Supporting Information

Visible-light-promoted divergent functionalizations of methylenecyclopropanes

Baoxiang Zhu,^a Zhao Wang,^d Hui Xi^e, Zengqiang Feng,^a Binglei Wang,^a Wenyang Jiao,^a Zhongxian Li,^{e*} Zechao Wang,^{b*} Junliang Wu^{a*}

^aGreen Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P.R. China

^bDivision of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P.R. China

^cHigh & New Technology Research Center, Henan Academy of Sciences, Zhengzhou 450002, P.R. China

^dHenan University of Animal Husbandry and Economy, Zhengzhou 450001, P.R. China ^eZhengzhou Tobacco Research Institute of China National Tobacco Company, Zhengzhou 450001, P.R. China

Correspondence and requests for materials could be addressed to Junliang Wu (e-mail: wujl@zzu.edu.cn)

Table of Content

1. General Information	.S3
2. Starting Materials	.S3
2.1 Preparation of MCPs. ¹	.S3
2.2 General Procedure for Synthesis of CF ₂ H Reagent 2a. ^{2,3}	.S3
2.3 Preparation of Bromocarbonyl	.S4
3. Detailed Optimization of Reaction Conditions	.S5
3.1 General Procedure of Product 3a	.S5
3.1.1 Optimization of Product 3a	.S5
3.2 General Procedure of Product 5a	.S7
3.2.1 Optimization of Product 5a	.S7
3.3 General Procedure of Product 6a	.S8
3.4 General Procedure of Product 7a	.S8
3.4.1 Optimization of Product 7a	.S9
3.4 General Procedure of Product 8a	510
3.4.1 Optimization of Product 8aS	510
4. Synthetic TransformationsS	512
4.1 General Procedure of Product 10S	512
4.2 General Procedure of Product 11S	512
4.3 General Procedure of Product 12 and 13	512
5. Control Experiments	513
6. X-ray Crystallographic Data of 3i, 7m, 8aS	514
7. Characterization of Products	517
8. ¹ H NMR, ¹³ C NMR, ¹⁹ F NMR SpectraS	537
9. Reference	594

1. General Information

All air- and moisture-insensitive reactions were carried out under an ambient atmosphere and monitored by thin-layer chromatography (TLC). Concentration under reduced pressure was performed by rotary evaporation at 40-60 °C at an appropriate pressure. Purified compounds were further dried under high vacuum. Yields refer to purified and spectroscopically pure compounds, unless otherwise stated. All airand moisture-sensitive manipulations were performed using oven-dried glassware (120 °C for a minimum of 15 h), including standard Schlenk techniques under an atmosphere of argon. The heat source is an aluminum dry block heater. Irradiation of photochemical reactions were carried out using 5-15 W blue LEDs. Substrates **5** were commercially available. Solvents were purchased from Titan and dried by distillation. All deuterated solvents were purchased from J&K Scientific.

Spectroscopy and Instruments

¹H NMR spectra were recorded on 400 MHz or 600 MHz spectrophotometers. Chemical shifts (δ) were reported in ppm from the resonance of tetramethyl silane as the internal standard (TMS: 0.00 ppm). Data were reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz) and integration. For ¹H NMR: CDCl₃, 7.26; For ¹³C NMR: CDCl₃, 77.16; ¹³C NMR spectra were recorded on 100 MHz or 150 MHz with complete proton decoupling spectrophotometers. ¹⁹F-NMR spectra were observed in the ¹H-decoupled mode. High-resolution mass spectra were obtained using Shimadzu LCMS-IT-TOF mass spectrometer and DIONEX UltiMate 3000 & Bruker Compact TOF mass spectrometer. Gas chromatography analysis was performed on an Agilent HP-5890 instrument with an FID detector.

2. Starting Materials

2.1 Preparation of MCPs.¹

$$\begin{array}{c} O \\ Ar \end{array} R^{1} \xrightarrow{BrCH_{2}CH_{2}CH_{2}Ph_{3}P^{+}Br^{-}, NaH} \\ \hline THF, reflux, 12 h \end{array}$$

1

A 100 mL round-bottom flask equipped with a magnetic stir bar and a reflux condenser was charged with (4-bromobutyl)triphenylphosphonium bromide (6.96 g, 15 mmol) and NaH (1.20 g, 30 mmol) in THF (30 mL) at 75 °C under argon for 1 h. Afterwards compound ketone or aldehyde (10 mmol) in THF (10 mL) was added in the reaction solution. Then it was stirred at 75 °C until compound ketones or aldehydes was consumed completely. The reaction mixture was cooled to room temperature, and the mixture was filtered through a celite. The filtrate was concentrated under reduced pressure and the residue was purified by silica gel flash chromatography to afford the substrate **1**.

2.2 General Procedure for Synthesis of CF₂H Reagent 2a.^{2,3}

Potassium 2-bromo-2,2-difluoroacetate:

A 250 mL round-bottom flask equipped with a magnetic stir bar was charged with potassium hydroxide (4.03 g, 71.7 mmol, 1 equiv) was dissolved in MeOH (70 mL) at 0 °C. Ethyl bromo-2,2-difluoroacetate (9.48 mL, 15.0 g, 71.7 mmol, 1 equiv) was added slowly to the reaction mixture at 0 °C. The reaction mixture was slowly allowed to warm up to room temperature overnight. The solvent was removed under reduced pressure and potassium 2-bromo-2,2-difluoroacetate (13.6 g, 63.8 mmol, 89% yield) was obtained as a colorless solid.

2,2-Difluoro-2-(triphenylphosphonio)acetate:

A 250 mL round-bottom flask equipped with a magnetic stir bar was charged with potassium 2-bromo-2,2-difluoroacetate (13.6 g, 63.8 mmol, 1 equiv) and triphenylphosphine (16.7 g, 63.8 mmol, 1 equiv) were dissolved in DMF (80 mL). The reaction mixture was stirred at room temperature overnight. The formed precipitate was filtered off, washed with cold DMF (3×20 mL), water (3×20 mL) and Et₂O (3×20 mL). The precipitate was dried to obtain 2,2-difluoro-2-(triphenylphosphonio)acetate (12.7 g, 35.6 mmol, 56%) as a colorless solid.

(Difluoromethyl)triphenylphosphonium bromide (2a):

A 250 mL round-bottom flask equipped with a magnetic stir bar was charged with 2,2-difluoro-2-(triphenylphosphonio)acetate (5.04 g, 14.2 mmol, 1 equiv) was dissolved in THF (14 mL). HBr (48%, 1.94 mL, 2.87 g, 17.0 mmol, 1.2 equiv) was added to this reaction mixture. Then it was refluxed for 2 h. The reaction was quenched by water (50 mL). The aqueous layer was extracted with dichloromethane (2×50 mL). The combined organic layer was dried over MgSO₄. The solvent was removed under reduced pressure and the residue was washed multiple times with cold THF (3×10 mL) to obtain compound **2a** (4.80 g, 12.2 mmol, 86% yield) as a colorless solid.

2.3 Preparation of Bromocarbonyl.

A 100 mL round-bottom flask with a magnetic stir bar and a solution of substituted alkanone (10 mmol) in DCM (4 mL) was added dropwise to a solution of *N*-bromosuccinimide (2.14 g, 12 mmol, 1.2 equiv) and *p*-TsOH (0.2 g, 1.0 mmol, 0.1 equiv) in DCM (10 mL) at 0 °C. The reaction mixture was then heated

at reflux for 4 h. After the addition of H_2O (10 mL) and DCM (20 mL), the organic layer was separated, and the aqueous layer was extracted with DCM (2 × 15 mL). The combined organic layers were washed with saturated aqueous NaHCO₃ (10 mL) and brine (10 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to afford the substrate **4**.⁴

3. Detailed Optimization of Reaction Conditions

3.1 General Procedure of Product 3a

A 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1a** (0.2 mmol, 1 equiv), $[Ph_3PCF_2H]^+Br^-$ **2a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (3 mol%), KH₂PO₄ (0.2 mmol, 1 equiv). The Schlenk tube was evacuated and backfilled with argon for three times. Then DMF (4 mL) was injected into the Schlenk tube. The mixture was stirred for 24 h under blue LEDs. The reaction solution was cooled to room temperature, and saturated aqueous NaHCO₃ (5 mL) was added. Then it was washed with brine (10 mL). The mixture was extracted with diethyl ether (30 mL) for three times, dried with MgSO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 1/50) to give the desired product **3a** as a colorless oil in 60% isolated yield.

3.1.1 Optimization of Product 3a

Table S1. Screening of Solvent

OBn +	[Ph₃PCF₂H] ⁺ Br ⁻	fac-Ir(ppy) ₃ , KH ₂ PO ₄	OBn CF ₂ H
1a	2a		3a
Entry		Solvent	Yield (%) ^b
1		DMSO	11
2		DMAC	45
3		CH_2CI_2	29
4		THF	36
5		DCE	16
6		DMF	53
7		CH₃CN	26
8		NMP	35
9		HFIP	0

^aReaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (3 mol%), and KH₂PO₄ (0.2 mmol, 1 equiv) in solvent (2 mL) at rt under argon atmosphere and blue LEDs irradiation for 24 h. ^bYields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S2. Screening of Base

OBn 1a	+ [Ph ₃ PCF ₂ H] ⁺ Br ⁻ <u>fac-Ir(ppy)₃, base</u> DMF, 24 h, blue LEE 2a	OBn CF_2H 3a
Entry	Solvent	Yield (%) ^b
1	K ₂ CO ₃	0
2	Na ₂ HPO ₄	57
3	NaHCO ₃	54
4	NaH ₂ PO ₄ •2H ₂ O	50
5	KH ₂ PO ₄	67
6	K ₃ PO ₄	0
7	Cs ₂ CO ₃	0
8		trace

^aReaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (3 mol%), and base (0.2 mmol, 1 equiv) in DMF(2 mL) at rt under argon atmosphere and blue LEDs irradiation for 24 h. ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S3. Screening of Catalyst

			OBn
OBn	7 + [Ph ₃ PCF ₂ H] ⁺ Br ⁻	Catalyst, KH ₂ PO ₄ DMF, 24 h, blue LEI	\rightarrow CF ₂ H
1a	2a		3a
Entry		Catalyst	Yield (%) ^b
1	[Ru(bpy) ₃]Cl ₂	0
2	[Ru(bpy) ₃](PF ₆) ₂	0
3	[Ru(phen) ₃](PF ₆) ₂	0
4	E	Eosin Y	0
5	F	Fluorescein	0
6	t	ac-lr(ppy)₃	67

^aReaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), catalyst (3 mol%), and KH₂PO₄ (0.2 mmol, 1 equiv) in DMF (2 mL) at rt under argon atmosphere and blue LEDs irradiation for 24 h. ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard.

Table S4. Screening of the Volume of DMF

OBn	⁷ + [Ph₃PCF₂H] ⁺ Br ⁻ ─	<i>f</i> ac-lr(ppy) ₃ , KH ₂ PO ₄ DMF, 24 h, blue LEDs	OBn CF ₂ H
1a	2a		3a
Entry	DI	ИF	Yield (%) ^b
1	2	mL	67
2	3	mL	71
3	4	mL	75(60)

^{*a*}Reaction conditions: **1a** (0.2 mmol, 1 equiv), **2a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (3 mol%), and KH₂PO₄ (0.2 mmol, 1 equiv) in DMF at rt under argon atmosphere and blue LEDs irradiation for 24 h. ^{*b*}Yields were determined by ¹⁹F NMR spectroscopy using benzotrifluoride as an internal standard. Isolated yields were in parentheses.

3.2 General Procedure of Product 5a

A 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1a** (0.2 mmol, 1 equiv), **4a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (2 mol%), Na₂HPO₄ (0.2 mmol, 1 equiv). The Schlenk tube was evacuated and backfilled with argon for three times. Then NMP (2 mL) was injected into the Schlenk tube. The mixture was stirred for 24 h under blue LEDs. The reaction solution was cooled to room temperature, and saturated aqueous NaHCO₃ (5 mL) was added. Then it was washed with brine (10 mL). The mixture was extracted with diethyl ether (30 mL) for three times, dried with MgSO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 1/25) to give the desired product **5a** as a brown oil in 55% isolated yield.

3.2.1 Optimization of Product 5a

Table S5. Screening of Catalyst

OBn +	O Br	Catalyst Na ₂ HPO ₄ , CH ₃ CN Blue LEDs, 24 h	OBn	
1a	4a			5a
Entry		Catalyst		Yield (%) ^b
1		[Ru(bpy) ₃]Cl ₂		trace
2		[Ru(bpy) ₃](PF ₆) ₂		trace
3		[Ru(1.10-phen) ₃](PF ₆)2	29
4		lr(ppy) ₂ (dtbbpy)PF ₆		33
5		[Ru(bpy) ₃]Cl ₂ •6H ₂ O		nr
6		fac-lr(ppy) ₃		46

^aReaction conditions: **1a** (0.2 mmol, 1 equiv), **4a** (0.3 mmol, 1.5 equiv), fac-lr(ppy)₃ (2 mol%), and base (0.2 mmol, 1 equiv) in CH₃CN (2 mL) at room temperature under argon atmosphere and blue LEDs irradiation for 24 h. ^bIsolated yields.

Table S6. Screening of Base

OBn 1a	+ Br <u>fac-Ir(ppy)3</u> Base, CH ₃ CN Blue LEDs, 24 h	OBn OBn Sa
Entry	Base	Yield (%) ^b
1	Na₂HPO₄	46
2	K ₃ PO ₄	nr
3	Na ₂ CO ₃	trace
4	K ₂ CO ₃	trace
5	KH ₂ PO ₄	27
6		trace

^aReaction conditions: **1a** (0.2 mmol, 1 equiv), **4a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (2 mol%), and base (0.2 mmol, 1 equiv) in CH₃CN (2 mL) at room temperature under argon atmosphere and blue LEDs irradiation for 24 h. ^bIsolated yields.

Table S7. Screening of Solvent

^aReaction conditions: **1a** (0.2 mmol, 1 equiv), **4a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (2 mol%), and Na₂HPO₄ (0.2 mmol, 1 equiv) in solvent (2 mL) at room temperature under argon atmosphere and blue LEDs irradiation for 24 h. ^{*b*}Isolated yield.

3.3 General Procedure of Product 6a

A 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1n** (0.2 mmol, 1 equiv), $[Ph_3PCF_2H]^+Br^-$ **2a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (3 mol%), KH₂PO₄ (0.2 mmol, 1 equiv). The Schlenk tube was evacuated and backfilled with argon for three times. Then DMF (4 mL) was injected into the Schlenk tube. The mixture was stirred for 24 h under blue LEDs. The reaction solution was cooled to room temperature, and saturated aqueous NaHCO₃ (5 mL) was added. Then it was washed with brine (10 mL). The mixture was extracted with diethyl ether (30 mL) for three times, dried with MgSO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 1/25) to give the desired product **6a** as a colorless oil in 67% isolated yield.

3.4 General Procedure of Product 7a

A 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with 1n (0.2 mmol, 1 equiv), 2-bromoacetophenone 4a (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃(2 mol%), and Na₂HPO₄ (0.3 mmol, 1.5 equiv). The Schlenk tube was evacuated and backfilled with argon for three times. Then DCE (1 mL) was injected into the Schlenk tube. The mixture was stirred for 24 h under blue LEDs. The reaction

solution was cooled to room temperature, and saturated aqueous NaHCO₃ (5 mL) was added. Then it was washed with brine (10 mL). The mixture was extracted with diethyl ether (30 mL) for three times, dried with MgSO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 1/50) to give the desired product **7a** as a light-yellow solid in 70% isolated yield.

3.4.1 Optimization of Product 7a

Table S8. Screening of Solvent

	+ Br <u>fac-Ir(ppy)₃, Na₂HPO₄</u> Solvent, 24 h, blue LEDs	Br
1n	4a	/a
Entry	Solvent	Yield (%) ^b
1	DMF	39
2	DMSO	0
3	DMAc	0
4	Toluene	0
5	DCE	0
6	THF	0
7	1.4-dioxane	0
8	Acetone	Trace
9	DME	Trace
10	CH ₃ CN	37
11	DCM	45

^aReaction conditions: **1n** (0.2 mmol, 1 equiv), **4a** (0.3 mmol, 1.5 equiv), *fac*-Ir(ppy)₃ (3 mol%), and KH₂PO₄ (0.3 mmol, 1.5 equiv) in solvent (1 mL) at room temperature under argon and blue LEDs irradiation for 24 h. ^{*b*}Yield were determined by ¹H NMR spectroscopy using 1,1,2,2,-tetrachloroethane as an internal standard.

Ph In	+ Br <u>fac-lr(ppy)₃, Base</u> DCE, 24 h, blue LEDs 4a	- Ph - Br - O 7a
Entry	Base	Yield (%) ^b
1	DBN	43
2	Na ₂ CO ₃	67
3	Li ₂ CO ₃	60
4	t-BuOLi	29
5	(iPr)₂NEt	28
6	Na ₂ HPO ₄	70
7	K ₃ PO ₄	54
8	NaOAc	57
9	K ₂ CO ₃	61
10	KOAc	53
11	CsOAc	49
12		trace

Table S9. Screening of Base

^aReaction conditions: **1n** (0.2 mmol, 1 equiv), **4a** (0.3 mmol, 1.5 equiv), *fac*-lr(ppy)₃ (3 mol%), and base (0.3 mmol, 1.5 equiv) in DCM (1 mL) at room temperature under argon and blue LEDs irradiation for 24 h. ^{*b*}Yields were determined by ¹H NMR spectroscopy using 1,1,2,2,-tetrachloroethane as an internal standard.

Table S10. Screening of Catalyst Loadings

^aReaction conditions: **1n** (0.2 mmol, 1 equiv), **4a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃, and Na₂HPO₄ (0.3 mmol, 1.5 equiv) in DCM (1 mL) at room temperature under argon and blue LEDs irradiation for 24 h. ^bYields were determined by ¹H NMR spectroscopy using 1,1,2,2,-tetrachloroethane as an internal standard. Isolated yields were in parentheses.

3.4 General Procedure of Product 8a

A 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1n** (0.2 mmol, 1 equiv), TsCl **9a** (0.4 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (2 mol%), and Na₂HPO₄ (0.2 mmol, 1 equiv). The Schlenk tube was evacuated and backfilled with argon for three times. Then CHCl₃ (1 mL) was injected into the Schlenk tube. The mixture was stirred for 12 h under blue LEDs. The reaction solution was cooled to room temperature, and saturated aqueous NaHCO₃ (5 mL) was added. Then it was washed with brine (10 mL). The mixture was extracted with DCM (30 mL) for three times, dried with MgSO₄, filtered, and concentrated. The residue was purified by flash column chromatography on silica gel (EtOAc/petroleum ether = 1/25) to give the desired product **8a** as a colorless solid in 92% isolated yield.

3.4.1 Optimization of Product 8a

Table S11. Screening of Solvent

^aReaction conditions: **1n** (0.2 mmol, 1 equiv), **9a** (0.3 mmol, 1.5 equiv), *f*ac-lr(ppy)₃ (2 mol%), and Na₂HPO₄ (0.2 mmol, 1 equiv) in solvent (1 mL) at room temperature under argon atmosphere and blue LEDs irradiation for 12 h. ^bIsolated yields.

Table S12. Screening of Base

^aReaction conditions: **1n** (0.2 mmol, 1 equiv), **9a** (0.3 mmol, 1.5 equiv), fac-Ir(ppy)₃ (2 mol%), and base (0.2 mmol, 1 equiv) in CHCl₃ (1 mL) at room temperature under argon atmosphere and blue LEDs irradiation for 12 h. ^bIsolated yields.

Table S13. Screening of Catalyst

^aReaction conditions: **1n** (0.2 mmol, 1 equiv), **9a** (0.3 mmol, 1.5 equiv), catalyst (2 mol%), and Na₂HPO₄ (0.2 mmol, 1 equiv) in CHCl₃ (1 mL) at room temperature under argon atmosphere and blue LEDs irradiation for 12 h. ^{*b*}Isolated yields.

Table S14. Screening of the Volume of Solvent and TsCl Loadings

	+ TsCl $\frac{fa}{CH}$	c-Ir(ppy) ₃ , Na₂HPO₄ Cl ₃ , blue LEDs, 12 h	CI Ts
1	In 9a	8	a
Entry	CHCI ₃	9a	Yield (%) ^b
1	1 mL	0.3 mmol	81
2	3 mL	0.3 mmol	76
3	1 mL	0.4 mmol	92

^aReaction conditions: **1n** (0.2 mmol, 1 equiv), **9a**, *fac*-lr(ppy)₃ (2 mol%), and Na₂HPO₄ (0.2 mmol, 1 equiv) in CHCl₃ at room temperature under argon atmosphere and blue LEDs irradiation for 12 h. ^bIsolated yields.

4. Synthetic Transformations

4.1 General Procedure of Product 10

In a 50 mL oven-dried round-bottomed flask equipped with a magnetic stir bar, a solution of *m*-chloroperbenzoic acid (0.8 mmol, 4 equiv) in DCM (2 mL) was added dropwise to a solution of **3i** (0.2 mmol) in DCM (0.6 mL) at 0 °C and the solution was warmed to room temperature. After the reaction mixture was stirred for 12 h, it was washed with 2.5 M NaOH for three times. The organic phase was dried over anhydrous Na₂SO₄, concentrated under reduced pressure, and purified by column chromatography on silica gel to afford product **10** in 48% isolated yield.¹

4.2 General Procedure of Product 11

A 50 mL three-necked flask equipped with a condenser and a funnel, magnesium (404 mg, 1 mmol) and anhydrous THF (2 mL) were added under argon atmosphere. The reaction was initiated with 0.5 mL of **7a** solution (157 mg of **7a** dissolved in 20 mL THF) and a drop of BrCH₂CH₂Br. Then the left 19.5 mL of **7a** solution was added dropwise to the solution in 30 min and the mixture was stirred for another 30 min at room temperature. After the addition of H₂O (20 mL) and DCM (20 mL), the organic layer was separated. The aqueous layer was extracted with DCM (2×20 mL). The combined organic layers were washed with brine (15 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. Product **11** was purified by column chromatography on silica gel and obtained in 67% isolated yield in light-yellow oil.

4.3 General Procedure of Product 12 and 13

Synthesis of Product 12: A 25 mL oven-dried sealed tubes equipped with a magnetic stir bar, 7l (1.5 mmol), NaBH₄ (2.25 mmol), and EtOH (7.5 mL) were added. The reaction mixture was stirred for 5 h at room temperature. Then HCl (2.5 M, 3.8 mL) was added to the mixture. The mixture was extracted with DCM (20 mL \times 3). The combined organic extract was dried over anhydrous Na₂SO₄. After removal of the solvent under reduced pressure, the residue was purified by silica gel column chromatography to give product 12 as a colorless oil in 61% yield.

Synthesis of Product 13: A 25 mL oven-dried sealed tubes equipped with a magnetic stir bar, 12 (0.2 mmol), CH₃ONa (2 mmol), and THF (7.5 mL). The reaction mixture was stirred for 5 h at room temperature. The reaction was quenched by H₂O. The aqueous layer was extracted with DCM (20 mL \times 3). The combined organic layers were washed with brine (10 mL), dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. the residue was purified by silica gel column chromatography to give product 13 as a colorless oil in 84% yield.

5. Control Experiments

A 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1a** (0.2 mmol, 1 equiv), $[Ph_3PCF_2H]^+Br^-$ **2a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (3 mol%), KH₂PO₄ (0.2 mmol, 1 equiv), and TEMPO (2 equiv). The Schlenk tube was evacuated and backfilled with argon for three times. Then DMF (4 mL) was injected into the Schlenk tube. The mixture was stirred for 24 h under blue LEDs. The reaction solution was cooled to room temperature, and saturated aqueous NaHCO₃ (5 mL) was added. Then it was washed with brine (10 mL). The mixture was extracted with diethyl ether (30 mL) for three times, dried with MgSO₄, filtered, and concentrated. The corresponding product **3a** was detected by in 17% ¹⁹F NMR yields.⁵

A 10 mL oven-dried Schlenk tube equipped with a magnetic stir bar was charged with **1n** (0.2 mmol, 1 equiv), 2-bromoacetophenone **4a** (0.3 mmol, 1.5 equiv), *f*ac-Ir(ppy)₃ (3 mol%), Na₂HPO₄ (0.2 mmol, 1.5 equiv), and TEMPO (2 equiv). The Schlenk tube was evacuated and backfilled with argon for three times. Then DCE (1 mL) was injected into the Schlenk tube. The mixture was stirred for 24 h under blue LEDs. The reaction solution was cooled to room temperature, and saturated aqueous NaHCO₃ (5 mL) was added. Then it was washed with brine (10 mL). The mixture was extracted with diethyl ether (30 mL) for three times, dried with MgSO₄, filtered, and concentrated. The corresponding product **5b** was not detected by ¹H NMR and compound **14** was obtained in 74% yield.

6. X-ray Crystallographic Data of 3i, 7m, 8a

The product **3i** (CCDC number: 2094030) was crystallized from a hexane/DCM mixture (1/5, v/v). The atoms are depicted with 50% probability ellipsoids. The crystallographic data are summarized in the following table.

Identification code	3i
Empirical formula	$C_{12}H_9F_2N$
Formula weight	205.20
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/c
a/Å	14.7775(8)
b/Å	7.7026(3)
c/Å	8.9656(4)
α/°	90
β/°	102.577(5)
γ/°	90
Volume/Å ³	996.03(8)
Ζ	4
$\rho_{calc}g/cm^3$	1.368
μ/mm ⁻¹	0.905
F(000)	424.0
Crystal size/mm ³	0.15 imes 0.1 imes 0.09
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2\Theta range for data collection/°	12.274 to 134.146
Index ranges	$-17 \leqslant h \leqslant 17, -7 \leqslant k \leqslant 9, -6 \leqslant l \leqslant 10$
Reflections collected	3653
Independent reflections	$1776 [R_{int} = 0.0234, R_{sigma} = 0.0276]$
Data/restraints/parameters	1776/3/144
Goodness-of-fit on F ²	1.037
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0462, wR_2 = 0.1238$
Final R indexes [all data]	$R_1 = 0.0656, wR_2 = 0.1434$
Largest diff. peak/hole / e Å ⁻³	0.10/-0.14

The product **7m** (CCDC number: 2094032) was crystallized from a hexane/DCM mixture (1/5, v/v). The atoms are depicted with 50% probability ellipsoids. The crystallographic data are summarized in the following table.

Identification code	7m
Empirical formula	C ₁₈ H ₁₆ BrN
Formula weight	326.23
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/n
a/Å	5.9270(3)
b/Å	17.7263(9)
c/Å	14.8916(6)
α/°	90
β/°	99.915(4)
γ/°	90
Volume/Å ³	1541.19(12)
Ζ	4
$\rho_{calc}g/cm^3$	1.406
μ/mm ⁻¹	3.530
F(000)	664.0
Crystal size/mm ³	0.17 imes 0.12 imes 0.1
Radiation	$CuK\alpha (\lambda = 1.54184)$
20 range for data collection/°	7.822 to 134.094
Index ranges	$-5 \leq h \leq 7, -21 \leq k \leq 20, -15 \leq 1 \leq 17$
Reflections collected	5529
Independent reflections	2741 [$R_{int} = 0.0301$, $R_{sigma} = 0.0387$]
Data/restraints/parameters	2741/0/181
Goodness-of-fit on F ²	1.040
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0510, wR_2 = 0.1222$
Final R indexes [all data]	$R_1 = 0.0655, wR_2 = 0.1332$
Largest diff. peak/hole / e Å ⁻³	0.78/-0.64

The product **8a** (CCDC number: 2094036) was crystallized from a hexane/DCM mixture (1/5, v/v). The atoms are depicted with 50% probability ellipsoids. The crystallographic data are summarized in the following table.

Identification code	8a
Empirical formula	$C_{23}H_{21}ClO_2S$
Formula weight	396.91
Temperature/K	293(2)
Crystal system	monoclinic
Space group	P21/n
a/Å	10.0613(7)
b/Å	9.4559(7)
c/Å	21.497(2)
α/°	90
β/°	97.026(9)
$\gamma/^{\circ}$	90
Volume/Å3	2029.8(3)
Ζ	4
pcalcg/cm3	1.299
μ/mm-1	2.739
F(000)	832.0
Crystal size/mm3	0.18 imes 0.15 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	8.288 to 134.144
Index ranges	$-11 \le h \le 12, -11 \le k \le 10, -25 \le 1 \le 23$
Reflections collected	7574
Independent reflections	3614 [Rint = 0.0407, Rsigma = 0.0564]
Data/restraints/parameters	3614/0/245
Goodness-of-fit on F2	1.060
Final R indexes $[I \ge 2\sigma(I)]$	R1 = 0.0576, wR2 = 0.1442
Final R indexes [all data]	R1 = 0.0833, WR2 = 0.1713
Largest diff. peak/hole / e Å-3	0.31/-0.28

7. Characterization of Products

5-(benzyloxy)-3-(difluoromethyl)-1,2-dihydronaphthalene (3a): The reaction was conducted on 0.2 mmol scale. The product **3a** (34.3 mg, 60%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.45-7.33 (m, 5H), 7.16 (t, *J* = 8.0 Hz, 2H), 6.82-6.76 (m, 2H), 6.20 (t, *J* = 56.0 Hz, 1H), 5.09 (s, 2H), 2.87 (t, *J* = 8.1 Hz, 2H), 2.43 (t, *J* = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 154.8, 137.6, 136.9, 131.4 (t, *J* = 22.1 Hz), 129.3, 128.6, 128.0, 127.4, 123.7 (t, *J* = 11.2 Hz), 121.2, 120.4, 116.6 (t, *J* = 232.4 Hz), 110.3, 70.3, 27.6, 19.2 (t, *J* = 1.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇F₂O 287.1242; Found 287.1244.

3-(difluoromethyl)-5-methoxy-1,2-dihydronaphthalene (3b): The reaction was conducted on 0.2 mmol scale. The product **3b** (21.0 mg, 50%) as light green oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.17 (t, *J* = 7.9 Hz, 1H), 7.1 (s, 1H), 6.75 (m, 2H), 6.20 (t, *J* = 56.1 Hz, 1H), 3.84 (s, 3H), 2.85 (t, *J* = 8.5 Hz, 2H), 2.43 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 137.2, 131.1 (t, *J* = 21.8 Hz), 123.3 (t, *J* = 11.0 Hz), 120.6, 119.9, 116.4 (t, *J* = 232.5 Hz), 108.6, 55.3, 27.3, 19.1 (t, *J* = 1.7 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -114.6. HRMS (EI) m/z: [M]⁺ Calcd for C₁₂H₁₂F₂O 210.0851; Found 210.0853.

7-(difluoromethyl)-5,6-dihydronaphthalene-1-carbonitrile (3c): The reaction was conducted on 0.2 mmol scale. The product **3c** (17.6 mg, 43%) as light green oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 7.7 Hz, 1H), 7.35 (d, *J* = 7.6 Hz, 1H), 7.27 (d, *J* = 7.6 Hz, 1H), 7.02 (s, 1H), 6.22 (t, *J* = 55.6 Hz, 1H), 2.90 (t, *J* = 8.2 Hz, 2H), 2.46 (t, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.54 (t, *J* = 22.6 Hz), 136.51, 134.3, 131.6, 130.4, 128.3, 124.7 (t, *J* = 10.8 Hz), 116.9, 114.8 (t, *J* = 234.5 Hz), 109.7, 26.6, 19.0 (t, *J* = 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -116.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₀F₂N 206.0776; Found 206.0778.

Br CF₂H

5-bromo-3-(difluoromethyl)-1,2-dihydronaphthalene (3d): The reaction was conducted on 0.2 mmol scale. The product **3a** (17.6 mg, 34%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.42 (d, J = 7.8 Hz, 1H), 7.13-7.02 (m, 3H), 6.24 (t, J = 55.8 Hz, 1H), 2.89 (t, J = 8.1 Hz, 2H), 2.43 (t, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 135.1 (t, J = 22.2 Hz), 131.6, 131.5, 130.0, 128.1 (t, J = 11.0 Hz), 127.3, 123.6, 116.2 (t, J = 233.5 Hz), 28.5 19.9 (t, J = 2.1 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.7. HRMS (EI) m/z: [M]⁺ Calcd for C₁₁H₉BrF₂ 257.9850; Found 257.9852.

CF₂H

3-(difluoromethyl)-7-phenyl-1,2-dihydronaphthalene (3f): The reaction was conducted on 0.2 mmol scale. The product **3f** (21.5 mg, 42%) as white solid (m.p. 96.5-97.0 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, *J* = 7.8 Hz, 2H), 7.47-7.34 (m, 5H), 7.20 (d, *J* = 7.7 Hz, 1H), 6.74 (s, 1H), 6.21 (t, *J* = 56.0 Hz, 1H), 2.97 (t, *J* = 8.3 Hz, 2H), 2.50 (t, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.6, 141.7, 137.4, 133.6 (t, *J* = 22.0 Hz), 132.2, 129.9, 129.7 (t, *J* = 10.9 Hz), 128.8, 128.5, 128.1, 127.6, 126.5, 117.1 (t, *J* = 233.3 Hz), 28.5, 21.0 (t, *J* = 2.0 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -115.5. HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₄F₂ 256.1058; Found 256.1060.

CF₂H

3-(difluoromethyl)-7-ethyl-1,2-dihydronaphthalene (3g): The reaction was conducted on 0.2 mmol scale. The product **3g** (17.5 mg, 42%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.05 (s, 2H), 7.01 (s, 1H), 6.67 (s, 1H), 6.18 (t, *J* = 56.1 Hz, 1H), 2.88 (t, *J* = 8.4 Hz, 2H), 2.64 (q, *J* = 7.6 Hz, 2H), 2.45 (m, 2H), 1.25 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.3, 136.1, 131.7 (t, *J* = 21.8 Hz), 129.8, 129.2 (t, *J* = 10.9 Hz), 127.60, 127.55, 126.3, 116.5 (t, *J* = 233.0 Hz), 29.0, 27.6, 20.1 (t, *J* = 2.0 Hz), 15.7. ¹⁹F NMR (376 MHz, CDCl₃) δ -115.2. HRMS (EI) m/z: [M]⁺ Calcd for C₁₃H₁₄F₂ 208.1058; Found 208.1063.

CF₂H

7-bromo-3-(difluoromethyl)-1,2-dihydronaphthalene (3h): The reaction was conducted on 0.2 mmol scale. The product **3h** (28.5 mg, 41%) as White solid (m.p. 48.3-49.0 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.31 (d, *J* = 9.0 Hz, 2H), 6.97

(d, J = 7.8 Hz, 1H), 6.63 (s, 1H), 6.16 (t, J = 55.9 Hz, 1H), 2.86 (t, J = 8.2 Hz, 2H), 2.41 (t, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.9, 134.1 (t, J = 21.9 Hz), 132.0, 131.8, 130.8, 129.7, 129.0 (t, J = 10.8 Hz), 123.3, 116.8 (t, J = 233.7 Hz), 28.1, 20.7 (t, J = 2.3 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ - 116.0. HRMS (EI) m/z: [M]⁺ Calcd for C₁₁H₉BrF₂ 257.9850; Found 257.9855.

6-(difluoromethyl)-7,8-dihydronaphthalene-2-carbonitrile (3i): The reaction was conducted on 0.2 mmol scale. The product **3i** (23.4 mg, 50%) as white solid (m.p. 127.6-129.2 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.49 (d, *J* = 7.8 Hz, 1H), 7.43 (s, 1H), 7.19 (d, *J* = 7.8 Hz, 1H), 6.71 (s, 1H), 6.20 (t, *J* = 55.7 Hz, 1H), 2.95 (t, *J* = 8.2 Hz, 2H), 2.48 (t, *J* = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.9, 136.52 (t, *J* = 21.9 Hz), 136.48, 131.12, 131.06, 127.8, 127.5 (t, *J* = 10.4 Hz), 119.0, 115.3 (t, *J* = 235.0 Hz), 111.9, 26.9, 19.9 (t, *J* = 2.2 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -117.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₀F₂N 206.0776; Found 206.0775

3-(difluoromethyl)-5,8-dimethoxy-1,2-dihydronaphthalene (3k): The reaction was conducted on 0.2 mmol scale. The product **3k** (25.9 mg, 54%) as colourless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.07 (s, 1H), 6.78 (d, *J* = 8.9 Hz, 1H), 6.68 (d, *J* = 8.9 Hz, 1H), 6.20 (t, *J* = 56.1 Hz, 1H), 3.80 (s, 6H), 2.85 (t, *J* = 8.4 Hz, 2H), 2.38 (t, *J* = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.6, 150.4, 131.8 (t, *J* = 22.2 Hz), 125.6, 123.6 (t, *J* = 11.3 Hz), 122.1, 116.7 (t, *J* = 232.5 Hz), 111.8, 108.9, 56.2, 56.1, 20.3, 18.9. ¹⁹F NMR (376 MHz, CDCl₃) δ - 115.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₃H₁₅F₂O₂ 241.1035; Found 241.1037.

3-(difluoromethyl)-6,7,8-trimethoxy-1,2-dihydronaphthalene (3l): The reaction was conducted on 0.2 mmol scale. The product **3l** (29.1 mg, 54%) as light green oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 6.59 (s, 1H), 6.50 (s, 1H), 6.16 (d, *J* = 56.0 Hz, 1H) 3.87 (d, *J* = 15.2 Hz, 9H), 2.84 (t, *J* = 8.3 Hz, 2H), 2.38 (t, *J* = 8.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 151.91, 151.90, 142.9, 132.1 (t, *J* = 21.7 Hz), 128.7 (t, *J* = 10.8 Hz), 127.8, 121.8, 116.2

(t, J = 233.3 Hz), 107.4, 61.1, 61.0, 56.2, 20.0, 19.5 (t, J = 2.0 Hz).¹⁹F NMR (376 MHz, CDCl₃) δ -115.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₄H₁₇F₂O₃ 271.1140; Found 271.1143.

5-bromo-3-(difluoromethyl)-7-fluoro-1,2-dihydronaphthalene (3m): The reaction was conducted on 0.2 mmol scale. The product **3m** (18.3 mg, 33%) as light green oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.17(m, 1H), 7.01 (s, 1H), 6.86 (d, *J* = 8.4 Hz, 1H), 6.23 (t, *J* = 55.8 Hz, 1H), 2.88 (t, *J* = 8.1 Hz, 2H), 2.42 (t, *J* = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.3 (d, *J* = 251.4 Hz), 140.2 (d, *J* = 7.9 Hz), 133.9 (t, *J* = 24.2 Hz), 127.7 (d, *J* = 3.5 Hz), 126.8 (t, *J* = 12.1 Hz), 123.1 (d, *J* = 10.0 Hz), 118.1 (d, *J* = 24.4 Hz), 115.7 (t, *J* = 233.5 Hz), 114.5 (d, *J* = 21.4 Hz), 28.5, 19.2. ¹⁹F NMR (376 MHz, CDCl₃) δ -110.8, -115.6. HRMS (EI) m/z: [M]⁺ Calcd for C₁₁H₈BrF₃ 275.9756; Found 275.9760.

2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (5a): The reaction was conducted on 0.2 mmol scale. The product **5a** (38.9 mg, 55%) as brown oil was purified by flash column chromatography (PE/EA = 25/1); 1H NMR (400 MHz, CDCl₃) 8.05 (d, J = 7.4 Hz, 2H), 7.59 (t, J = 7.1 Hz, 1H), 7.54-7.33 (m, 7H), 7.08 (t, J = 7.4 Hz, 1H), 6.89 (s, 1H), 6.81-6.75 (m, 2H), 5.09 (s, 2H), 3.94 (s, 2H), 2.85 (t, J = 8.0 Hz, 2H), 2.35 (t, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 198.0, 153.7, 137.4, 136.8, 136.3, 134.3, 133.2, 128.6, 128.54, 128.48, 127.8, 127.3, 127.2, 123.4, 120.6, 120.3, 110.2, 70.2, 47.8, 28.3, 26.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₃O₂ 355.1693; Found 355.1693.

2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)-1-(p-tolyl)ethan-1-one (5b): The reaction was conducted on 0.2 mmol scale. The product **5b** (34.6 mg, 47%) as brown oil was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.95 (d, J = 7.6 Hz, 2H), 7.50-7.35 (m, 5H), 7.27 (d, J = 8.0 Hz, 2H), 7.07 (t, J = 7.5 Hz, 1H), 6.92-6.68 (m, 3H), 5.09 (s, 2H), 3.90 (s, 2H), 2.84 (t, J = 8.1 Hz, 2H), 2.43 (s, 3H), 2.33 (t, J = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 153.7, 143.9, 137.4, 136.3, 134.5, 134.4, 129.3, 128.6, 128.5, 127.8, 127.3, 127.1, 123.6, 120.5, 120.3, 110.3, 70.3, 47.7, 28.3, 26.9, 21.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅O₂ 369.1849; Found 369.1852.

2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)-1-(o-tolyl)ethan-1-one (5c): The reaction was conducted on 0.2 mmol scale. The product **5c** (29.0 mg, 39%) as gray-green oil was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.75 (d, J = 7.4 Hz, 1H), 7.50-7.33 (m, 6H), 7.32-7.23 (m, 2H), 7.07 (t, J = 7.6 Hz, 1H), 6.88-6.73 (m, 3H), 5.08 (s, 2H), 3.85 (s, 2H), 2.82 (t, J = 8.0 Hz, 2H), 2.52 (s, 3H), 2.32 (t, J = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 202.0, 153.7, 138.3, 137.8, 137.4, 136.2, 134.1, 132.0, 131.3, 128.8, 128.5, 127.8, 127.3, 127.2, 125.6, 123.4, 120.6, 120.3, 110.2, 70.2, 50.6, 28.3, 27.0, 21.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₅O₂ 369.1849; Found 369.1849.

2-(6-methoxy-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (**5d**): The reaction was conducted on 0.2 mmol scale. The product **5d** (25.6 mg, 46%) as colorless solid (m.p. 102.1-103.1 °C); was purified by flash column chromatography (PE/EA = 25/1); 1H NMR (400 MHz, CDCl₃) 8.04 (d, J = 7.5 Hz, 2H), 7.59 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.4 Hz, 2H), 6.95 (d, J = 8.0 Hz, 1H), 6.69 (d, J = 7.8 Hz, 2H), 6.34 (s, 1H), 3.87 (s, 2H), 3.81 (s, 3H), 2.84 (t, J = 8.0 Hz, 2H), 2.34 (t, J = 8.0 Hz, 2H); 13C NMR (100 MHz, CDCl₃) δ 198.1, 158.6, 136.8, 136.3, 133.2, 132.3, 128.6, 128.5, 127.5, 126.8, 125.9, 113.5, 111.1, 55.3, 47.3, 28.5, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₉O₂ 279.1380; Found 279.1381.

2-(5,8-dimethoxy-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (5e): The reaction was conducted on 0.2 mmol scale. The product **5e** (38.5 mg, 56%) as brown solid (m.p. 118.7-119.2 °C); was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 8.05 (d, J = 7.1 Hz, 2H), 7.58 (t, J = 7.1 Hz, 1H), 7.48 (t, J = 7.4 Hz, 2H), 6.79 (s, 1H), 6.74-6.66 (m, 2H), 3.92 (s, 2H), 3.80 (s, 6H), 2.83 (t, J = 8.2 Hz, 2H), 2.31 (t, J = 8.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.9, 150.6, 149.3, 136.9, 134.6, 133.1, 128.6, 128.5, 124.3, 124.0, 109.8, 108.8, 56.10, 56.05, 47.8, 26.3, 20.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₁O₃ 309.1485; Found 309.1486.

2-(6-chloro-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (5f): The reaction was conducted on 0.2 mmol scale. The product **5f** (27.0 mg, 48%) as colorless solid (m.p. 119.7-120.2 °C); was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 8.03 (d, *J* = 7.6 Hz, 2H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.3 Hz, 2H), 7.11 (d, *J* = 7.9 Hz, 2H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.35 (s, 1H), 3.89 (s, 2H), 2.85 (t, *J* = 8.0 Hz, 2H), 2.35 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) 8 197.6, 136.7, 136.4, 135.6, 133.3, 132.7, 131.9, 128.7, 128.4, 127.4, 126.8, 126.4, 125.6, 47.1, 27.9, 27.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₆ClO 283.0884; Found 283.0885.

2-(6-bromo-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (5g): The reaction was conducted on 0.2 mmol scale. The product **5g** (26.5 mg, 41%) as colorless solid (m.p. 134.0-134.6 °C); was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 8.03 (d, *J* = 7.4 Hz, 2H), 7.60 (t, *J* = 7.2 Hz, 1H), 7.50 (t, *J* = 7.4 Hz, 2H), 7.27 (d, *J* = 8.6 Hz, 2H), 6.87 (d, *J* = 7.8 Hz, 1H), 6.33 (s, 1H), 3.88 (s, 2H), 2.85 (t, *J* = 8.0 Hz, 2H), 2.35 (t, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 197.6, 136.69, 136.67, 135.8, 133.4, 133.2, 130.2, 129.4, 128.7, 128.4, 127.2, 125.6. 120.0, 47.2, 27.8, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₆BrO 327.0379; Found 327.0379.

2-(8-bromo-6-fluoro-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (5h): The reaction was conducted on 0.2 mmol scale. The product **5h** (31.2 mg, 45%) as colorless oil was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃): δ 8.02 (d, *J* = 7.4 Hz, 2H), 7.59 (t, *J* = 7.1 Hz, 1H), 7.49 (t, *J* = 7.4 Hz, 2H), 7.11 (d, *J* = 8.3 Hz, 1H), 6.81 (d, *J* = 8.5 Hz, 1H), 6.69 (s, 1H), 3.94 (s, 2H), 2.84 (t, *J* = 7.9 Hz, 2H), 2.30 (t, *J* = 7.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 197.4, 160.7 (*J* = 248.3 Hz), 138.9 (*J* = 7.7 Hz), 136.9 (*J* = 2.5 Hz), 136.69, 133.4, 129.6 (*J* = 3.2 Hz), 128.7, 128.7, 128.4, 124.3, 121.1 (*J* = 9.8 Hz), 117.49 (*J* = 24.2 Hz), 114.01 (*J*_{C-F} = 21.2 Hz), 47.3, 29.1, 26.7. ¹⁹F NMR (376.5 MHz, CDCl₃): (ppm) δ -113.94. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₅BrFO 345.0285; Found 345.0285.

6-(2-oxo-2-phenylethyl)-7,8-dihydronaphthalene-2-carbonitrile (5i): The reaction was conducted on 0.2 mmol scale. The product **5i** (17.8 mg, 33%) as yellow solid (m.p. 93.0-94.0 °C); was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 8.02 (d, *J* = 7.6 Hz, 2H), 7.62 (t, *J* = 7.1 Hz, 1H), 7.51 (t, *J* = 7.3 Hz, 2H), 7.44 (d, *J* = 7.7 Hz, 1H), 7.38 (s, 1H), 7.06 (d, *J* = 7.7 Hz, 1H), 6.40 (s, 1H), 3.94 (s, 2H), 2.90 (t, *J* = 8.1 Hz, 2H), 2.41 (t, *J* = 8.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) 8 197.1, 139.9, 138.6, 136.5, 135.5, 133.5, 130.7, 130.5, 128.8, 128.4, 126.0, 125.6, 119.4, 109.6, 47.1, 27.4, 27.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₆NO 274.1226; Found 274.1226.

ethyl 2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)acetate (5j): The reaction was conducted on 0.2 mmol scale. The product 5j (30.9 mg, 48%) as colorless oil was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.49 (m, 5H), 7.06 (t, *J* = 7.5 Hz, 1H), 6.80 (s, 1H), 6.76 (d, *J* = 6.8 Hz, 2H), 5.07 (s, 2H), 4.15 (q, *J* = 13.0, 6.7 Hz, 2H), 3.24 (s, 1H), 2.83 (t, *J* = 8.0 Hz, 2H), 2.33 (t, *J* = 7.9 Hz, 2H), 1.25 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 171.5, 153.8, 137.3, 136.2, 133.1, 128.6, 128.6, 127.8, 127.4, 127.4 (, 127.2, 123.3, 120.2, 120.0, 110.1, 70.2, 60.7, 43.3, 28.4, 26.8, 14.2. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₃O₃ 323.1642; Found 323.1642.

2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)acetonitrile (5k): The reaction was conducted on 0.2 mmol scale. The product **5k** (20.8 mg, 38%) as colorless oil was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃): δ 7.30-7.48 (m, 5H), 7.10 (t, *J* = 7.5 Hz, 1H), 6.98 (s, 1H), 6.77 (t, *J* = 8.2 Hz, 2H), 5.10 (s, 2H), 3.29 (s, 2H), 3.24 (s, 1H), 2.87 (t, *J* = 8.0 Hz, 2H), 2.35 (t, *J* = 7.8 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 154.0, 137.1, 135.8, 128.6, 128.6, 128.1, 127.9, 127.9, 127.3, 127.3, 122.3, 120.8, 120.3, 117.3, 110.4, 70.3, 28.0, 26.3, 25.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₉H₁₈NO 276.1383; Found 276.1388.

(4-bromo-2-(difluoromethyl)but-1-ene-1,1-diyl)dibenzene (6a): The reaction was conducted on 0.2 mmol scale. The product 6a (29.1 mg, 54%) as light green oil was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.29 (m, 6H), 7.22-7.14 (m, 4H), 6.21 (t, *J* = 110.2 Hz, 1H) 3.48 (t, *J* = 16.1 Hz, 2H), 2.92 (t, *J* = 16.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 150.5 (t, *J* = 20.5 Hz), 140.2, 139.2, 129.4, 129.0 (t, *J* = 44.2 Hz), 128.8, 128.7, 128.6, 128.5, 128.3, 115.2 (t, *J* = 466.0 Hz), 30.9, 30.8. ¹⁹F NMR (376 MHz, CDCl₃) δ -112.5. HRMS (EI) m/z: [M]⁺ Calcd for C₁₇H₁₅BrF₂ 336.0320; Found 336.0328.

5-bromo-3-(diphenylmethylene)-1-phenylpentan-1-one (7a): The reaction was conducted on 0.2 mmol scale. The product **7a** (56.7 mg, 70%) as light green solid (m.p. 108.8-109.2 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.81 (d, *J* = 7.7 Hz, 2H), 7.53 (t, *J* = 7.3 Hz, 1H), 7.40 (t, *J* = 7.6 Hz, 2H), 7.30 (t, *J* = 7.3 Hz, 2H), 7.27-7.15 (m, 8H), 3.90 (s, 2H), 3.44 (t, *J* = 7.3 Hz, 2H), 2.80 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 198.41, 144.75, 142.21, 141.87, 136.63, 133.27, 129.56, 129.09, 128.81, 128.61, 128.42, 128.40, 128.19, 127.10, 126.97, 42.53, 36.03, 31.34. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₂BrO 405.0843; Found 405.0839.

5-bromo-3-(diphenylmethylene)-1-(4-methoxyphenyl)pentan-1-one (7b): The reaction was conducted on 0.2 mmol scale. The product **7a** (56.6 mg, 65%) as deep blue oil (m.p. 108.8-109.2 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.80 (d, J = 8.7 Hz, 2H), 7.30 (t, J = 7.6 Hz, 2H), 7.28-7.17 (m, 8H), 6.88 (d, J = 8.7 Hz, 2H), 3.85 (s, 2H), 3.46 (t, J = 7.3 Hz, 2H), 2.79 (t, J = 7.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 196.90, 163.63, 144.43, 142.25, 141.95, 130.52, 129.90, 129.67, 129.14, 128.90, 128.06, 127.04, 126.92, 113.72, 55.50, 42.18, 35.98, 31.45. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₄BrO₂ 435.0954; Found 435.0958.

5-bromo-3-(diphenylmethylene)-1-(4-fluorophenyl)pentan-1-one (7c): The reaction was conducted on 0.2 mmol scale. The product 7c (50.8 mg, 60%) as light green oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.83 (t, J = 6.5 Hz, 2H), 7.31 (t, J = 7.4 Hz, 2H), 7.28-7.15 (m, 8H), 7.07 (t, J = 8.1 Hz, 2H), 3.87 (s, 2H), 3.45 (t, J = 7.2Hz, 2H), 2.79 (t, J = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 196.78, 166.66, 164.97, 144.82, 142.12, 141.73, 132.98, 132.96, 130.87, 130.81, 129.38, 129.03, 128.77, 128.42, 128.39, 127.13, 127.00, 115.73, 115.59. 42.38, 35.88, 31.25. ¹⁹F NMR (376 MHz, CDCl₃) δ -104.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₁BrFO 423.0754; Found 423.0751.

5-bromo-3-(diphenylmethylene)-1-(o-tolyl)pentan-1-one (7d): The reaction was conducted on 0.2 mmol scale. The product **7d** (63.7 mg, 76%) as green solid (m.p. 83.2-83.8 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.29 (m, 4H), 7.27-7.13 (m, 10H), 3.81(s, 2H), 3.45 (t, *J* = 7.3 Hz, 2H), 2.79 (t, *J* = 7.3 Hz, 2H), 2.45 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 202.38, 144.86, 142.24, 141.78, 137.88, 137.72, 131.90, 131.31, 129.52, 128.96, 128.68, 128.37, 128.35, 127.05, 126.95, 125.57, 45.57, 36.24, 31.14, 21.09. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₄BrO 419.1005; Found 419.1006.

5-bromo-1-(2-chlorophenyl)-3-(diphenylmethylene)pentan-1-one (7e): The reaction was conducted on 0.2 mmol scale. The product 7e (38.7 mg, 44%) as white solid (m.p. 114.5-115.3 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.38-7.29 (m, 4H), 7.26-7.15 (m, 8H), 7.10 (t, *J* = 4.1 Hz 2H), 3.84 (s, 2H), 3.47 (t, *J* = 7.4Hz, 2H), 2.83 (t, *J* = 7.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 201.11, 145.57, 142.14, 141.64, 139.22, 131.58, 130.70, 130.52, 128.87, 128.58, 128.56, 128.47, 128.41, 128.40, 127.07, 127.03, 126.78, 46.59, 36.08, 31.08. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₁BrClO 439.0459; Found 439.0460.

5-bromo-3-(diphenylmethylene)-1-(naphthalen-2-yl)pentan-1-one (7f): The reaction was conducted on 0.2 mmol scale. The product **7f** (40 mg, 44%) as white solid (m.p. 125.8-126.2 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 8.25 (s, 1H), 7.94 (d, *J* = 8.6 Hz, 1H), 7.86(d, *J* = 8.4 Hz, 3H), 7.59 (d, *J* = 7.5 Hz, 1H), 7.53 (d, *J* = 7.5 Hz, 1H), 7.33-7.27 (m, 4H), 7.26-7.18 (m, 6H), 4.04 (s, 2H), 3.50 (t, *J* = 7.2 Hz, 2H), 2.82 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 198.38, 144.68, 142.25, 141.88, 135.67, 133.80, 132.45, 130.11, 129.73, 129.58, 129.14, 128.99, 128.60, 128.49, 128.47, 128.39, 127.79, 127.19, 126.97, 126.81, 123.88, 42.59, 35.84, 31.41. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₄BrO 455.1005; Found 455.1006.

5-bromo-3-(diphenylmethylene)-1-(thiophen-2-yl)pentan-1-one (7g): The reaction was conducted on 0.2 mmol scale. The product 7g (42.7 mg, 52%) as green oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.63-7.58 (m, 1H), 7.50-7.46 (m, 1H), 7.31 (t, *J* = 7.5 Hz 2H), 7.29-7.18 (m, 8H), 7.08-7.04 (m, 1H), 3.84 (s, 2H), 3.47 (t, *J* = 7.3 Hz, 2H), 2.82 (t, *J* = 7.3 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 191.06, 144.93, 143.81, 142.09, 141.75, 133.92, 132.21, 129.20, 129.04, 128.90, 128.39, 128.37, 128.09, 127.10, 126.97, 42.94, 35.80, 31.32. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₂₀BrOS 411.0413; Found 411.0412.

benzyl 5-bromo-3-(diphenylmethylene)pentanoate (7h): The reaction was conducted on 0.2 mmol scale. The product **7h** (46.9 mg, 54%) as white solid (m.p. 69.2-69.8 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) 7.45-7.16 (m, 15H), 5.17 (s, 2H), 3.45 (t, J = 7.5 Hz, 2H), 3.30 (s, 2H), 2.81 (t, J = 7.5 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 145.1, 141.9, 141.7, 135.8, 128.8, 128.6, 128.40, 128.38, 128.34, 128.27, 127.1, 127.0, 66.6, 37.9, 35.9, 30.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₄BrO₂ 435.0954; Found 435.0953.

diethyl 2-(4-bromo-1,1-diphenylbut-1-en-2-yl)malonate (7i): The reaction was conducted on 0.2 mmol scale. The product 7i (66.7 mg, 75%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.37-7.20 (m, 8H), 7.15 (d, *J* = 7.5 Hz, 2H), 4.47 (s, 1H), 4.22 (q, *J* = 7.1 Hz, 4H), 3.26 (t, *J* = 8.3 Hz, 2H), 2.91 (t, *J* = 8.9 Hz, 2H), 1.29 (t, *J* = 7.1 Hz, 6H); ¹³C NMR (150 MHz, CDCl₃) δ 168.4, 147.8, 141.4, 141.3, 128.7, 128.6, 128.5, 128.4, 128.3, 127.5, 61.8, 56.2, 35.0, 30.2, 14.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₆BrO₄ 445.1014; Found 445.1010.

ethyl 5-bromo-3-(diphenylmethylene)-2,2-difluoropentanoate (7j): The reaction was conducted on 0.2 mmol scale. The product 7j (57.2 mg, 70%) as white oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.34 (t, *J* = 7.4 Hz, 2H), 7.30-7.24 (m, 4H), 7.18-7.13 (m, 4H), 3.79-3.74 (m, 2H), 3.49 (t, *J* = 7.8 Hz, 2H), 2.92 (t, *J* = 7.8 Hz, 2H), 1.14 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 163.41, 163.19, 162.97, 150.77, 150.72, 150.67, 140.91, 138.98, 129.51, 129.20, 129.04, 128.88, 128.82, 128.62, 128.40, 128.31, 128.07, 127.98, 127.94, 127.18, 115.52, 113.87, 112.22, 62.75, 33.12, 33.10, 30.58, 10.57. ¹⁹F NMR (376 MHz, CDCl₃) δ -91.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₀BrF₂O₂ 409.0609; Found 409.0608.

ethyl 5-bromo-3-(diphenylmethylene)-2-methylpentanoate (7k): The reaction was conducted on 0.2 mmol scale. The product 7k (52.6 mg, 68%) as light yellow solid (m.p. 41.2-41.8 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) 7.38-7.20 (m, 10H), 4.24-4.14 (m, 2H), 3.62 (q, J = 7.1 Hz, 1H), 3.28-3.14 (m, 2H), 2.77 (t, J = 8.5 Hz, 2H), 1.37-1.27 (m, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 174.3, 144.1, 142.1, 141.9, 134.6, 128.7, 128.6, 128.42, 128.39, 127.1, 127.0, 60.8, 43.3, 33.6, 30.4, 15.8, 14.3. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₁H₂₄BrO₂ 387.0954; Found 387.0955.

ethyl 5-bromo-3-(diphenylmethylene)pentanoate (7l): The reaction was conducted on 0.2 mmol scale. The product **7l** (55.9 mg, 75%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.34-7.25 (m, 4H), 7.25-7.17 (m, 6H), 4.16-4.12 (m, 2H), 3.44 (t, *J* = 7.5 Hz, 2H), 3.21 (s, 2H), 2.79 (t, *J* = 7.5 Hz, 2H), 1.26 (t, *J* = 7.1 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 171.58, 144.83, 141.94, 141.73, 128.83, 128.48, 128.36, 128.29, 126.99, 126.96, 60.75, 37.93, 35.98, 30.76, 14.20. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₂₂BrO₂ 373.0798; Found 373.0797.

5-bromo-3-(diphenylmethylene)pentanenitrile (7m): The reaction was conducted on 0.2 mmol scale. The product **7m** (57.4 mg, 88%) as light yellow solid (m.p. 58.0-58.5 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) 7.37-7.31 (m, 4H), 7.30-7.25 (m, 2H), 7.17 (d, *J* = 7.3 Hz, 4H), 3.50 (t, *J* = 7.1Hz, 2H), 3.27 (s, 2H), 2.02 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 146.60, 140.83, 140.62, 128.77, 128.66, 128.60, 128.54, 127.77, 127.51, 124.33, 117.76, 34.63, 30.15, 21.31. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇BrN 326.0539; Found 326.0537.

3-(bis(4-methoxyphenyl)methylene)-5-bromo-1-phenylpentan-1-one (7n): The reaction was conducted on 0.2 mmol scale. The product **7n** (51.1 mg, 55%) as green solid (m.p. 121.5-121.8 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) 7.83 (t, J = 4.2 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.41 (t, J = 7.8 Hz, 2H), 7.12-7.04 (m, 4H), 6.84 (d, J = 8.7 Hz, 2H), 6.78 (d, J = 8.7 Hz, 2H), 3.91 (s, 2H), 3.79 (s, 3H), 3.74 (s, 3H), 3.45 (t, J = 7.4 Hz, 2H), 2.80 (t, J = 7.4 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 198.66, 158.56, 158.46, 143.88, 136.64, 134.97, 134.60, 133.22, 130.31, 130.10, 128.77, 128.58, 128.22, 113.71, 55.22, 55.20, 42.86, 36.17, 31.52. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₆BrO₃ 465.1060; Found 465.1061.

5-bromo-3-(di-p-tolylmethylene)-1-phenylpentan-1-one (70): The reaction was conducted on 0.2 mmol scale. The product **70** (60.6 mg, 70%) as deep green solid (m.p. 116.3-116.8 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) 7.83 (d, *J* = 7.7 Hz, 2H), 7.54 (t, *J* = 7.3 Hz, 1H), 7.41 (t, *J* = 7.7 Hz, 2H), 7.13-7.02 (m, 8H), 3.90 (s, 2H), 3.44 (t, *J* = 7.4 Hz, 2H), 2.79 (t, *J* = 7.4 Hz, 2H), 2.32 (s, 3H), 2.27 (s, 3H); ¹³C NMR (150 MHz, CDCl₃) δ 198.59, 144.60, 139.49, 139.16, 136.65, 136.49, 133.19, 129.04, 128.95, 128.71, 128.56, 128.23, 42.76, 36.11, 31.47, 21.19, 21.14. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₆BrO 433.1162; Found 433.1164.

3-(bis(4-fluorophenyl)methylene)-5-bromo-1-phenylpentan-1-one (7p): The reaction was conducted on 0.2 mmol scale. The product **7p** (44.1 mg, 50%) as Green oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) 7.83 (d, J = 7.7 Hz, 2H), 7.56 (t, J = 7.2 Hz, 1H), 7.43 (t, J = 7.6 Hz, 2H), 7.20-7.09 (m, 4H), 7.04-6.90 (m, 4H), 3.88 (s, 2H), 3.44 (t, J = 7.2 Hz, 2H), 2.80 (t, J = 7.2 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 198.09, 162.72, 162.67, 161.09, 161.04, 142.68, 138.00, 137.98, 137.60, 137.58, 136.48, 133.44, 130.78, 130.72, 130.50, 130.47, 130.42, 128.69, 128.11, 115.50, 115.36, 42.22, 35.91, 31.08. ¹⁹F NMR (376 MHz, CDCl₃) δ -114.7, -145.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₀BrF₂O 441.0660; Found 441.0656.

3-(bis(4-chlorophenyl)methylene)-5-bromo-1-phenylpentan-1-one (7q): The reaction was conducted on 0.2 mmol scale. The product **7q** (45.5 mg, 48%) as white solid (m.p. 132.1-132.6 °C) was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) 7.83 (d, J = 7.9 Hz, 2H), 7.57 (t, J = 7.1 Hz, 1H), 7.44 (t, J = 7.2 Hz, 2H), 7.33-7.21 (m, 4H), 7.17-7.06 (m, 4H), 3.88 (s,

2H), 3.43 (t, *J* = 7.1 Hz, 2H), 2.80 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃) δ 197.87, 142.40, 140.19, 139.82, 136.42, 133.49, 133.30, 133.18, 130.98, 130.52, 130.16, 128.74, 128.71, 128.11, 42.11, 35.86, 30.94. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₄H₂₀BrCl₂O 473.0669; Found 473.0068.

(4-chloro-2-tosylbut-1-ene-1,1-diyl)dibenzene (8a): The reaction was conducted on 0.2 mmol scale. The product 8a (73.0 mg, 92%) as colorless solid (m.p. 106.4-107.2 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.38-7.27 (m, 5H), 7.20 (t, J = 7.0 Hz, 1H), 7.15-7.05 (m, 6H), 6.97 (d, J = 7.8 Hz, 2H), 3.86 (t, J = 7.3 Hz, 2H), 3.13 (t, J = 7.3 Hz, 2H), 2.37 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.1, 143.5, 140.7, 139.3, 139.0, 138.1, 129.2, 129.1, 128.8, 128.5, 128.1, 127.8, 127.7, 127.6, 43.2, 34.0, 21.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₂ClO₂S 397.1024; Found 397.1028.

4-((4-chloro-1,1-diphenylbut-1-en-2-yl)sulfonyl)-1,1'-biphenyl (8b): The reaction was conducted on 0.2 mmol scale. The product **8b** (64.3mg, 70%) as light-yellow solid (m.p. 120.1-121.1 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.60-7.42 (m, 9H), 7.40-7.28 (m, 3H), 7.22 (t, *J* = 7.3 Hz, 1H), 7.18-7.08 (m, 4H), 6.99 (d, *J* = 7.6 Hz, 2H), 3.93 (t, *J* = 7.0 Hz, 2H), 3.23 (t, *J* = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.2, 145.4, 140.6, 139.6, 139.4, 139.4, 138.9, 129.2, 129.1, 128.8, 128.6, 128.5, 128.1, 128.0, 127.9, 127.8, 127.3, 127.1, 43.2, 33.9. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₈H₂₄ClO₂S 459.1180; Found 459.1186.

(4-chloro-2-((4-(trifluoromethoxy)phenyl)sulfonyl)but-1-ene-1,1-diyl)dibenzene (8c): The reaction was conducted on 0.2 mmol scale. The product 8c (71.9 mg, 77%) as light-yellow solid (m.p. 108.1-108.7 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.43 (d, J = 8.4 Hz, 2H), 7.39-7.29 (m, 3H), 7.20 (t, J = 7.2 Hz, 1H), 7.19-7.00 (m, 6H), 6.92 (d, J = 7.8 Hz, 2H), 3.91 (t, J = 7.0 Hz, 2H), 3.24 (t, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.3, 151.6, 140.1, 139.2, 139.1, 138.5, 129.3, 129.1, 128.6, 128.5, 128.1, 127.7, 127.7, 120.2, 120.0 (q, J = 365.0, 257.7 Hz), 42.9, 33.4; ¹⁹F NMR (376 MHz, CDCl₃) δ -57.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₁₉ClF₃O₃S 467.0690; Found 467.0695.

(4-chloro-2-((4-chlorophenyl)sulfonyl)but-1-ene-1,1-diyl)dibenzene (8d): The reaction was conducted on 0.2 mmol scale. The product 8d (52.6 mg, 63%) as colorless solid (m.p. 175.1-176.2 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.40-7.28 (m, 5H), 7.22 (d, J = 8.1 Hz, 3H), 7.17-7.08 (m, 4H), 6.94 (d, J = 7.8 Hz, 2H), 3.88 (t, J = 7.0 Hz, 2H), 3.19 (t, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.6, 140.4, 139.6, 139.2, 139.1, 138.7, 129.3, 128.9, 128.8, 128.7, 128.6, 128.3, 127.9, 127.8, 43.1, 33.7. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉Cl₂O₂S 417.0477; Found 417.0485.

(2-((4-bromophenyl)sulfonyl)-4-chlorobut-1-ene-1,1-diyl)dibenzene (8e): The reaction was conducted on 0.2 mmol scale. The product 8e (69.3 mg, 75%) as yellow solid (m.p. 123.1-124.2 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.43-7.29 (m,

5H), 7.28-7.19 (m, 3H), 7.18-7.08 (m, 4H), 6.94 (d, *J* = 7.7 Hz, 2H), 3.88 (t, *J* = 7.1 Hz, 2H), 3.19 (t, *J* = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 140.2, 140.0, 139.0, 138.6, 131.5, 129.1, 128.8, 128.7, 128.5, 128.2, 127.7, 127.7, 127.6, 43.0, 33.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₈Cl₂O₂S 460.9972; Found 460.9974.

(4-chloro-2-(mesitylsulfonyl)but-1-ene-1,1-diyl)dibenzene (8f): The reaction was conducted on 0.2 mmol scale. The product 8f (64.6 mg, 76%) as colorless solid (m.p. 136.5-137.1 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.40-7.27 (m, 3H), 7.14 (d, J = 7.4 Hz, 2H), 7.11-6.99 (m, 3H), 6.95 (d, J = 7.6 Hz, 2H), 6.68 (s, 2H), 3.84 (t, J = 7.3 Hz, 2H), 3.19 (t, J = 7.3 Hz, 2H), 2.49 (s, 6H), 2.21 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 151.7, 142.4, 140.7, 140.3, 138.9, 138.9, 138.6, 135.0, 131.8, 128.8, 128.3, 128.0, 127.8, 127.7, 42.8, 33.3, 22.3, 20.8. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₆ClO₂S 425.1337; Found 425.1341.

(4-chloro-2-((2-chlorophenyl)sulfonyl)but-1-ene-1,1-diyl)dibenzene (8g): The reaction was conducted on 0.2 mmol scale. The product 8g (64.3 mg, 77%) as yellow solid (m.p. 105.2-106.1 °C) was purified by flash column chromatography (PE/EA = 25/1);; ¹H NMR (400 MHz, CDCl₃) 7.41-7.31 (m, 4H), 7.31-7.25 (m, 1H), 7.20 (t, J = 7.7 Hz, 3H), 7.06 (t, J = 6.9 Hz, 1H), 7.00-6.87 (m, 5H) 3.89 (t, J = 7.0 Hz, 2H), 3.34 (t, J = 7.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 153.3, 140.1, 138.4, 138.0, 137.9, 133.0, 131.1, 130.5, 130.3, 128.7, 128.4, 128.2, 127.9, 127.7, 127.3, 126.4, 42.7, 33.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₂H₁₉Cl₂O₂S 417.0477; Found 417.0477.

2-((4-chloro-1,1-diphenylbut-1-en-2-yl)sulfonyl)naphthalene (8h): The reaction was conducted on 0.2 mmol scale. The product **8h** (60.6 mg, 70%) as yellow solid (m.p. 126.6-127.4 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.90-7.76 (m, 3H), 7.70 (d, J = 8.1 Hz, 1H), 7.65-7.52 (m, 3H), 7.27-7.37 (m, 3H), 7.12 (d, J = 7.3 Hz, 2H), 7.05-6.99 (m, 1H), 6.98-6.86 (m, 4H), 3.93 (t, J = 7.1 Hz, 2H), 3.17 (t, J = 7.1 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 140.7, 139.2, 138.6, 137.5, 134.7, 131.8, 130.0, 129.5, 129.1, 129.0, 128.9, 128.8, 128.6, 128.4, 127.9, 127.8, 127.6, 127.4, 122.2, 43.3, 34.0. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₆H₂₂ClO₂S 433.1024; Found 433.1029.

2-((4-chloro-1,1-diphenylbut-1-en-2-yl)sulfonyl)thiophene (8i): The reaction was conducted on 0.2 mmol scale. The product **8i** (68.5 mg, 88%) as white solid (m.p. 120.1-121.1 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.55 (d, J = 5.0 Hz, 1H), 7.40-7.18 (m, 6H), 7.18-7.06 (m, 4H), 6.82 (t, J = 4.3 Hz, 1H), 3.82 (t, J = 7.3 Hz, 2H), 3.14 (t, J = 7.3 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 142.0, 140.7, 139.3, 138.9, 134.5, 133.5, 128.9, 128.8, 128.6, 128.3, 127.9, 127.8, 127.0, 43.1, 34.1. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₀H₁₈ClO₂S₂ 389.0431; Found 389.0434.

4,4'-(4-chloro-2-tosylbut-1-ene-1,1-diyl)bis(methylbenzene) (8j): The reaction was conducted on 0.2 mmol scale. The product **8j** (67.2 mg, 79%) as white solid (m.p. 112.0-112.8 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.32 (d, J = 7.8 Hz, 2H), 7.11 (d, J = 7.7 Hz, 2H), 7.06 (d, J = 7.9 Hz, 2H), 6.96 (d, J = 7.6 Hz, 2H), 6.91 (d, J = 7.8 Hz, 2H), 6.83 (d, J = 7.7 Hz, 2H), 3.81 (t, J = 7.3 Hz, 2H), 3.10 (t, J = 7.3 Hz, 2H), 2.35 (s, 3H), 2.31 (s, 3H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.7, 143.7, 138.74, 138.67, 138.5, 138.4, 138.3, 136.7, 129.7, 129.5, 129.3, 128.6, 128.2, 127.9, 43.5, 34.4, 21.9, 21.7, 21.6. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₆ClO₂S 425.1337; Found 425.1346.

4,4'-(4-chloro-2-tosylbut-1-ene-1,1-diyl)bis(fluorobenzene) (8k): The reaction was conducted on 0.2 mmol scale. The product **8k** (51.1 mg, 59%) as light yellow solid (m.p. 117.6-118.5 °C) was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.30 (d, J = 7.8 Hz, 2H), 7.13-6.97 (m, 6H), 6.93 (t, J = 6.6 Hz, 2H), 6.80 (t, J = 8.3 Hz, 2H), 3.84 (t, J = 6.9 Hz, 2H), 3.12 (t, J = 6.9 Hz, 2H), 2.36 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 164.0 (d, J = 4.6 Hz), 161.5 (d, J = 5.0 Hz), 153.0, 143.9, 140.2, 138.0, 136.6 (d, J = 3.4 Hz), 134.9 (d, J = 3.4 Hz), 131.4 (d, J = 8.4 Hz), 130.2 (d, J = 8.3 Hz), 129.2, 127.5, 116.0 (d, J = 21.7 Hz), 114.9 (d, J = 21.6 Hz), 43.3, 34.0, 21.6; ¹⁹F NMR (376 MHz, CDCl₃) δ -112.0, -112.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₃H₂₀ClF₂O₂S 433.0835; Found 433.0844.

4,4'-(4-chloro-2-tosylbut-1-ene-1,1-diyl)bis(methoxybenzene) (81): The reaction was conducted on 0.2 mmol scale. The product **81** (90.5 mg, 99%) as yellow oil was purified by flash column chromatography (PE/EA = 25/1); ¹H NMR (400 MHz, CDCl₃) 7.34 (d, J = 7.7 Hz, 2H), 7.08 (d, J = 7.9 Hz, 2H), 6.99 (d, J = 8.1 Hz, 2H), 6.92-6.80 (m, 4H), 6.64 (d, J = 8.0 Hz, 2H), 3.85 (t, J = 7.2 Hz, 2H), 3.79 (s, 6H), 3.17 (t, J = 7.2 Hz, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.8, 159.8, 154.9, 143.2, 138.4, 137.7, 133.3, 131.8, 131.3, 129.9, 129.0, 127.4, 114.0, 113.0, 55.3, 55.3, 43.4, 34.2, 21.5. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₂₅H₂₆ClO₄S 457.1235; Found 457.1238.

(1aS,7bR)-1a-(difluoromethyl)-1a,2,3,7b-tetrahydronaphtho[1,2-b]oxirene-5-carbonitrile

(10): The reaction was conducted on 0.2 mmol scale. The product 10 (21.2 mg, 48%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.57-7.49 (m, 2H),7.43 (s, 1H), 5.78 (t, *J* = 110.0 Hz, 1H), 4.01 (s, 1H), 2.93-2.81 (m, 1H), 2.77-2.68 (s, 1H), 2.56-2.45 (m, 1H), 2.04-1.93 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 135.7, 131.9, 130.4, 130.3, 118.4, 114.9 (t, *J* = 485.3 Hz), 113.0, 62.0 (t, *J* = 57.6 Hz), 54.5 (t, *J* = 8.0 Hz), 24.3, 18.0. ¹⁹F NMR (376 MHz,

CDCl₃) δ -125.1 (d, J = 406.1 Hz), -125.9 (d, J = 406.1 Hz). HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₂H₁₀F₂NO 222.0725; Found 222.0724.

3-(diphenylmethylene)-1-phenylcyclopentan-1-ol (11): The reaction was conducted on 1 mmol scale. The product **11** (218.4 mg, 67%) as light-yellow oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.54 (d, *J* = 7.7 Hz, 2H), 7.44-7.20 (m, 13H), 3.10-2.91 (m, 2H) 2.86-2.77 (m, 1H) 2.65-2.55 (m, 1H) 2.32-2.11 (m, 2H), 1.79 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 145.8, 142.9, 142.8, 140.2, 135.2, 129.23, 129.18, 128.4, 128.1, 127.3, 126.37, 126.36, 125.2, 82.1, 48.5, 40.3, 30.9.

5-bromo-3-(diphenylmethylene)-2,2-difluoropentan-1-ol (12): The reaction was conducted on 1.5 mmol scale. The product **12** (334.9 mg, 61%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.21 (m, 10H), 3.62-3.46 (m, 4H), 2.87 (t, *J* = 15.6 Hz, 2H), 2.19 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 149.9 (t, *J* = 13.5 Hz), 141.8, 140.8, 130.0 (t, *J* = 46.2 Hz), 128.8, 128.23, 128.20, 127.73, 127.70, 127.68, 121.7 (t, *J* = 486.7 Hz), 64.5 (t, *J* = 62.0 Hz), 34.0, 31.0. ¹⁹F NMR (376 MHz, CDCl₃) δ -95.9 Hz. HRMS (EI) m/z: [M]⁺ Calcd for C₁₈H₁₇OBrF₂ 366.0425; Found 366.0430.

4-(diphenylmethylene)-3,3-difluorotetrahydro-2H-pyran (13): The reaction was conducted on 0.2 mmol scale. The product **13** (48 mg, 84%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.12 (m, 10H), 3.87-3.77 (m, 4H), 2.61 (t, *J* = 10.9 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 142.8 (t, *J* = 6.3 Hz), 141.6, 141.4, 128.8 (t, *J* = 5.8 Hz), 128.76, 128.5, 127.6, 127.5, 127.24, 127.19 (t, *J* = 36.3 Hz), 116.8 (t, *J* = 495.9 Hz), 72.1 (t, *J* = 66.8 Hz),

68.8, 31.4 (t, J = 3.9 Hz). ¹⁹F NMR (376 MHz, CDCl₃) δ -100.5 Hz. HRMS (ESI) m/z: [M+H]⁺ Calcd for C₁₈H₁₇F₂O 287.1242; Found 287.1276.

1-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)ethan-1-one (14)⁶: The reaction was conducted on 0.2 mmol scale. The product 14 (40.7 mg, 74%) as colorless oil was purified by flash column chromatography (PE/EA = 50/1); ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 7.74 Hz, 2H), 7.55 (t, *J* = 14.7 Hz, 1H), 7.45 (t, *J* = 15.2 Hz, 2H), 5.11 (s, 2H), 1.50-1.43 (m, 4H), 1.37-1.21 (m, 2H), 1.17 (s, 12H); ¹³C NMR (150 MHz, CDCl₃) δ 195.7, 135.6, 133.2, 128.6, 128.0, 81.4, 60.1, 39.8, 32.8, 20.3, 17.1.
8. ¹H NMR, ¹³C NMR, ¹⁹F NMR Spectra

5-(benzyloxy)-3-(difluoromethyl)-1,2-dihydronaphthalene (3a)

3-(difluoromethyl)-5-methoxy-1,2-dihydronaphthalene (3b)

7-(difluoromethyl)-5,6-dihydronaphthalene-1-carbonitrile (3c)

3-(difluoromethyl)-7-phenyl-1,2-dihydronaphthalene (3f)

3-(difluoromethyl)-7-ethyl-1,2-dihydronaphthalene (3g)

7-bromo-3-(difluoromethyl)-1,2-dihydronaphthalene (3h)

6-(difluoromethyl)-7,8-dihydronaphthalene-2-carbonitrile (3i)

3-(difluoromethyl)-5,8-dimethoxy-1,2-dihydronaphthalene (3k)

3-(difluoromethyl)-6,7,8-trimethoxy-1,2-dihydronaphthalene (3l)

S46

5-bromo-3-(difluoromethyl)-7-fluoro-1,2-dihydronaphthalene (3m)

2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (5a)

2-(8-bromo-6-fluoro-3,4-dihydronaphthalen-2-yl)-1-phenylethan-1-one (5h)

ethyl 2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)acetate (5j)

2-(8-(benzyloxy)-3,4-dihydronaphthalen-2-yl)acetonitrile (5k)

diethyl 2-(4-bromo-1,1-diphenylbut-1-en-2-yl)malonate (7i)

ethyl 5-bromo-3-(diphenylmethylene)pentanoate (7l)

5-bromo-3-(diphenylmethylene)pentanenitrile (7m)

3-(bis(4-methoxyphenyl)methylene)-5-bromo-1-phenylpentan-1-one (7n)

(4-chloro-2-tosylbut-1-ene-1,1-diyl)dibenzene (8a)

(4-chloro-2-(mesitylsulfonyl)but-1-ene-1,1-diyl)dibenzene (8f)

2-((4-chloro-1,1-diphenylbut-1-en-2-yl)sulfonyl)thiophene (8i)

3-(diphenylmethylene)-1-phenylcyclopentan-1-ol (11)

1-phenyl-2-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)ethan-1-one (14)

9. Reference

- (1) Zhu, Z. Z.; Chen, K.; Yu, L. Z.; Tang, X. Y.; Shi, M., Copper(I)-Catalyzed Intramolecular Trifluoromethylation of Methylenecyclopropanes. *Org. Lett.* **2015**, *17*, 5994-5997.
- (2) Zheng, J.; Cai, J.; Lin, J. H.; Guo, Y.; Xiao, J. C., Synthesis and decarboxylative Wittig reaction of difluoromethylene phosphobetaine. *Chem. Commun.* **2013**, *49*, 7513-7515.
- (3) Deng, Z.; Lin, J. H.; Cai, J.; Xiao, J. C., Direct Nucleophilic Difluoromethylation of Carbonyl Compounds. Org. Lett. 2016, 18, 3206-3209.
- (4) Vyas, V. K.; Bhanage, B. M., Catalytic asymmetric synthesis of β-triazolyl amino alcohols by asymmetric transfer hydrogenation of α-triazolyl amino alkanones. *Tetrahedron: Asymmetry* 2017, 28, 974-982.
- (5) Yu, J.; Lin, J.-H.; Cao, Y.-C.; Xiao, J.-C., Visible-light-induced radical hydrodifluoromethylation of alkenes. *Org. Chem. Front.* **2019**, *6*, 3580-3583.
- (6) Liu, W.; Li, Y.; Liu, K.; Li, Z. Iron-Catalyzed Carbonylation-Peroxidation of Alkenes with Aldehydes and Hydroperoxides. J. Am. Chem. Soc. 2011, 133, 10756-10759.