 / 969	
Goodness-of-fit on F ²	1.082	
Final R indices [I>2sigma(I)]	R1 = 0.0723, wR2 = 0.1992	
R indices (all data)	R1 = 0.0800, wR2 = 0.2067	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.987 and -0.587 e.Å ⁻³	

Figure S50. X-ray crystal structure of 6Ni. (a) Top view, (b) side view. The thermal ellipsoids are 50% probability level. *tert*-Butyl groups and solvent molecules are omitted for clarity.

Table S4. Crystal data and structure refinement for 6Ni

Identification code	exp_132_sq	
Empirical formula	$C_{96}H_{100}N_8Ni$	
Formula weight	1424.54	
Temperature	100.00(11) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	I 1 2/a 1	
Unit cell dimensions	a = 17.6246(4) Å	$\alpha = 90^{\circ}$.
	b = 17.1567(3) Å	$\beta = 97.990(2)^{\circ}.$
	c = 30.5564(9) Å	$\gamma = 90^{\circ}.$
Volume	9149.9(4) Å ³	
Z	4	
Density (calculated)	1.034 Mg/m ³	
Absorption coefficient	0.649 mm ⁻¹	
F(000)	3040	
Crystal size	0.3 x 0.01 x 0.01 mm ³	
Theta range for data collection	4.420 to 66.598°.	
Index ranges	-20<=h<=20, -20<=k<=18, -36<=l<=36	
Reflections collected	28976	
Independent reflections	8079 [R(int) = 0.0523]	
Completeness to theta = 66.599°	99.9 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	1.00000 and 0.66504	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	8079 / 376 / 620	
Goodness-of-fit on F ²	1.033	
Final R indices [I>2sigma(I)]	R1 = 0.0823, $wR2 = 0.2363$	
R indices (all data)	R1 = 0.0926, $wR2 = 0.2500$	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.818 and -0.495 e.Å ⁻³	

b)

Figure S51. X-ray crystal structure of 7Ni. (a) Top view, (b) side view. The thermal ellipsoids are 50% probability level. *tert*-Butyl groups and solvent molecules are omitted for clarity.

Table S5. Crystal data and structure refinement for 7Ni

Identification code	exp_125_sq		
Empirical formula	C100H100N12Ni		
Formula weight	1528.62		
Temperature	100.01(10) K		
Wavelength	1.54184 Å		
Crystal system	Tetragonal		
Space group	P-421c		
Unit cell dimensions	a = 21.8548(8) Å	$\alpha = 90^{\circ}.$	
	b = 21.8548(8) Å	$\beta = 90^{\circ}.$	
	c = 9.0971(5) Å	$\gamma = 90^{\circ}$.	
Volume	4345.1(4) Å ³		
Z	2		
Density (calculated)	1.168 Mg/m ³		
Absorption coefficient	0.731 mm ⁻¹		
F(000)	1624		
Crystal size	0.3 x 0.01 x 0.01 mm ³		
Theta range for data collection	4.046 to 66.590°.		
Index ranges	-26<=h<=26, -25<=k<=	-26<=h<=26, -25<=k<=26, -10<=l<=4	
Reflections collected	28758		
Independent reflections	3835 [R(int) = 0.1398]	3835 [R(int) = 0.1398]	
Completeness to theta = 66.590°	100.0 %	100.0 %	
Absorption correction	Semi-empirical from ec	Semi-empirical from equivalents	
Max. and min. transmission	1.00000 and 0.06285		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	3835 / 222 / 322	3835 / 222 / 322	
Goodness-of-fit on F ²	1.044	1.044	
Final R indices [I>2sigma(I)]	R1 = 0.0630, wR2 = 0.2	R1 = 0.0630, wR2 = 0.1652	
R indices (all data)	R1 = 0.0776, wR2 = 0.2	R1 = 0.0776, wR2 = 0.1803	
Absolute structure parameter	-0.05(6)	-0.05(6)	
Extinction coefficient	n/a		
Largest diff. peak and hole	0.377 and -0.312 e.Å ⁻³		

b)

Figure S52. X-ray crystal structure of 8Ni. (a) Top view, (b) side view. The thermal ellipsoids are 50% probability level. *tert*-Butyl groups and solvent molecules are omitted for clarity.

Table S6. Crystal data and structure refinement for 8Ni

Identification code	exp_367_sq	
Empirical formula	C ₁₁₆ H ₁₀₈ N ₁₂ Ni	
Formula weight	1728.85	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions	a = 9.47195(18) Å	$\alpha = 90^{\circ}$.
	b = 33.8469(6) Å	$\beta = 92.7229(17)^{\circ}$.
	c = 34.0796(6) Å	$\gamma = 90^{\circ}.$
Volume	10913.5(4) Å ³	
Z	4	
Density (calculated)	1.052 Mg/m ³	
Absorption coefficient	0.635 mm ⁻¹	
F(000)	3664	
Crystal size	0.1 x 0.1 x 0.01 mm ³	
Theta range for data collection	4.109 to 66.600°.	
Index ranges	-11<=h<=11, -40<=k<=40, -4	lo<=l<=40
Reflections collected	146801	
Independent reflections	19282 [R(int) = 0.0839]	
Completeness to theta = 66.600°	100.0 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	1.00000 and 0.33519	
Refinement method	Full-matrix least-squares on F	52
Data / restraints / parameters	19282 / 491 / 1217	
Goodness-of-fit on F ²	1.056	
Final R indices [I>2sigma(I)]	R1 = 0.0677, wR2 = 0.1849	
R indices (all data)	R1 = 0.0897, wR2 = 0.1962	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.802 and -0.532 e.Å ⁻³	

Figure S53. X-ray crystal structure of **9Ni**. (a) Top view, (b) side view. The thermal ellipsoids are 30% probability level. 3,5-di-*tert*-butylphenyl groups and solvent molecules are omitted for clarity.

Table S7. Crystal data and structure refinement for 9Ni

Identification code	exp_375_sq		
Empirical formula	$C_{103}H_{110}N_6Ni$		
Formula weight	1490.67		
Temperature	100.00(10) K		
Wavelength	1.54184 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 14.9984(3) Å	α=103.3287(16)°.	
	b = 15.1050(3) Å	β= 95.3569(16)°.	
	c = 19.2933(4) Å	γ=97.8627(16)°.	
γ			
Volume	4177.68(14) Å ³		
Z	2		
Density (calculated)	1.185 Mg/m ³		
Absorption coefficient	0.724 mm ⁻¹		
F(000)	1596		
Crystal size	$0.3 \ge 0.2 \ge 0.2 \text{ mm}^3$		
Theta range for data collection	4.061 to 66.596°.		
Index ranges	-16<=h<=17, -17<=k<	-16<=h<=17, -17<=k<=17, -22<=l<=22	
Reflections collected	58314	58314	
Independent reflections	14724 [R(int) = 0.0562	14724 [R(int) = 0.0562]	
Completeness to theta = 66.596°	99.9 %	99.9 %	
Absorption correction	Semi-empirical from ea	quivalents	
Max. and min. transmission	1.00000 and 0.71397		
Refinement method	Full-matrix least-square	es on F ²	
Data / restraints / parameters	14724 / 0 / 1078		
Goodness-of-fit on F ²	1.043		
Final R indices [I>2sigma(I)]	R1 = 0.0777, wR2 = 0.	2250	
R indices (all data)	R1 = 0.0936, wR2 = 0.	2433	
Extinction coefficient	n/a		
Largest diff. peak and hole	1.473 and -0.547 e.Å ⁻³		

Figure S54. X-ray crystal structure of **10Ni**. (a) Top view, (b) side view. The thermal ellipsoids are 30% probability level. 3,5-di-*tert*-butylphenyl groups and solvent molecules are omitted for clarity.

Table S8. Crystal data and structure refinement for 10Ni

Identification code	exp_548_sq	
Empirical formula	$C_{188}H_{202}N_{14}Ni_2O_2$	
Formula weight	2807.04	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 16.7663(2) Å	$\alpha = 78.6397(9)^{\circ}.$
	b = 23.8905(3) Å	$\beta = 87.1794(10)^{\circ}.$
	c = 28.1890(3) Å	$\gamma = 78.6812(10)^{\circ}.$
Volume	10854.1(2) Å ³	
Z	2	
Density (calculated)	0.859 Mg/m ³	
Absorption coefficient	0.545 mm ⁻¹	
F(000)	3000	
Crystal size	0.2 x 0.2 x 0.1 mm ³	
Theta range for data collection	3.575 to 66.601°.	
Index ranges	-17<=h<=19, -28<=k<=28, -33<=l<=33	
Reflections collected	154157	
Independent reflections	38297 [R(int) = 0.0383]	
Completeness to theta = 66.601°	99.9 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	1.00000 and 0.82446	
Refinement method	Full-matrix least-squares on F	52
Data / restraints / parameters	38297 / 693 / 1904	
Goodness-of-fit on F ²	1.055	
Final R indices [I>2sigma(I)]	R1 = 0.0669, wR2 = 0.1761	
R indices (all data)	R1 = 0.0768, wR2 = 0.1833	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.013 and -0.532 e.Å ⁻³	

Figure S55. X-ray crystal structure of 12Zn. (a) Top view, (b) side view. The thermal ellipsoids are 30% probability level. Hydrogen atoms, 3,5-di-*tert*-butylphenyl groups and solvent molecules are omitted for clarity.

Table S9. Crystal data and structure refinement for 12Zn

Identification code	exp_424_sq	
Empirical formula	$C_{263}H_{293}N_{21}Zn_{3} \\$	
Formula weight	3944.28	
Temperature	100.01(10) K	
Wavelength	1.54184 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 23.4051(8) Å	$\alpha = 98.679(2)^{\circ}$.
	b = 25.6957(5) Å	$\beta = 90.766(2)^{\circ}$.
	c = 26.3918(7) Å	$\gamma = 91.045(2)^{\circ}$.
Volume	15685.9(7) Å ³	
Z	2	
Density (calculated)	0.835 Mg/m ³	
Absorption coefficient	0.591 mm ⁻¹	
F(000)	4216	
Crystal size	0.3 x 0.2 x 0.02 mm ³	
Theta range for data collection	3.907 to 66.600°.	
Index ranges	-27<=h<=27, -30<=k<=30, -31<=l<=31	
Reflections collected	219999	
Independent reflections	55376 [R(int) = 0.1043]	
Completeness to theta = 66.600°	99.9 %	
Absorption correction	Semi-empirical from equivale	ents
Max. and min. transmission	1.00000 and 0.56448	
Refinement method	Full-matrix least-squares on F	2
Data / restraints / parameters	55376 / 2046 / 3084	
Goodness-of-fit on F ²	1.184	
Final R indices [I>2sigma(I)]	R1 = 0.1253, wR2 = 0.3490	
R indices (all data)	R1 = 0.1888, WR2 = 0.3994	
Extinction coefficient	n/a	
Largest diff. peak and hole	1.435 and -0.624 e.Å ⁻³	

Density Functional Theory (DFT) calculations

DFT calculations were carried out at the B3LYP/6-31G(d)(C,H,N) level using the Gaussian 09 package.

Figure S56. Calculated vertical transitions and major transitions of **5Ni** calculated by TD-DFT using B3LYP employing the 6-31G(d) basis set.

Wavelength (nm)	Oscillator Strengths	Major Transitions
585	0.0251	HOMO-1→LUMO+1 (25%); HOMO→LUMO (74%)
581	0.0212	HOMO-1→LUMO (32%); HOMO→LUMO+1 (66%)
488	0.1317	HOMO-1→LUMO+1 (45%); HOMO→LUMO (14%); HOMO→LUMO+2 (37%)
486	0.2152	HOMO-1→LUMO (45%); HOMO→LUMO+1 (19%); HOMO→LUMO+3 (29%)
430	0.1117	HOMO-2→LUMO+1 (37%); HOMO→LUMO+3 (15%)
429	0.1665	HOMO-2→LUMO+1 (12%); HOMO-1→LUMO+3 (28%); HOMO→LUMO+2 (24%)
389	0.4526	HOMO-1→LUMO+1 (10%); HOMO-1→LUMO+3 (44%); HOMO→LUMO+2 (15%)
384	0.7509	HOMO-1→LUMO (10%); HOMO→LUMO+2 (37%); HOMO→LUMO+3 (15%)

epsilon Oscillator strengths 1ε (10⁵M⁻¹ cm⁻¹) 0 +900 600 3Ò0 λ /nm Wavelength (nm) Oscillator Strengths Major Transitions 694 0.0651 HOMO→LUMO (95%) HOMO-1→LUMO (73%); HOMO→LUMO+2 599 0.0327 (23%) HOMO-1→LUMO (19%); HOMO-1→LUMO+3 470 1.1454 (20%); HOMO→LUMO+2 (59%) HOMO-3→LUMO+2 (10%); HOMO-0.5303 412 1→LUMO+3 (68%); HOMO→LUMO+2 (12%) HOMO-7→LUMO (15%); HOMO-5→LUMO+1 389 0.2420 (20%); HOMO-4→LUMO+1 (19%); HOMO-1→LUMO+2 (22%)

Figure S57. Calculated vertical transitions and major transitions of 5Ni' calculated by TD-DFT using B3LYP employing the 6-31G(d) basis set.

(53%)

389

381

376

367

0.1648

0.1663

0.5565

1.0025

HOMO-7→LUMO (13%); HOMO-5→LUMO+1

HOMO-11→LUMO (51%); HOMO-6→LUMO+1

HOMO-11→LUMO (21%); HOMO-6→LUMO+1

(29%); HOMO-1→LUMO+2 (24%)

(15%); HOMO-3→LUMO+2 (20%)

HOMO-10→LUMO (89%)

347	0.1853	HOMO-18→LUMO (22%); HOMO-3→LUMO+3 (59%)
-----	--------	---

Figure S58. Calculated vertical transitions and major transitions of 6Ni calculated by TD-DFT using B3LYP employing the 6-31G(d) basis set.

Wavelength (nm)	Oscillator Strengths	Major Transitions
653	0.0467	HOMO→LUMO (91%)
636	0.0593	HOMO-1 \rightarrow LUMO(11%); HOMO \rightarrow LUMO+1 (87%)
476	0.2004	HOMO-2→LUMO (21%); HOMO-1→LUMO (11%); HOMO-1→LUMO+3 (15%); HOMO→LUMO+2 (38%)
473	0.1603	HOMO-2→LUMO+1 (30%); HOMO-1→LUMO+1 (11%); HOMO-1→LUMO+2 (17%); HOMO→LUMO+3 (33%)
404	0.2003	HOMO-1→LUMO+2 (22%); HOMO→LUMO+4 (52%)
398	0.7608	HOMO-3→LUMO+2 (10%); HOMO-1→LUMO+3 (47%); HOMO→LUMO+2 (14%)
388	0.3064	HOMO-6→LUMO+1 (28%); HOMO-5→LUMO (14%); HOMO-2→LUMO+2 (25%); HOMO- 1→LUMO+2 (10%)
384	0.1550	HOMO-2→LUMO+3 (88%)

361	0.2161	HOMO-3→LUMO+2 (33%); HOMO-3→LUMO+3 (11%)
361	0.2756	HOMO-4→LUMO+3 (16%); HOMO-3→LUMO+2 (16%); HOMO-3→LUMO+3 (22%)
355	0.3074	HOMO-11→LUMO+1 (13%); HOMO- 6→LUMO+3 (38%); HOMO-5→LUMO+2 (26%)
353	0.1615	HOMO-6→LUMO+2 (23%); HOMO-5→LUMO+2 (47%)
351	0.1223	HOMO-6→LUMO+3 (36%); HOMO-5→LUMO+2 (29%); HOMO-3→LUMO+2 (13%)

Figure S59. Calculated vertical transitions and major transitions of 6Ni' calculated by TD-DFT

using B3LYP employing the 6-31G(d) basis set.

490	0.1243	HOMO→LUMO (37%); HOMO→LUMO+5 (31%)
427	0.8146	HOMO-1→LUMO+1 (25%); HOMO→LUMO+4 (55%)
427	0.8146	HOMO-1→LUMO (25%); HOMO→LUMO+5 (55%)
366	0.1650	HOMO-8→LUMO (10%); HOMO-1→LUMO+5 (56%)
366	0.1650	HOMO-8→LUMO+1 (10%); HOMO- 1→LUMO+4 (56%)

Figure S60. Calculated vertical transitions and major transitions of 7Ni calculated by TD-DFT

using B3LYP employing the 6-31G(d) basis set.

469	0.7693	HOMO-5→LUMO (28%); HOMO-1→LUMO (21%); HOMO→LUMO+4 (12%) HOMO→LUMO+5 (12%)
469	0.7531	HOMO-5→LUMO+1 (27%); HOMO- 1→LUMO+1 (20%); HOMO→LUMO+4 (13%); HOMO→LUMO+5 (12%)

Figure S61. Calculated vertical transitions and major transitions of 8Ni calculated by TD-DFT

using B3LYP employing the 6-31G(d) basis set.

Figure S62. Calculated vertical transitions and major transitions of 12Ni calculated by TD-DFT

using B3LYP employing the 6-31G(d) basis set.

Figure S63. Energy diagram and selected Kohn–Sham orbitals of 5Ni.

Figure S64. Energy diagram and selected Kohn–Sham orbitals of 5Ni'.

Figure S65. Energy diagram and selected Kohn–Sham orbitals of 5H.

Figure S66. Energy diagram and selected Kohn–Sham orbitals of 5H'.

Figure S67. Energy diagram and selected Kohn–Sham orbitals of 6Ni.

Figure S68. Energy diagram and selected Kohn–Sham orbitals of 6Ni'.

Figure S69. Energy diagram and selected Kohn–Sham orbitals of 7Ni.

Figure S70. Energy diagram and selected Kohn–Sham orbitals of 7H.

Figure S71. Energy diagram and selected Kohn–Sham orbitals of 8Ni.

Figure S72. Energy diagram and selected Kohn–Sham orbitals of 12Ni.

Ring of 5Ni	NICS(0) value / ppm	Ring of 5Ni'	NICS(0) value / ppm
1	-6.9102	1	-7.2244
2	-16.3188	2	-15.8892
3	-0.4045	3	0.1196
4	-16.5558	4	-16.0439
5	-6.9252	5	0.0330
6	-16.4016	6	-15.8291

7	-0.4178	7	-7.1573
8	-16.3562	8	-15.6082
9	-8.3340	9	-8.1737
10	-8.2973	10	-8.1588
11	-9.7713	11	-9.6640
12	-9.7977	12	-9.6379

Figure S73. Calculated NICS values of 5Ni and 5Ni'.

Figure S74. Calculated NICS values of 5H and 5H'.

S68

Ring of 6Ni	NICS(0) value / ppm	Ring of 6Ni'	NICS(0) value / ppm
1	-6.9027	1	-7.2566
2	-15.6450	2	-15.1790
3	1.4705	3	1.9021
4	-15.8558	4	-15.5111
5	-7.0121	5	2.0572
6	-16.1683	6	-15.0316
7	1.3328	7	-7.2393
8	-16.0294	8	-14.8311
9	-7.4736	9	-7.1858
10	-7.3032	10	-7.1108
11	-12.9369	11	-12.7525
12	-12.8931	12	-12.7635
13	-8.8655	13	-8.7783
14	-8.9048	14	-8.8627

Ring of 7H	NICS(0) value / ppm	Ring of 7H	NICS(0) value / ppm
1	3.5052	3	-4.2199
5	3.5046	7	-4.2198
2	-12.5702	9	-7.4142
10	-9.9086	11	-7.4140
12	-9.9087	13	-9.3731
14	-9.7025	15	-9.3729
16	-9.7026		

Figure S76. Calculated NICS values of 7H.

•14 •10 •3 •4 •5 •11 •15		•18 •14 •10 •10 •10 •10 •10 •10 •10 •10 •10 •10	
Ring of 7Ni	NICS(0) value / ppm	Ring of 8Ni	NICS(0) value / ppm
1	-1.2817	1	0.6198
2	-14.8445	2	-13.9754
3	-1.2816	3	0.3538
4	-14.8446	4	-13.7352
5	-1.2816	5	0.6615
6	-14.8447	6	-13.8249
7	-1.2814	7	0.6164
8	-14.8448	8	-14.0064
9	-8.3624	9	-7.3937
10	-8.3623	10	-7.4238
11	-8.3621	11	-7.4299
12	-8.3623	12	-7.4691
13	-9.5148	13	-12.7307
14	-9.5148	14	-12.6954
15	-9.5149	15	-12.6935
16	-9.5148	16	-12.6942
		17	-8.8472
		18	-8.7337
		19	-8.7621
		20	-8.7091

	33410 16 35 26 29 30 27 18 24 35 35 35 35 35 35 35 35
12Zn	12Zn

Ring of 12Zn	NICS(0) value / ppm	Ring of 12Zn	NICS(0) value / ppm
1	-6.1535	19	1.2953
2	-14.5388	20	-15.0484
3	-5.9966	21	-7.0963
4	-14.5741	22	-14.7567
5	1.2008	23	-7.0427
6	-14.5961	24	-14.8208
7	-6.8156	25	-8.0216
8	-14.8239	26	-8.2283
9	-6.8979	27	-8.1486
10	-14.8529	28	-9.1626
11	-7.1219	29	-9.0434
12	-14.7622	30	-9.3093
13	-6.9336	31	3.7639
14	-14.9016	32	-11.8904
15	1.1506	33	-11.8542
16	-14.8176	34	-12.1732
17	-6.9342	35	-12.1772
18	-14.7804		

Figure S78.	Calculated NICS	values of 12Zn.
-------------	-----------------	-----------------

Singlet Oxygen Production

Figure S79 Changes in the absorption spectra of **DPBF** (6.3×10^{-5} mol/L) at 414 nm upon irradiation ($\lambda_{irr} = 450-460$ nm). b) Plot of change in absorbance of **DPBF** at 414 nm *vs* irradiation time.

Figure S80 Changes in the absorption spectra of **DPBF** (6.3×10^{-5} mol/L) at 414 nm upon irradiation ($\lambda_{irr} = 450-460$ nm) in the presence of **3Ni** (1.3×10^{-6} mol/L). b) Plot of change in absorbance of **DPBF** at 413 nm *vs* irradiation time in the presence of **3Ni**.

Figure S81 Changes in the absorption spectra of **DPBF** (6.3×10^{-5} mol/L) at 414 nm upon irradiation ($\lambda_{irr} = 450-460$ nm) in the presence of **1Zn** (1.3×10^{-6} mol/L). b) Plot of change in absorbance of **DPBF** at 421 nm *vs* irradiation time in the presence of **1Zn**.

Figure S82. a) Changes in the absorption spectra of **DPBF** (6.3×10^{-5} mol/L) at 414 nm upon irradiation ($\lambda_{irr} = 450-460$ nm) in the presence of **3Zn** (1.3×10^{-6} mol/L). b) Plot of change in absorbance of **DPBF** at 414 nm *vs* irradiation time in the presence of **3Zn**.

Figure S83. a) Changes in the absorption spectra of **DPBF** (6.3×10^{-5} mol/L) at 414 nm upon irradiation ($\lambda_{irr} = 450-460$ nm) in the presence of **4Zn** (1.3×10^{-6} mol/L). b) Plot of change in absorbance of **DPBF** at 417 nm *vs* irradiation time in the presence of **4Zn**.

Figure S84. a) Changes in the absorption spectra of **DPBF** (6.3×10^{-5} mol/L) at 414 nm upon irradiation ($\lambda_{irr} = 450-460$ nm) in the presence of **5Zn** (1.3×10^{-6} mol/L). b) Plot of change in absorbance of **DPBF** at 414 nm *vs* irradiation time in the presence of **5Zn**.

Figure S85. a) Changes in the absorption spectra of DPBF ($6.3 \times 10^{-5} \text{ mol/L}$) at 416 nm upon irradiation ($\lambda_{irr} = 450-460 \text{ nm}$) in the presence of 12Zn ($1.3 \times 10^{-6} \text{ mol/L}$). b) Plot of change in absorbance of DPBF at 414 nm *vs* irradiation time in the presence of 12Zn.

Electrocatalytic Hydrogen Evolution Reaction

1.0 mg of rGO was mixed with 1 mL of isopropyl alcohol containing 0.2% nafion and the mixture sonicated in an ultrasonic bath for 30 min to produce a homogeneous mixture of concentration 1 mg/mL. The surface of the glassy carbon electrode (GCE) was polished with 0.05 μ m alumina and rinsed with doubly distilled water in the ultrasonic bath to remove any adhered Al₂O₃ particles. The electrodes were rinsed with ethanol and dried under room temperature for ca. 5 min. Three 3 μ L of the rGO/isopropyl alcohol/nafion suspensions were drop cast on the surface of the GC electrode and allowed to dry at room temperature. 10 μ L aliquots of 0.2 mM dichloromethane solutions of **3Ni** to **10Ni** and **12Ni** were added dropwise to the rGO/nafion-coated electrodes and dried at room temperature for 1 h. The electrodes were stored in MilliQ water in the dark.

Figure S86. Calculated Tafel slops of 3Ni/rGO to 10Ni/rGO and 12Ni/rGO.

Table S10. Onset potentials and Tafel slope values of 3Ni/rGO to 10Ni/rGO and 12Ni/rGO

Compound	3Ni	4Ni	5Ni	6Ni	7Ni	8Ni	9Ni	10Ni	12Ni
Onset Potentials (mV)	-450	-380	-315	-295	-293	-262	-377	-300	-291
Tafel Slops (mV/dec)	208	227	241	210	206	189	203	190	217

Figure S87. *i-t* curves of 3Ni/rGO to 10Ni/rGO and 12Ni/rGO in 0.5 M H₂SO₄.

References

[1] (a) K.-L. Li, C.-C. Guo and Q.-Y. Chen, Efficient one-pot regioselective synthesis of 2,3-dibromo-5,10,15,20-tetra-arylporphyrins from 5,10,15,20-tetraarylchlorins, *Synlett*, 2009, 2867-2871; (b) R. Deshpande, L. Jiang, G. Schmidt, J. Rakovan, X Wang, K. Wheeler and H. Wang, A concise approach to the synthesis of opp-dibenzoporphyrins through the Heck reaction, *Org. Lett.*, 2009, 11, 4251-4253; (c) L. Jiang, R. A. Zaenglein, J. T. Engle, C. Mittal, C. S. Hartley, C. J. Ziegler and H. Wang, Water-soluble ionic benzoporphyrins, *Chem. Commun.*, 2012, 48, 6927-6929.

[2] (a) N. G. White and M. J. MacLachlan, Soluble tetraaminotriptycene precursors, J. Org. Chem., 2015, **80**, 8390-8397; (b) J. H. Chong and M. J. MacLachlan, Robust non-interpenetrating coordination frameworks from new shape-persistent building blocks, *Inorg. Chem.*, 2006, **45**, 1442-1444; (c) M. Mastalerz, S. Sieste, M. Ceninć and I. M Oppel, Two-step synthesis of hexaammonium triptycene: an air-stable building block for condensation reactions to extended

triptycene derivatives, J. Org. Chem., 2011, 76, 6389-6391.

[3] (*a*) T. Khoury and M. J. Crossley, A strategy for the stepwise ring annulation of all four pyrrolic rings of a porphyrin, *Chem. Commun.*, 2007, 4851-4853; (*b*) M. J. Crossley, C. S. Sheehan, T. Khoury, J. R. Reimers and P. J. Sintic, Construction of building blocks for extended porphyrin arrays by nitration of porphyrin-2,3-diones and quinoxalino[2,3-b]porphyrins, *New J. Chem.*, 2008, **32**, 340-352.

[4] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard and H. Puschmann, OLEX2: A complete structure solution, refinement and analysis program *J. Appl. Cryst.*, 2009, **42**, 339-341.

[5] L. J. Bourhis, O. V. Dolomanov, R. J. Gildea, J. A. K. Howard and H. Puschmann, The anatomy of a comprehensive constrained, restrained refinement program for the modern computing environment-Olex2 dissected, *Acta Cryst.*, 2015, **A71**, 59-75.

[6] G. M. Sheldrick, Crystal structure refinement with SHELXL Acta Cryst., 2015, C71, 3-8.