Supporting Information

Nickel-Catalyzed Electrochemical Reductive Relay CrossCoupling of Alkyl Halides with Alkyl Carboxylic Acids

Ke-Jin Jiao,,1,2 Cong Ma, ${ }^{2}$ Dong Liu, ${ }^{2}$ Hui Qiu, ${ }^{2}$ Bin Cheng ${ }^{1,{ }^{*}}$ and Tian-Sheng Mei,,,,** ${ }^{1}$ Institute of Marine Biomedicine, Shenzhen Polytechnic, Shenzhen, 518055, China
${ }^{2}$ State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Insti- tute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Science, 345 Lingling Road, Shanghai 200032, China
E-mail: mei7900@sioc.ac.cn; chengbin@szpt.edu.cn

Table of Contents

\qquad
2 Structures of starting materials ..S3
3 Preparation of alkyl bromide substrates .. S5
4 Conditions screening of the reaction ..S8
5 Photographic guide for electrochemical reductive relay Cross-CouplingsS10
6 General procedure for the electrolysis..S13
Characterization data for the products...S13
7 Cyclic voltammetry ..S37
8 Reference.. 540
9 Spectra of compounds ..S41

1 General Information

All the electrochemical reduction were performed in an undivided cell equipped with Nickel foam $\left(1.5 \times 2.5 \mathrm{~cm}^{2}\right)$ and an iron rod as sacrificial anode unless otherwise noted. Solvents and commercially available reagents were used without purification. Column chromatography was performed using either 100-200 Mesh or 300-400 Mesh silica gel. Visualization of spots on TLC plate was accomplished with UV light (254 nm).
All the nickel foams were purchased from T-mall, China. The potentiostat was purchased from Shiqiang Telecom Co., Ltd, Shengzhen, China. The All commercial reagents were purchased from TCI, Sigma-Aldrich, Adamas-beta chemistry and Energy Chemical of the highest purity grade. They were used without further purification unless specified.
${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Agilent AV 400, Varian Inova 400 (400 MHz and 101 MHz , respectively). ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on Agilent AV 400, Varian Inova $400(376 \mathrm{MHz})$ instrument. The peaks were internally referenced to TMS (0.00 ppm) or residual undeuterated solvent signal. The following abbreviations were used to explain multiplicities: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, and br $=$ broad. Infrared spectra were obtained on a Bio-Rad FTS-185 instrument. High resolution mass spectra were recorded at the Center for Mass Spectrometry, Shanghai Institute of Organic Chemistry. Analytical and spectral data of all those known compounds are exactly matching with the reported values.

2 Structures of Starting Materials

Alkyl acids

1 e

1f

1g

1h

$1 i$

1j

1k

11

1m

1n

10

1p

$1 q$

1r

15

1t

14

1v

1w

1x

1y

$1 z$

1aa

1ab

1ac

1ad

1ae

1af

1ag

Alkyl bromides

2a

2b

2c

2d

2e

$2 f$

2g

2h

2i

2j

2k

21

2m

2n

Failed substrates

3 Preparation of alkyl bromide substrates

General procedure for the synthesis of $\mathbf{2 b}, \mathbf{2 e - 2 g}, \mathbf{2 j}, \mathbf{2 1}$ and $\mathbf{2 m}$.

Procedure A: LiAlH_{4} (1.2 equiv.) and anhydrous THF ($\mathrm{c}=1.25 \mathrm{M}$) were added to the flask. Then a solution of acid (1.0 equiv.) in anhydrous THF ($\mathrm{c}=1.25 \mathrm{M}$) was added dropwise under the ice bath. The mixture was stirred at room temperature for 1 h. then the reaction was quenched with MeOH and NaOH (10% in aqueous), followed by workup with hydrochloric acid (1 M). The mixture was extracted with EtOAc (3 equal volume) and the organic layer was washed with brine, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated by flash evaporation for the next step without further purification.
Procedure B: To a stirred solution of alcohol (1.0 equiv.) and CBr_{4} (1.2 equiv.) in DCM (0.3 M) was added triphenylphosphine (1.2 equiv.). After stiring at room temperature for 5 h , the mixture was concentrated by flash evaporation. The residue was added with petroleum ether and filtered. The solution was concentrated by flash evaporation and the crude product was purified by flash column chromatography on silica to afford the product.

1-(2-bromoethyl)-4-methoxybenzene (2b) ${ }^{[1]}$

From 2-(4-methoxyphenyl)acetic acid ($3.32 \mathrm{~g}, 20 \mathrm{mmol}$), following the general procedure A and B, the title compound (2b) was obtained ($2.6 \mathrm{~g}, 60 \%$ in two steps) as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.18(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.84 ($\mathrm{s}, 3 \mathrm{H}$), 3.58 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), 3.15 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.51,130.98,129.66,113.97,55.23,38.56,33.47$.

4-(2-bromoethyl)-1,1'-biphenyl (2e) ${ }^{[1]}$

From 2-([1,1'-biphenyl]-4-yl)acetic acid ($4.25 \mathrm{~g}, 20 \mathrm{mmol}$), following the general procedure A and B , the title compound ($\mathbf{2 e}$) was obtained ($4.06 \mathrm{~g}, 78 \%$ in two steps) as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.49(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.64(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.91,140.02$, 138.08, 129.26, 128.95, 127.50, 127.44, 127.20, 39.19, 33.08.

1-(2-bromoethyl)-4-(trifluoromethyl)benzene (2f) ${ }^{[2]}$

From 2-(4-(trifluoromethyl)phenyl)ethan-1-ol ($796 \mathrm{mg}, 4.2 \mathrm{mmol}$), following the general procedure B, the title compound ($\mathbf{2 f}$) was obtained ($780 \mathrm{mg}, 73 \%$) as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.62(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 142.81$ (br m), $129.29(\mathrm{q}, J=32.0 \mathrm{~Hz}), 129.06,125.55(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.21(\mathrm{q}, J=270.1$ Hz), 38.88, 32.15. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.46$.

1-(2-bromoethyl)-4-(trifluoromethoxy)benzene (2g) ${ }^{[3]}$

From 2-(4-(trifluoromethoxy)phenyl)acetic acid ($2.20 \mathrm{~g}, 10 \mathrm{mmol}$), following the general procedure A and B , the title compound ($\mathbf{2 g}$) was obtained ($1.56 \mathrm{~g}, 58 \%$ in two steps) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.21$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.20(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.19,137.56,130.05,121.15,120.49(\mathrm{q}, J=256.1 \mathrm{~Hz}), 38.52,32.58$. ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-57.91$.

1-(benzyloxy)-3-(2-bromoethyl)benzene ($\mathbf{2 j}$)

From 2-(3-(benzyloxy)phenyl)acetic acid ($2.42 \mathrm{~g}, 10 \mathrm{mmol}$), following the general procedure A and B, the title compound ($\mathbf{2} \mathbf{j}$) was obtained ($2.08 \mathrm{~g}, 71 \%$ in two steps) as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.97-6.86(\mathrm{~m}, 3 \mathrm{H}), 5.11(\mathrm{~s}, 2 \mathrm{H}), 3.61(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.16,140.65,137.11,129.83,128.79,128.18$, 127.71, 121.44, 115.61, 113.25, 70.12, 39.60, 32.99. HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{BrO}[\mathrm{M}]^{+}$290.0301, measured: 290.0302. IR (neat) 3031, 1592, 1491, 1259, 1018, 740, 696, 626, 540, $448 \mathrm{~cm}^{-1}$.

1-(2-bromoethyl)-2-methylbenzene (2I) ${ }^{[4]}$

From 2-(o-tolyl)acetic acid ($3.00 \mathrm{~g}, 20 \mathrm{mmol}$), following the general procedure A and B, the title compound (2I) was obtained ($2.20 \mathrm{~g}, 55 \%$ in two steps) as a yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.22(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.26(\mathrm{t}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $2.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 137.21,136.17,130.62$, 129.40, 127.20, 126.32, 37.04, 31.76, 19.37.

4-(2-bromoethyl)-1,2-dimethoxybenzene (2m) ${ }^{[5]}$

From 2-(3,4-dimethoxyphenyl)ethan-1-ol ($1.82 \mathrm{~g}, 10 \mathrm{mmol}$), following the general procedure B, the title compound ($\mathbf{2 m}$) was obtained ($2.25 \mathrm{~g}, 91 \%$) as a white solid. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.84(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.74(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H})$, $3.89(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 148.94,147.97,131.51,120.69,111.86,111.23,55.91,55.88,39.10,33.31$.
(4-(2-bromoethyl)phenoxy)triisopropylsilane (2h) ${ }^{[6]}$

To a solution of 4-(2-bromoethyl)phenol ($1.0 \mathrm{~g}, 4.97 \mathrm{mmol}, 1.0$ equiv.) in anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ was added imidazole ($0.36 \mathrm{~g}, 5.22 \mathrm{mmol}, 1.05$ equiv.), followed by dropwise addition of $\operatorname{TIPSCl}(1.06 \mathrm{~mL}, 4.97 \mathrm{mmol}, 1.0$ equiv.). After stirring for 16 h , the cloudy reaction mixture was transferred to a separatory funnel and washed with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{H}_{2} \mathrm{O}$. The aqueous phase was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the combined extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated. The crude product was purified by flash column chromatography on silica to afford the title product ($\mathbf{2 h}$) $(1.30 \mathrm{~g}, 73 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.08(\mathrm{~d}, J$ $=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.11(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.33-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 155.02, 131.38, 129.59, 119.99, 38.81, 33.36, 17.95, 12.67.

4 Conditions Screening of the Reaction ${ }^{a}$

Table S1

entry	deviation from above condition	F/mol	yield(\%) ${ }^{\text {b }}$
1	no	4.5	$77(72)^{\text {c }}$
2	without electricity	0	NP
3	Nil_{2} as the catalyst	4.5	21
4	$\mathrm{Ni}\left(\mathrm{BF}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as the catalyst	4.5	58
5	$\mathrm{Ni}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ as the catalyst	4.5	50
6	L3 as the ligand	4.5	NP
7	L4 as the ligand	4.5	64
8	L5 as the ligand	4.5	66
9	L6 as the ligand	4.5	40
10	L7 as the ligand	4.5	31
11	L8 as the ligand	4.5	40
12	[Ni$] / \mathrm{L} 1$ (5/6 mol\%)	4.5	57
13	MgBr_{2} (2.0 equiv.)	4.5	33
14	MgBr_{2} (0.5 equiv.)	4.5	50
15	${ }^{n} \mathrm{Bu}_{4} \mathrm{NBF}_{4}$ in lieu of MgBr_{2}	4.5	0
16	Zn as the anode	4.5	46
17	5 mA	3.8	70
18	7 mA	5.3	64
19	8 mA	6.0	57
20	DMA(3.0 mL)	4.5	56
21	2a (1.2 equiv)	4.5	70
22	2a (2.0 equiv)	4.5	35
23	$60^{\circ} \mathrm{C}$	4.5	18
24	$40^{\circ} \mathrm{C}$	4.5	35
25	Nal (1.0 equiv.) as additive	4.5	72
26	Lil (1.0 equiv.) as additive	4.5	73
27	ZnI_{2} (1.0 equiv.) as additive	4.5	25

${ }^{a}$ Reaction conditions: 1a (0.3 mmol), 2a (0.3 mmol), $\mathrm{NiCl}_{2} \cdot$ glyme ($10 \mathrm{~mol} \%$), Ligand $1(12 \mathrm{~mol} \%), \mathrm{MgBr}_{2}$ ($0.3 \mathrm{mmol}, 1.0$ equiv.) and DMA (4 mL) in an undivided cell with a Ni foam cathode and an iron rod as sacrificial anode. ${ }^{b}$ The yields were determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as the internal standard. ${ }^{c}$ Isolated yield of $\mathbf{3 a}$.

5 Photographic Guide for Electrochemical Reductive Relay Cross-

Couplings

1 Easily hand-made electrochemical cell
Step 0 . Overview of materials used.
From left to right: 1) The iron rod 2) The nickel foam cathode 3) The electrode clamp. 4) copper wire

Step 1. Preparation of two electrodes.
Cut an iron rod about $0.5 \times 1.5 \mathrm{~cm}^{2}$ with a scissors.
Attach the iron with the electrode clamp.
Strip the protective skin of the copper wire with a tweezer.
Wrap the Ni foam cathode $\left(1.5 \times 2.5 \mathrm{~cm}^{2}\right)$ with copper wire.

2 Graphical Guide for Electrochemical Reductive Relay Cross-Couplings.

Materials used in the reaction.

Step 1. Weight the ligand and the hydrocinnamic acid in a 10 mL hydrogenation tube.
Step 2. Transfer the vial to a Nitrogen-filled glove box. Weight the MgBr_{2} and Nickel catalyst, then install the two electrodes. Remove the tube from the glove box.

Step 3. The alkyl bromide and $\mathrm{Boc}_{2} \mathrm{O}$ dissolved in anhydrous DMA (4.0 mL) was injected into the tube with a 5 mL syringe. And the tube was sealed with parafilm.
Step 4. After stirring for 30 minutes, attached to electrode (the red (+) to the electrode clamp, the black $(-)$ to the copper wire). The reaction was electrolyzed for 6 h under a constantcurrent electrolysis at 6 mA .

6 General Procedure for the Electrolysis

To a 10 mL hydrogenation tube charged with a stir bar was added the acids and ligand $\mathbf{1}(6.6 \mathrm{mg}, 12 \mathrm{~mol} \%)$. The vial was then introduced in a Nitrogen-filled glove box. Weight the $\mathrm{NiCl}_{2} \cdot$ glyme ($6.6 \mathrm{mg}, 10 \mathrm{~mol} \%$) and MgBr_{2} ($55.2 \mathrm{mg}, 1.0$ equiv) into the tube and install a Ni foam cathode $\left(2.5 \times 1.5 \mathrm{~cm}^{2}\right)$ and an iron rod anode. The tube was then removed from the glove box. Next the $\mathrm{Boc}_{2} \mathrm{O}$ and the alkyl bromide dissolved in anhydrous DMA (4.0 mL) was injected into the tube with a 5 mL syringe. The reaction mixture was stirred at about 1000 rpm for 30 minutes. After that, the reaction mixture was electrolyzed for 6 h under a constant-current electrolysis at 6 mA . After the reaction was completed, the mixture was diluted with EtOAc (about 40 mL) and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ (3 x equal volume), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated in vacuo. The crude product was purified by column chromatography to furnish the desired product.

Characterization Data for the Products

1,4-diphenylpentan-3-one (3a) ${ }^{[7]}$

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) ($45.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) (55.5 $\mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford 3a($51.5 \mathrm{mg}, 72 \%$) as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.30 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24-7.18$ (m, 3H), $7.17-7.14$ (m, 3H), 7.06 (d, $J=7.2 \mathrm{~Hz}$, $2 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.71$ (m, 2H), $2.70-2.61$ (m, 2H), 1.37 (d, $J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 209.9,141.1,140.5,128.9,128.4,128.3$, 127.9, 127.2, 126.0, 53.2, 42.6, 30.0, 17.3.

4-phenyl-1-(p-tolyl)pentan-3-one (3b)

The title product was prepared according to the general procedure with 3-(p-
tolyl)propanoic acid (1b) ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) (55.5 $\mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford 3b ($(35.4 \mathrm{mg}, 52 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.94$ (d, $J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.61$ (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.77-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.59-$ $2.52(\mathrm{~m}, 2 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $209.0,139.5,136.9,134.4,128.0,127.9,127.1,126.8,126.1,52.2,41.7,28.5,19.9$, 16.3. HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}$ [M] ${ }^{+}$252.1509, measured: 252.1507. IR (neat) $2927,1711,1514,1451,1259,1020,808,699,528,481 \mathrm{~cm}^{-1}$.

1-(4-methoxyphenyl)-4-phenylpentan-3-one (3c) ${ }^{[8]}$

The title product was prepared according to the general procedure with 3-(4methoxyphenyl)propanoic acid (1c) ($54.1 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) $(55.5 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 c}(56.4 \mathrm{mg}, 70 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.16(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.77$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.69(\mathrm{~m}$, 2H), $2.67-2.56(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $210.0,157.9,140.5,133.1,129.2,128.9,127.9,127.1,113.8,55.2,53.2,42.9,29.1$, 17.3.

1-(4-fluorophenyl)-4-phenylpentan-3-one (3d)

The title product was prepared according to the general procedure with 3-(4fluorophenyl)propanoic acid (1d) ($50.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford 3d $(50.0 \mathrm{mg}, 65 \%)$ as a yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$
$7.32-6.86(\mathrm{~m}, 9 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86-2.71(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.56(\mathrm{~m}, 2 \mathrm{H})$, $1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.7,161.4(\mathrm{~d}, \mathrm{~J}=243.7 \mathrm{~Hz})$, 140.4, 136.7 (d, J = 3.2 Hz), 129.8 ($\mathrm{d}, \mathrm{J}=7.8 \mathrm{~Hz}$), 129.1, 128.0, 127.3, 115.2 (d, J = 21.1 Hz), 53.3, 42.6, 29.2, 17.4. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-117.45. HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}[\mathrm{M}]^{+}$256.1258, measured: 256.1257. IR (neat) 2930, 1711, $1508,1219,1156,825,699,530,481 \mathrm{~cm}^{-1}$.

1-(3-fluorophenyl)-4-phenylpentan-3-one (3e)

The title product was prepared according to the general procedure with 3-(3fluorophenyl)propanoic acid (1e) ($50.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 e}(45.0 \mathrm{mg}, 58 \%)$ as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.34-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.86-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.70(\mathrm{~m}, 1 \mathrm{H})$, $3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.57(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.4,162.8(\mathrm{~d}, J=245.4 \mathrm{~Hz}), 143.6(\mathrm{~d}, J=7.3$ $\mathrm{Hz}), 140.3,129.8(\mathrm{~d}, J=8.3 \mathrm{~Hz}), 129.0,127.9,127.2,124.0(\mathrm{~d}, J=2.8 \mathrm{~Hz}), 115.1(\mathrm{~d}$, $J=21.0 \mathrm{~Hz}), 112.9(\mathrm{~d}, J=21.0 \mathrm{~Hz}), 53.2,42.1,29.6,17.3$. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-113.64. HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{FO}[\mathrm{M}]^{+}$256.1258, measured: 256.1257. IR (neat) 2931, 1712, 1587, 1489, 1449, 1247, 1139, 782, 699, $537 \mathrm{~cm}^{-1}$.

4-phenyl-1-(m-tolyl)pentan-3-one (3f)

The title product was prepared according to the general procedure with 3-(mtolyl)propanoic acid (1f) ($49.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) (55.5 $\mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 f}(45.5 \mathrm{mg}, 60 \%)$ as a yellow oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ - $7.27(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}$,
$J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.85(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85-2.70(\mathrm{~m}, 2 \mathrm{H})$, $2.69-2.61(\mathrm{~m}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 210.0,141.0,140.5,138.0,129.1,128.9,128.3,127.9,127.2,122.8,125.3,53.2,42.7$, 29.9, 21.4, 17.4. HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}$252.1509, measured: 252.1509. IR (neat) $2928,1712,1608,1492,1451,1122,782,699,548 \mathrm{~cm}^{-1}$.

1-(benzo[d][1,3]dioxol-5-yl)-4-phenylpentan-3-one (3g)

The title product was prepared according to the general procedure with 3-(benzo[d][1,3]dioxol-5-yl)propanoic acid (1g) (58.3 mg, 0.3 mmol) and (2bromoethyl)benzene ($\mathbf{2 a}$) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 g}(52.5 \mathrm{mg}, 62 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-$ $7.16(\mathrm{~m}, 2 \mathrm{H}), 6.69(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~s}$, $2 \mathrm{H}), 3.73(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84-2.59(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, CDCl_{3}) $\delta 209.8,147.5,145.8,140.4,134.9,129.0,127.9,127.2,121.1$, 108.8, 108.2, 100.8, 53.3, 42.8, 29.7, 17.3. HRMS (ESI) calculated for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$305.1148, measured: 305.1148. IR (neat) 2892, 1710, 1488, 1442, 1243, 1037, 928, 808, 731, 699, $545 \mathrm{~cm}^{-1}$.

1-(4-chloro-3-fluorophenyl)-4-phenylpentan-3-one (3h)

The title product was prepared according to the general procedure with 3-(4-chloro-3fluorophenyl)propanoic acid (1h) ($60.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) $(55.5 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 h}(43.6 \mathrm{mg}, 50 \%)$ as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~ (~} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 7.34-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.21(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.83-6.77(\mathrm{~m}$, $2 \mathrm{H}), 3.73(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.93-2.51(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.0,157.8(\mathrm{~d}, J=248.3 \mathrm{~Hz}), 142.0(\mathrm{~d}, J=6.5 \mathrm{~Hz}), 140.0,130.3$, $129.0,127.8,127.3,124.8(\mathrm{~d}, J=3.5 \mathrm{~Hz}), 118.3(\mathrm{~d}, J=17.6 \mathrm{~Hz}), 116.5(\mathrm{~d}, J=20.7$ $\mathrm{Hz})$, 53.4, 41.8, 29.1, 17.2. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.93$. HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClFO}[\mathrm{M}]^{+}$290.0868, measured: 290.0870. IR (neat) 2932, 1712, $1580,1490,1373,1242,1062,867,699,500 \mathrm{~cm}^{-1}$.

1-(furan-2-yl)-4-phenylpentan-3-one (3i)

The title product was prepared according to the general procedure with 3-(furan-2yl)propanoic acid (1i) ($42.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) (55.5 mg , $0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 i}(43.2 \mathrm{mg}, 63 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.26-$ 6.17 (m, 1H), 5.87 (d, $J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.77(\mathrm{~m}, 2 \mathrm{H})$, $2.72-2.65(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.4$, 154.6, 141.0, 140.4, 129.0, 127.9, 127.2, 110.1, 105.1, 53.1, 39.2, 22.3, 17.4. HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{O}_{2}[\mathrm{M}]^{+}$228.1145, measured: 228.1143. IR (neat) 2930, $1712,1598,1493,1359,1147,1009,729,699,598,484 \mathrm{~cm}^{-1}$.

4-phenyl-1-(thiophen-2-yl)pentan-3-one (3j)

The title product was prepared according to the general procedure with 3-(thiophen-2yl)propanoic acid ($\mathbf{1 j}$) ($46.9 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) (55.5 mg , 0.3 mmol). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 j}(40.0 \mathrm{mg}, 54 \%)$ as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=5.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.93-6.84(\mathrm{~m}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-2.97$
(m, 2H), $2.80-2.72(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.3, 143.7, 140.4, 129.0, 127.9, 127.2, 126.8, 124.5, 123.3, 53.2, 42.7, 24.1, 17.4. HRMS (EI) calculated for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{OS}[\mathrm{M}]^{+}$244.0916, measured: 244.0916. IR (neat) 2929, 1711, 1493, 1451, 1121, 1030, 847, 824, 694, $544 \mathrm{~cm}^{-1}$.

6-(4-methoxyphenyl)-2-phenylhexan-3-one (3k)

The title product was prepared according to the general procedure with 4-(4methoxyphenyl)butanoic acid ($\mathbf{1 k}$) ($58.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 k}(70.3 \mathrm{mg}, 83 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.26(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.21(\mathrm{~m}, 2 \mathrm{H})$, $6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.54-2.35(\mathrm{~m}, 4 \mathrm{H}), 1.90-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 210.7,157.8,140.7,133.8,129.3,128.9,127.9,127.1,113.7,55.3,53.0$, 40.2, 34.0, 25.6, 17.5. HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+} 305.1512$, measured: 305.1511. IR (neat) 2931,1710, 1510, 1452, 1243,1176, 1034, 810, 700, 544 cm^{-1}.

6-(4-chlorophenyl)-2-phenylhexan-3-one (31)

The title product was prepared according to the general procedure with 4-(4methoxyphenyl)butanoic acid (11) ($59.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 1}(61.1 \mathrm{mg}, 71 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.25-7.18(\mathrm{~m}, 4 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.31(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.4,140.6,140.1$, 131.5, 129.8, 129.0, 128.4, 127.9, 127.2, 53.1, 39.9, 34.2, 25.1, 17.4. HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClO}[\mathrm{M}]^{+}$286.1119, measured: 286.1119. IR (neat) 2929, 1711,

1491, 1451, 1089, 1013, 799, 759, 699, $522 \mathrm{~cm}^{-1}$.

2,7-diphenylheptan-3-one (3m)

The title product was prepared according to the general procedure with 5phenylpentanoic acid (1m) ($53.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene ($\mathbf{2 a}$) (55.5 $\mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 m}(58.3 \mathrm{mg}, 73 \%)$ as a yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36$ $(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.14(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $3.77(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.43-2.38(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.47(\mathrm{~m}$, $4 \mathrm{H}), 1.42(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.8,142.3,140.7$, 128.9, 128.4, 128.3, 127.9, 127.2, 125.7, 53.0, 40.8, 35.7, 30.8, 23.5, 17.5. HRMS (EI) calculated for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+}$266.1665, measured: 266.1669. IR (neat) 2930, 1711, $1600,1493,1451,1028,745,697,701,545 \mathrm{~cm}^{-1}$.

6-(4-(bis(2-chloroethyl)amino)phenyl)-2-phenylhexan-3-one (3n)

The title product was prepared according to the general procedure with chlorambucil ($\mathbf{1 n}$) ($91.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 n}$ $(70.6 \mathrm{mg}, 60 \%)$ as a yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.34-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 3.82-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 3.64(\mathrm{t}, J=6.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.52-2.34$ $(\mathrm{m}, 4 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 210.7, 144.1, 140.7, 131.0, 129.7, 129.0, 128.0, 127.2, 112.2, 53.7, 53.0, 40.5, 40.3, 33.8, 25.6, 17.5. HRMS (EI) calculated for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{Cl}_{2} \mathrm{NO}[\mathrm{M}]^{+}$391.1464, measured: 391.1467. IR (neat) 2930, 1710, 1614, 1516, 1353, 1179, 802, 741, 701, $545 \mathrm{~cm}^{-1}$.

1-cyclohexyl-4-phenylpentan-3-one (30)

The title product was prepared according to the general procedure with 3cyclohexylpropanoic acid (10) ($46.9 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 o}(36.7 \mathrm{mg}, 50 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.46-2.25(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.49(\mathrm{~m}, 5 \mathrm{H}), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.34(\mathrm{~m}$, 2H), $1.19-0.99(\mathrm{~m}, 4 \mathrm{H}), 0.84-0.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.3$, $140.8,128.9,127.9,127.1,53.0,38.6,37.1,33.2,32.9,31.3,26.5,26.2,26.2,17.5$. HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}[\mathrm{M}]^{+}$244.1822, measured: 244.1823. IR (neat) 2920, 2849, 1712, 1493, 1449, 1070, 757, 699, $542 \mathrm{~cm}^{-1}$.

3-phenyl-1-(tetrahydro-2H-pyran-4-yl)butan-2-one (3p)

The title product was prepared according to the general procedure with 2-(tetrahydro2 H -pyran-4-yl)acetic acid ($\mathbf{1 p}$) ($43.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 p}(48.7 \mathrm{mg}, 70 \%)$ as a white solid. m.p. $51-53{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.21(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.92$ $-3.79(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.42-3.30(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.10-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.42(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.26-1.12(\mathrm{~m}, 1 \mathrm{H}), 1.11-0.97(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.7,140.3$, 129.0, 127.9, 127.3, 67.8, 53.6, 47.8, 32.8, 32.4, 30.7, 17.2. HRMS (ESI) calculated for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$233.1536, measured: 233.1536. IR (neat) 2927, 2839, 1710, 1493, 1451, 1092, 1013, 852, 760, 700, $545 \mathrm{~cm}^{-1}$.

1-((3r,5r,7r)-adamantan-1-yl)-3-phenylbutan-2-one (3q)

The title product was prepared according to the general procedure with $2-((3 \mathrm{r}, 5 \mathrm{r}, 7 \mathrm{r})-$ adamantan-1-yl)acetic acid (1q) ($58.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) $(55.5 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 q}(53.0 \mathrm{mg}, 63 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 7.32 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.22(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.98$ (d, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.92$ (brs, 3H), $1.73-1.51$ $(\mathrm{m}, 12 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,140.6,128.9$, 128.1, 127.0, 55.0, 54.5, 42.4, 36.8, 33.6, 28.6, 17.4. HRMS (ESI) calculated for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+}$305.1876, measured: 305.1871. IR (neat) 2898, 2846, 1707, 1450, 1029, 755, 698, $537 \mathrm{~cm}^{-1}$.

6-methyl-2-phenylheptan-3-one (3r)

The title product was prepared according to the general procedure with 4methylpentanoic acid ($\mathbf{1 r}$) ($34.9 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene ($\mathbf{2 a}$) (55.5 $\mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 r}(42.9 \mathrm{mg}, 70 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{~ N M R ~}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25$ ($\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), $7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.69(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.27(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.40-1.23(\mathrm{~m}, 6 \mathrm{H}), 0.71(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.68(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.2,140.8,128.9,127.9,127.1,53.0,39.1$, 32.8, 27.5, 22.4, 22.1, 17.5. HRMS (EI) calculated for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}[\mathrm{M}]^{+}$204.1509, measured: 204.1508. IR (neat) 2956, 2870, 1712, 1453, 1136, 757, 700, $548 \mathrm{~cm}^{-1}$.

methyl 5-oxo-6-phenylheptanoate (3s)

The title product was prepared according to the general procedure with 5-methoxy-5oxopentanoic acid (1s) ($43.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) (55.5 mg , 0.3 mmol). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 s}(45.6 \mathrm{mg}, 65 \%)$ as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.32$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.29-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.90-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.0,173.6,140.5,129.0$, 127.8, 127.2, 53.0, 51.5, 39.7, 32.9, 18.9, 17.4. HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3} \mathrm{Na}$ [M+Na]+ 257.1148, measured: 257.1150. IR (neat) 2951, 1733, 1711, 1493, 1451, 1372, 1171, 761, 700, $545 \mathrm{~cm}^{-1}$.

2-phenyloctan-3-one (3t) ${ }^{[1]}$

The title product was prepared according to the general procedure with hexanoic acid (1t) ($34.9 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 t}$ (33.0 $\mathrm{mg}, 54 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.59-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.12(\mathrm{~m}, 4 \mathrm{H}), 0.85(\mathrm{t}$, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.1,140.8,128.9,127.9,127.1,53.0$, 41.0, 31.3, 23.6, 22.4, 17.5, 13.9.

2-phenyloctan-3-one (3u)

The title product was prepared according to the general procedure with decanoic acid
(1u) ($51.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 u}$ $(41.5 \mathrm{mg}, 53 \%)$ as a yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.20-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{t}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 1.47-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.07(\mathrm{~m}, 12 \mathrm{H}), 0.79(\mathrm{t}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.1,140.8,128.9,127.9,127.1,53.0$, 41.1, 31.9, 29.4, 29.3, 29.2, 29.1, 23.9, 22.7, 17.5, 14.1. HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}[\mathrm{M}]^{+}$260.2135, measured: 260.2134. IR (neat) 2923, 2853, 1713, 1493, 1453, $1373,759,699,546 \mathrm{~cm}^{-1}$.

1-cyclopropyl-2-phenylpropan-1-one (3v)

The title product was prepared according to the general procedure with cyclopropanecarboxylic acid (1v) ($25.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 v}(26.0 \mathrm{mg}, 50 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.21(\mathrm{~m}, 3 \mathrm{H}), 3.90(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.90-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09-0.90(\mathrm{~m}, 2 \mathrm{H}), 0.83-0.74(\mathrm{~m}$, $1 \mathrm{H}), 0.73-0.66(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.9,140.9,128.9,128.1$, 127.0, 53.8, 19.7, 17.6, 11.4, 11.3. HRMS (EI) calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}[\mathrm{M}]^{+}$174.1039, measured: 174.1039. IR (neat) 2975, 2931, 1689, 1452, 1378, 1041, 1016, 796, 699 cm^{-1}.

2-phenyl-1-(2,2,3,3-tetramethylcyclopropyl)propan-1-one (3w)

The title product was prepared according to the general procedure with chrysanthemum acid (1w) ($42.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 w}$ $(47.7 \mathrm{mg}, 69 \%)$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24(\mathrm{t}, J=7.2 \mathrm{~Hz}$,

2H), $7.18-7.12(\mathrm{~m}, 1 \mathrm{H}), 7.11-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30-1.26(\mathrm{~m}$, $4 \mathrm{H}), 1.17(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 207.7,140.1,127.6,126.9,125.7,54.3,43.1,33.4,32.9,22.8,21.9,15.9,15.4,15.1$. HRMS (ESI) calculated for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{O}[\mathrm{M}]^{+}$231.1743, measured: 231.1740. IR (neat) $2925,1683,1492,1451,1378,1106,1010,698,524 \mathrm{~cm}^{-1}$.

1-cyclobutyl-2-phenylpropan-1-one (3x)

The title product was prepared according to the general procedure with cyclobutanecarboxylic acid (1x) ($30.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 x}(41.8 \mathrm{mg}, 74 \%)$ as a yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{q}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.30(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.40(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.8,140.7,128.8,128.0,127.0,50.8$, 44.3, 25.4, 24.4, 17.7, 17.6. HRMS (EI) calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}[\mathrm{M}]^{+}$188.1196, measured: 188.1196. IR (neat) 2928, 1706, 1453, 1130, 968, 699, $504 \mathrm{~cm}^{-1}$.

1-(2,3-dihydro-1H-inden-2-yl)-2-phenylpropan-1-one (3y)

The title product was prepared according to the general procedure with 2,3-dihydro1 H -indene-2-carboxylic acid (1y) ($48.7 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 y}(41.3 \mathrm{mg}, 55 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.09(\mathrm{~m}, 4 \mathrm{H})$, $3.95(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{p}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.21-3.09(\mathrm{~m}, 3 \mathrm{H}), 2.79-2.67(\mathrm{~m}$, $1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 211.8,142.0,141.1$, 140.4, 129.0, 128.0, 127.2, 126.6, 126.4, 124.3, 124.2, 52.3, 49.8, 36.5, 35.5, 17.9. HRMS (EI) calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{O}$ [M] ${ }^{+}$250.1352, measured: 250.1352. IR (neat)

2929, 1707, 1485, 1451, 743, 699, $509 \mathrm{~cm}^{-1}$.

1-cyclohexyl-2-phenylpropan-1-one (3z) ${ }^{[7]}$

The title product was prepared according to the general procedure with cyclohexanecarboxylic acid ($\mathbf{1 z}$) ($38.5 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 z}(38.9 \mathrm{mg}, 60 \%)$ as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{q}, J=6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.45-2.35(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.52-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.03(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 212.8,139.7,127.8,127.0,126.0,50.1,48.5,28.4,27.3,24.9,24.7$, 24.3, 17.2.

1-((1s,4r)-4-pentylcyclohexyl)-2-phenylpropan-1-one (3aa)

The title product was prepared according to the general procedure with trans-4-pentylcyclohexane-1-carboxylic acid (1aa) ($59.5 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$) and (2bromoethyl)benzene ($\mathbf{2 a}$) $(55.5 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford 3aa ($36.0 \mathrm{mg}, 42 \%$) as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.20(\mathrm{~m}, 5 \mathrm{H}), 3.92(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.45-$ $2.30(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.55-$ $1.41(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 7 \mathrm{H}), 1.19-1.12(\mathrm{~m}, 3 \mathrm{H}), 0.95$ $-0.83(\mathrm{~m}, 4 \mathrm{H}), 0.78-0.68(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 214.1,140.7$, $128.8,128.0,127.0,51.3,49.7,37.2,36.9,32.7,32.2,32.1,29.5,28.4,26.5,22.7,18.2$, 14.1. HRMS (ESI) calculated for $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{ONa}[\mathrm{M}+\mathrm{Na}]^{+} 309.2189$, measured: 309.2183. IR (neat) 2922, 2852, 1706, 1449, 1374, 951, 729, 698, $555 \mathrm{~cm}^{-1}$.

methyl (1r,4r)-4-(2-phenylpropanoyl)cyclohexane-1-carboxylate (3ab)

The title product was prepared according to the general procedure with trans-4-(methoxycarbonyl)cyclohexane-1-carboxylic acid (1ab) ($55.9 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 a b}(57.6 \mathrm{mg}, 70 \%)$ as a yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.23(\mathrm{~m}, 1 \mathrm{H}), 7.25-$ $7.19(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 2.50-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.20$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.44-1.24(\mathrm{~m}$, $7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 213.2,176.0,140.4,128.9,128.0,127.2,51.6$, 51.5, 48.4, 42.4, 28.5, 28.3, 27.8, 27.4, 18.0. HRMS (ESI) calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{Na}$ $[\mathrm{M}+\mathrm{Na}]^{+}$297.1461, measured: 297.1462. IR (neat) 2933, 2861, 1731, 1704, 1451, 1247, 1017, 896, 730, 699, $555 \mathrm{~cm}^{-1}$.

1-(4-(4-chlorophenyl)cyclohexyl)-2-phenylpropan-1-one (3ac)

The title product was prepared according to the general procedure with 4-(4-chlorophenyl)cyclohexane-1-carboxylic acid (1ac) ($71.6 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2bromoethyl)benzene ($\mathbf{2 a}$) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 a c}(78.4 \mathrm{mg}, 80 \%$) as a pale yellow solid. m.p. $59-61^{\circ}{ }^{\circ}{ }^{1}{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.37(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-$ $7.23(\mathrm{~m}, 5 \mathrm{H}), 7.10(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.96(\mathrm{q}, \mathrm{J}=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-2.41(\mathrm{~m}, 2 \mathrm{H})$, $2.08-1.99(\mathrm{~m}, 1 \mathrm{H}), 1.98-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.55(\mathrm{~m}, 3 \mathrm{H})$, 1.51 - $1.39(\mathrm{~m}, 5 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.5,145.4,140.5,131.6,128.9$, 128.4, 128.1, 128.0, 127.2, 51.5, 48.8, 43.0, 33.6, 33.0, 29.7, 28.6, 18.1. HRMS (EI)
calculated for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{ClO}[\mathrm{M}]^{+}$326.1432, measured: 326.1432. IR (neat) 2927, 2854, 1704, 1492, 1449, 1091, 972, 822, 699, $530 \mathrm{~cm}^{-1}$.

2-phenyl-1-(tetrahydro-2H-pyran-4-yl)propan-1-one (3ad)

The title product was prepared according to the general procedure with tetrahydro- $2 \mathrm{H}-$ pyran-4-carboxylic acid (1ad) ($39.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2-bromoethyl)benzene (2a) $(55.5 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford 3ad ($37.9 \mathrm{mg}, 58 \%$) as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 7.53-7.11(\mathrm{~m}, 5 \mathrm{H}), 4.00-3.85(\mathrm{~m}, 3 \mathrm{H}), 3.42-3.31(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.20(\mathrm{~m}, 1 \mathrm{H})$, $2.70-2.57(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.58(\mathrm{~m}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.29(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.8,140.3,129.0,127.9,127.2,67.3,67.0,51.0,46.1$, 29.0, 28.1, 18.2. HRMS (ESI) calculated for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$219.1380, measured: 219.1380. IR (neat) 2950, 2844, 1705, 1449, 1115, 1088, 1016, 732, 699, 559, 506 cm^{-1}.

tert-butyl 4-(2-phenylpropanoyl)piperidine-1-carboxylate (3ae)

The title product was prepared according to the general procedure with 1-(tert-butoxycarbonyl)piperidine-4-carboxylic acid (1ae) ($68.8 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (2bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford 3ae ($57.2 \mathrm{mg}, 60 \%$) as a yellow solid. m.p. $77-79^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H})$, $7.23-7.17$ (m, 2H), $4.20-3.96$ (m, 2H), 3.90 (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{t}, J=11.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}), 1.37$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 212.2,154.7,140.3,129.1,128.0$, 127.3, 79.6, 51.3, 47.2, 43.2 (br, NCH_{2}), 28.5, 27.6, 18.2. HRMS (ESI) calculated for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}$340.1883, measured: 340.1881. IR (neat) 2930, 1688, 1450,

1421, 1233, 1168, 1012, 972, 701, $555 \mathrm{~cm}^{-1}$.

1-(1-benzoylpiperidin-4-yl)-2-phenylpropan-1-one (3af)

The title product was prepared according to the general procedure with 1-benzoylpiperidine-4-carboxylic acid (1af) ($70.0 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$) and (2bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford 3af ($61.7 \mathrm{mg}, 64 \%$) as a yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.23(\mathrm{~m}, 7 \mathrm{H}), 7.21-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.11$ $(\mathrm{m}, 2 \mathrm{H}), 4.51(\mathrm{br}, 1 \mathrm{H}), 3.84-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.59(\mathrm{br}, 1 \mathrm{H}), 2.76-2.55(\mathrm{br} \mathrm{m}, 3 \mathrm{H}), 1.86$ $-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.52(\mathrm{br}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $210.6,169.3,139.1,135.0,128.6,128.0,127.4,126.9,126.3,125.8,50.4,45.9,40.6$ (br m), 27.3 (br m), 17.1. HRMS (ESI) calculated for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+}$322.1802, measured: 322.1796. IR (neat) 2947, 2859, 1704, 1626, 1430, 1278, 972, 789, 700, 556 cm^{-1}.

2-phenyl-1-(1-tosylpiperidin-4-yl)propan-1-one (3ag)

The title product was prepared according to the general procedure with 1-tosylpiperidine-4-carboxylic acid (1ag) ($85.0 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$) and (2bromoethyl)benzene (2a) ($55.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{3 a g}(71.3 \mathrm{mg}, 64 \%)$ as a white solid. m.p. $151-153{ }^{\circ} \mathrm{C} .{ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.60(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.21$ $(\mathrm{m}, 5 \mathrm{H}), 7.14(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.84(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.66-$ $3.59(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.85(\mathrm{~m}$, $1 \mathrm{H}), 1.78-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 1 \mathrm{H}), 1.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.4,143.6,140.1,133.0,129.7,129.1,127.9,127.7,127.3,51.3$, 45.8, 45.7, 45.3, 27.9, 27.0, 21.6, 18.1. HRMS (DART) calculated for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{NSO}_{2}$
$[\mathrm{M}]^{+} 372.1628$, measured: 372.1625 . IR (neat) $2844,1704,1594,1490,1159,932,798$, $719,545 \mathrm{~cm}^{-1}$.

4-(4-methoxyphenyl)-1-phenylpentan-3-one (4a) ${ }^{[7]}$

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) ($45.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-(2-bromoethyl)-4methoxybenzene (2b) ($64.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 a}(33.8 \mathrm{mg}, 42 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}$, $4 \mathrm{H}), 6.86(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.61(\mathrm{~m}$, $4 \mathrm{H}), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.2,158.7,141.1$, $132.5,128.9,128.4,128.3,126.0,114.3,55.3,52.3,42.5,30.0,17.4$.

4-(4-chlorophenyl)-1-phenylpentan-3-one (4b)

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) ($45.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-(2-bromoethyl)-4-chlorobenzene (2c) $(65.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 b}(49.8 \mathrm{mg}, 61 \%)$ as a colorless oil. ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.33-7.17(\mathrm{~m}, 5 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 4 \mathrm{H}), 3.71(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93$ - $2.78(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.64(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$ 209.4, 140.9, 138.8, 133.1, 129.2, 129.1, 128.5, 128.3, 126.1, 52.5, 42.7, 29.9, 17.4. HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}[\mathrm{M}]^{+}$272.0962, measured: 272.0963. IR (neat) 2930, 1712, 1490, 1453, 1091, 1013, 830, 748, 698, $505 \mathrm{~cm}^{-1}$.

4-(4-fluorophenyl)-1-phenylpentan-3-one (4c) ${ }^{[7]}$

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) (45.0 mg, 0.3 mmol$)$ and 1-(2-bromoethyl)-4-fluorobenzene (2d) ($60.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 c}(43.8 \mathrm{mg}, 57 \%)$ as a pale yellow oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.19-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 4 \mathrm{H})$, $6.93-6.86(\mathrm{~m}, 2 \mathrm{H}), 3.61(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.63-2.55(\mathrm{~m}, 2 \mathrm{H})$, $1.28(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.6,162.0(\mathrm{~d}, J=245.7 \mathrm{~Hz})$, $140.9,136.1(\mathrm{~d}, J=3.3 \mathrm{~Hz}), 129.4(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 128.4,128.3,126.1,115.8(\mathrm{~d}, J=$ $21.4 \mathrm{~Hz}), 52.3,42.6,29.9,17.5 .{ }^{19} \mathbf{F} \mathbf{N M R}\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-115.52$.

4-([1,1'-biphenyl]-4-yl)-1-phenylpentan-3-one (4d) ${ }^{[7]}$

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) (45.0 mg, 0.3 mmol) and 4-(2-bromoethyl)-1, 1'-biphenyl (2e) $(78.4 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 d}(58.4 \mathrm{mg}, 62 \%)$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.57(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 7.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 3.79(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.99-2.62(\mathrm{~m}, 4 \mathrm{H}), 1.46(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 209.9,141.1,140.7,140.1,139.4,128.8,128.4,128.3$, $128.3,127.7,127.4,127.1,126.1,52.9,42.7,30.0,17.4$.

1-phenyl-4-(4-(trifluoromethyl)phenyl)pentan-3-one (4e) ${ }^{\text {[7] }}$

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) (45.0 mg, 0.3 mmol$)$ and 1-(2-bromoethyl)-4(trifluoromethyl)benzene (2f) $(75.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 e}(51.0 \mathrm{mg}, 64 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45(\mathrm{~d}, ~ J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.05(\mathrm{~m}, 5 \mathrm{H}), 6.97$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.69(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{t}, J=7.6 \mathrm{~Hz}$, $2 \mathrm{H}), 1.31(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 208.8,144.2,140.7$, $129.5(\mathrm{q}, ~ J=32.5 \mathrm{~Hz}), 128.4,128.3,128.2,126.1,125.9(\mathrm{q}, J=3.8 \mathrm{~Hz}), 124.1(\mathrm{q}, J=$ $272.0 \mathrm{~Hz}), 53.0,42.8,29.8,17.4 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.52$.

1-phenyl-4-(4-(trifluoromethoxy)phenyl)pentan-3-one (4f)

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) (45.0 mg, 0.3 mmol$)$ and 1-(2-bromoethyl)-4(trifluoromethoxy)benzene ($\mathbf{2 g} \mathbf{)} \mathbf{(8 0 . 7 ~ \mathbf { m g } , ~} 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 f}(54.7 \mathrm{mg}, 56 \%)$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.13(\mathrm{~m}, 5 \mathrm{H}), 7.09(\mathrm{~d}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.67(\mathrm{~m}, 2 \mathrm{H}), 1.40$ $(\mathrm{d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 209.3,148.3(\mathrm{~d}, J=1.8 \mathrm{~Hz}), 140.8$, $139.0,129.2,128.4,128.3,126.1,121.4,120.5(\mathrm{q}, J=257.1 \mathrm{~Hz}), 52.4,42.7,29.9,17.5$. ${ }^{19}$ F NMR (376 MHz, CDCl_{3}) δ-57.86. HRMS (EI) calculated for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}]^{+}$ 322.1175, measured: 322.1176 . IR (neat) $2932,1706,1509,1449,1263,1244,1148$, $1025,811,690,552 \mathrm{~cm}^{-1}$.

1-phenyl-4-(4-((triisopropylsilyl)oxy)phenyl)pentan-3-one (4g)

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) (45.0 mg, 0.3 mmol$)$ and (4-(2bromoethyl)phenoxy)triisopropylsilane (2h) ($107.2 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 g}(67.8 \mathrm{mg}, 55 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.30-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09$ (d, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 7.03 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.67$ (q, $J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.58(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 18 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3$, 155.2, 141.2, 132.9, 128.8, 128.4, 128.3, 126.0, 120.3, 52.4, 42.4, 30.1, 17.9, 17.2, 12.7. HRMS (EI) calculated for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{2} \mathrm{Si}[\mathrm{M}]^{+} 410.2636$, measured: 410.2635. IR (neat) 2943, 2866, 1713, 1605, 1508, 1262, 882, 837, 683, $553 \mathrm{~cm}^{-1}$.

4-(3-chlorophenyl)-1-phenylpentan-3-one (4h)

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) ($45.0 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-(2-bromoethyl)-3-chlorobenzene (2i) $(65.9 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 h}(49.0 \mathrm{mg}, 60 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29-7.23(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $7.07-7.01(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.79(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.67(\mathrm{~m}, 2 \mathrm{H})$, $1.39(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.1,142.3,140.8,134.7$, 130.2, 128.5, 128.3, 128.1, 127.4, 126.1, 126.1, 52.8, 42.8, 29.9, 17.3. HRMS (EI) calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClO}[\mathrm{M}]^{+} 272.0962$, measured: 272.0964. IR (neat) 2929, 1713, 1593, 1453, 1080, 780, 748, 695, 553, $443 \mathrm{~cm}^{-1}$.

4-(3-(benzyloxy)phenyl)-1-phenylpentan-3-one (4i)

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) ($45.0 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$) and 1-(benzyloxy)-3-(2bromoethyl)benzene ($\mathbf{2 j}$) ($87.4 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 i}(51.7 \mathrm{mg}, 50 \%)$ as a pale yellow oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.42$ $7.37(\mathrm{~m}, 1 \mathrm{H}), 7.35-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.95$ (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.09(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ - 2.83 (m, 2H), $2.80-2.66(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 209.7,159.2,142.1,141.1,136.9,130.1,128.7,128.5,128.4,128.1,127.7$, 126.1, 120.7, 114.5, 113.5, 70.0, 53.2, 42.5, 30.0, 17.3. HRMS (EI) calculated for $\mathrm{C}_{24} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+} 344.1771$, measured: 344.1772. IR (neat) 2930, 1710, 1581, 1451, 1258, $1156,1025,735,695,554,456 \mathrm{~cm}^{-1}$.

4-(2,3-dihydrobenzofuran-5-yl)-1-phenylpentan-3-one (4j)

The title product was prepared according to the general procedure with 3phenylpropionic acid (1a) ($45.0 \mathrm{mg}, \quad 0.3 \mathrm{mmol}$) and 5-(2-bromoethyl)-2,3dihydrobenzofuran ($\mathbf{2 k}$) $(68.1 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 j}(38.0 \mathrm{mg}, \mathbf{3 9 \%})$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.21$ - $7.12(\mathrm{~m}, 2 \mathrm{H}), 7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{t}, J$ $=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.68(\mathrm{~m}, 2 \mathrm{H})$, $2.67-2.51(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.3$,

6-(4-methoxyphenyl)-2-(4-(trifluoromethyl)phenyl)hexan-3-one (4k)

The title product was prepared according to the general procedure with 4-(4methoxyphenyl)butanoic acid ($\mathbf{1 k}$) ($58.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-(2-bromoethyl)-4(trifluoromethyl)benzene ($\mathbf{2 f)}$ ($75.9 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 k}(51.0 \mathrm{mg}, 60 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.61(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.86-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $2.57-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.88-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.7,157.9,144.6,133.5,129.5(\mathrm{q}, J=32.4 \mathrm{~Hz}$), 129.3, 128.3, 125.8 ($\mathrm{q}, ~ J=3.7 \mathrm{~Hz}$), 124.1 (q, $J=272.1 \mathrm{~Hz}$), 113.8, 55.2, 52.7, 40.4, 33.9, 25.3, 17.5. ${ }^{19} \mathbf{F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.47. HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~F}_{3} \mathrm{O}_{2}[\mathrm{M}]^{+}$350.1488, measured: 350.1486. IR (neat) 2925, 1714, 1613, 1511, $1323,1244,1163,1119,1068,840,605 \mathrm{~cm}^{-1}$.

6-(4-methoxyphenyl)-2-(o-tolyl)hexan-3-one (41)

The title product was prepared according to the general procedure with 4-(4methoxyphenyl)butanoic acid ($\mathbf{1 k}$) ($58.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and 1-(2-bromoethyl)-2methylbenzene (21) $(59.7 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 1}(43.0 \mathrm{mg}, 48 \%)$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.24-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.94(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.61-2.46$ (m, 1H), $2.45-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.74(\mathrm{~m}, 2 \mathrm{H})$, $1.36(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 211.1,157.8,139.2,135.8$,
$133.8,130.9,129.3,126.99,126.98,126.7,113.7,55.3,48.9,40.1,34.1,25.7,19.8$, 16.9. HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+}$296.1771, measured: 296.1775. IR (neat) $2930,1710,1611,1510,1454,1243,1176,1034,811,758,728,554,455 \mathrm{~cm}^{-1}$.

2-(3,4-dimethoxyphenyl)-6-(4-methoxyphenyl)hexan-3-one (4m)

The title product was prepared according to the general procedure with 4-(4methoxyphenyl)butanoic $\operatorname{acid}(\mathbf{1 k})(58.3 \mathrm{mg}, 0.3 \mathrm{mmol})$ and 4-(2-bromoethyl)-1,2dimethoxybenzene ($\mathbf{2 m}$) ($73.5 \mathrm{mg}, 0.3 \mathrm{mmol}$). The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 m}(41.5 \mathrm{mg}, 40 \%)$ as a white solid. m.p. $75-77{ }^{\circ} \mathrm{C} .{ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.75(\mathrm{~m}, 4 \mathrm{H})$, $6.70(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.68(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-$ $2.30(\mathrm{~m}, 4 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (101 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 211.0,157.8,149.2,148.2,133.7,133.1,129.3,120.1,113.7,111.4,110.7$, 55.9, 55.2, 52.5, 39.9, 34.0, 25.6, 17.5. HRMS (DART) calculated for $\mathrm{C}_{21} \mathrm{H}_{27} \mathrm{O}_{4}[\mathrm{M}]^{+}$ 343.1904, measured: 343.1902. IR (neat) 2921, 1714, 1507, 1454, 1255, 1209, 1158, $1018,747,698,549 \mathrm{~cm}^{-1}$.

1-(4-methoxyphenyl)-5-phenylheptan-4-one (4n)

The title product was prepared according to the general procedure with 4-(4methoxyphenyl)butanoic acid (1k) ($58.3 \mathrm{mg}, 0.3 \mathrm{mmol}$) and (3-bromopropyl)benzene ($\mathbf{2 n}$) $(59.7 \mathrm{mg}, 0.3 \mathrm{mmol})$. The crude material was purified by flash column chromatography on silica to afford $\mathbf{4 n}(46.3 \mathrm{mg}, 52 \%)$ as a yellow oil. ${ }^{1} \mathbf{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $6.97(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $2.54-2.32(\mathrm{~m}, 4 \mathrm{H}), 2.18-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.68(\mathrm{~m}, 1 \mathrm{H})$,
$0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.5,157.8,139.0,133.8$, 129.3, 128.8, 128.4, 127.2, 113.7, 60.9, 55.3, 41.0, 34.0, 25.5, 25.3, 12.2. HRMS (EI) calculated for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{2}[\mathrm{M}]^{+}$296.1771, measured: 296.1772. IR (neat) 2925, 1708, $1611,1510,1453,1243,1033,807,755,699,544 \mathrm{~cm}^{-1}$.

7 Mechanism Experiments

7.1 Cyclic Voltammetry

Cyclic voltammograms were recorded with a CHI660E potentiostat at room temperature in DMAc. ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBr}(0.1 \mathrm{M})$ was used as the supporting electrolyte, and a Glass Carbon electrode was used as the working electrode. The auxiliary electrode was a Pt sheet. All potentials are referenced against the $\mathrm{Ag} / \mathrm{AgNO} 3$ redox couple. The scan rate was $100 \mathrm{mV} \mathrm{s}^{-1}$.

Figure S1: Photograph of setup used for cyclic voltammetry.

Figure S2: Cyclic voltammograms recorded on a glassy carbon electrode at $100 \mathrm{mVs}^{-1} \mathrm{in}$: (a) DMA containing 0.1 M of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBr}$; (b) solution (a) with 10 mM of $\mathrm{NiCl}_{2} \cdot$ glyme added; (c) solution (a) with 10 mM of 2,9-Dimethyl-1,10-phenanthroline (Ligand 2) added; (d) solution (a) with 10 mM of (2-Bromoethyl)benzene (2a) added; (e) solution (a) with 10 mM of 3-phenylpropanoic anhydride
added.

Figure S3. Cyclic voltammograms recorded on a glassy carbon electrode at $100 \mathrm{mVs}^{-1} \mathrm{in}$: (a) DMA containing 0.1 M of ${ }^{n} \mathrm{Bu}_{4} \mathrm{NBr}$; (b) solution (a) with 7.5 mM of $\mathrm{NiCl}_{2} \cdot$ glyme and 2,9-Dimethyl-1,10phenanthroline ($\mathrm{Ni} / \mathrm{L}=1 / 1$) added; (c) solution (b) with 10 mM of $\mathbf{2 a}$ added;

Figure S4. Cyclic voltammograms recorded on a glassy carbon electrode at $100 \mathrm{mVs}^{-1}$ in: (a) DMA containing $0.1 \mathrm{M}^{\text {of }}{ }^{n} \mathrm{Bu}_{4} \mathrm{NBr}$; (b) solution (a) with 7.5 mM of $\mathrm{NiCl}_{2} \cdot$ glyme and 2,9-Dimethyl-1,10phenanthroline $(\mathrm{Ni} / \mathrm{L}=1 / 1)$ added; (c) solution (b) with 10 mM of 3-phenylpropanoic anhydride added.

Figure S5. Cyclic voltammograms recorded on a glassy carbon electrode at $100 \mathrm{mVs}-1$: (a) DMA containing 0.1 M of $n-\mathrm{Bu}_{4} \mathrm{NBr}$; (b) solution (a) with 7.5 mM of $\mathrm{NiCl}_{2} \cdot$ glyme and Ligand 2 added; (c) solution (b) with 10 mM of 3-phenylpropanoic anhydride added; (d) solution (c) with 10 mM of 2a added.

7.2 Deuterium-labeled Experiments

To gain further insight into this electrochemical reductive relay cross-coupling system, deuterium-labeled $2 \mathrm{a}-\mathrm{D}$ and $2 \mathrm{a}-\mathrm{D}$ ' were prepared and subjected to the reactions. As shown in Scheme S1a, 91% deuterium incorporation was observed in the methyl group of 3a-D and the H / D scrambling between methyl and benzyl groups was not observed in Scheme S1b. These results indicate that the styrene intermediate may be generated in the migratory process and the $\beta-\mathrm{H}$ elimination/reductive elimination sequence is irreversible in the formation of product $\mathbf{3 a}-\mathbf{D}$ or $\mathbf{3 a} \mathbf{a} \mathbf{D}$.

Scheme S1. Deuterium-labeled Experiments

8 Reference

[1] Hilpert, L. J.; Breit, B. Angew. Chem. Int. Ed. 2019, 58, 9939.
[2] Galli, M.; Fletcher, C. J.; del Pozo, M.; Goldup, S. M. Org. Biomol. Chem. 2016, 14, 5622.
[3] Hong, W. D.; Leung, S. C.; Amporndanai, K.; Davies, J.; Priestley, R. S.; Nixon, G. L.; Berry, N. G.; Hasnain, S. S.; Antonyuk, S.; Ward, S. A.; Biagini, G. A.; O'Neill, P. M. ACS Med. Chem. Lett. 2018, 9, 1205.
[4] Cui, H.-B.; Xie, L.-Z.; Wan, N.-W.; He, Q.; Li, Z.; Chen, Y.-Z. Green Chem. 2019, 21, 4324.
[5] Franzmann, P.; Beil, S. B.; Schollmeyer, D.; Waldvogel, S. R. Chem.- Eur. J. 2019, 25, 1936.
[6] Morin, M. D.; Wang, Y.; Jones, B. T.; Su, L.; Surakattula, M. M. R. P.; Berger, M.; Huang, H.; Beutler, E. K.; Zhang, H.; Beutler, B.; Boger, D. L. J. Med. Chem. 2016, 59, 4812.
[7] Xiao, L.-J.; Fu, X.-N.; Zhou, M.-J.; Xie, J.-H.; Wang, L.-X.; Xu, X.-F.; Zhou, Q.L. J. Am. Chem. Soc. 2016, 138, 2957.
[8] Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. J. Am. Chem. Soc. 2013, 135, 7442.

9 Spectra of Compounds

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{a}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of 3a-D $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 3a-D $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of 3a-D' $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of 3a-D' $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of 3d ($\left.\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathbf{~ M H Z}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $3 \mathrm{e}\left(\mathrm{CDCl}_{3}, 376 \mathrm{MHZ}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{3 h}\left(\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathrm{MHZ}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{i}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 j}\left(\mathrm{CDCl}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{j}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{k}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $31\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $31\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 m}\left(\mathrm{CDCl}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 n}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 o}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $30\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 p}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{p}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 q}\left(\mathbf{C D C l}_{3}, \mathbf{4 0 0} \mathbf{M H z}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 q}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 r}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{r}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{~s}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{~s}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{t}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 u}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{u}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{v}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{v}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 w}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{w}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{x}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{x}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{y}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{y}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{z}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{z}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{aa}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{ab}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{ad}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{ae}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{ae}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $3 \mathrm{af}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $3 \mathrm{af}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{3 a g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{3 a g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 a}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{a}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{c}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{4 c}\left(\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathrm{MHZ}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 d}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{~d}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $4 \mathrm{e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{e}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{4 e}\left(\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathrm{MHZ}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 f}\left(\mathrm{CDCl}_{3}, \mathbf{4 0 0} \mathbf{~ M H z}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{4 f}\left(\mathbf{C D C l}_{3}, \mathbf{3 7 6} \mathbf{~ M H Z}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 i}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{i}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{j}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 k}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{k}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $4 \mathrm{k}\left(\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathrm{MHZ}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $41\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $41\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $4 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{4 n}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{4 n}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 b}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $2 \mathrm{~b}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $2 \mathrm{e}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $2 \mathrm{e}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $2 \mathrm{f}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $2 \mathrm{f}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $2 \mathrm{f}\left(\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathbf{~ M H Z}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $2 \mathrm{~g}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{19}$ F NMR Spectrum of $\mathbf{2 g}\left(\mathrm{CDCl}_{3}, \mathbf{3 7 6} \mathbf{M H Z}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $2 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $2 \mathrm{~h}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 j}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $\mathbf{2 j}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $21\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$
(31-14-71-pro-k

${ }^{13} \mathrm{C}$ NMR Spectrum of $21\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

${ }^{1} \mathrm{H}$ NMR Spectrum of $\mathbf{2 m}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$

${ }^{13} \mathrm{C}$ NMR Spectrum of $2 \mathrm{~m}\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right)$

