Supporting Information

Diboron-Controlled Product Selectivity Switch in Copper-Catalyzed

Decarboxylative Substitutions of Alkynyl Cyclic Carbonates

Guojing Pei,^a Hui Chen,^a Wan Xu,^a Tao Chen*^b and Juan Li*^a

^aCollege of Chemistry and Materials Science, Guangdong Provincial Key Laboratory

of Functional Supramolecular Coordination Materials and Applications, Jinan

University, Guangzhou, Guangdong 510632, P. R. China

^bSCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of

Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical

Chemistry of Environment, South China Normal University, Guangzhou 510006,

China

*Corresponding author. Email: tao.chen@m.scnu.edu.cn; tchjli@jnu.edu.cn

Section 1. Optimization with D3 dispersion correction (Fig. S1) S2 Optimization with M06 and BPW91 methods (Fig. S2) Section 2. S2 Section 3. Other possible pathways to afford E-P1, E-P1' and P2 (Figs. S3-S11) S3 Section 4. The first three steps of the most favorable pathways to afford *E*-**P1'** and **P2** with B₂neop₂ substrate (Fig. S12) **S**8 Catalyst regeneration process (Figs. S13-S14) **S**9 Section 5. The metathesis and protonation steps with the B2cat2 substrate. (Fig. S15) Section 6. S11 Section 7. Energies (in Hartree) of All TSs and Intermediates. S12 Section 8. Calculated imaginary frequencies of all transition states species. S16

Table of Contents

Section 1. Optimization with D3 dispersion correction

Section 2. Optimization with M06 and BPW91 methods

Fig. S2 Calculated free-energy difference for key species using the

M06/BS2//M06/BS1 and M06/BS2//BPW91/BS1 levels. Values shown are relative free energies in kcal/mol.

Section 3. Other possible pathways to afford *E*-P1, *E*-P1' and P2

Fig. S3 Other possible pathways from intermediate $5-IM_{B1}$. Values shown are relative free energies in kcal/mol.

Fig. S4 Other possible pathways from intermediate $6a-IM_{B1}$. Values shown are relative free energies in kcal/mol.

Fig. S5 Calculated free-energy profiles for other possible mechanism of process 4-IM_{B1} \rightarrow *E*-P1 with B₂pin₂ substrate. Values shown are relative free energies in kcal/mol.

Fig. S6 Calculated free-energy profiles for other possible pathways from $3-IM_{B1}$ with B_2pin_2 substrate. Experiment-based mechanism is given in blue. Values shown are relative free energies in kcal/mol.

Fig. S7 Calculated free-energy profiles for other possible pathways from $3-IM_{B1}$ with B_2pin_2 substrate. Values shown are relative free energies in kcal/mol.

Fig. S8 Other possible pathways from intermediate $9-IM_{B2}$. Values shown are relative free energies in kcal/mol.

Fig. S9 Calculated free-energy profiles for other possible pathways for $4\text{-IM}_{B2} \rightarrow E\text{-}$

P1' with B2neop2 substrate. Values shown are relative free energies in kcal/mol.

Fig. S10 Calculated free-energy profiles for other possible pathways from $3-IM_{B2}$ with B_2neop_2 substrate. Values shown are relative free energies in kcal/mol.

Fig. S11 Calculated free-energy profiles for other possible pathways from $3-IM_{B2}$ with B₂neop₂ substrate. Values shown are relative free energies in kcal/mol.

Section 4. First three steps of most favorable pathways to afford E-

P1' and P2 with B2neop2 substrate

Fig. S12 Calculated free-energy profiles for first three steps of most favorable pathways to afford *E*-P1' and P2 with B₂neop₂ substrate. The first step, i.e., C_{β}-borylation, is shown in blue. For comparison, an experiment-based mechanism is shown in green. Values shown are relative free energies (kcal/mol).

Section 5. Catalyst regeneration process

Fig. S13 Calculated free-energy profiles for catalyst regeneration for B_2pin_2 system. Values shown are relative free energies in kcal/mol.

Fig. S14 Calculated free-energy profiles for catalyst regeneration for B₂neop₂ system. Values shown are relative free energies in kcal/mol.

Section 6. The metathesis and protonation steps with the B_2cat_2 substrate

Fig. S15 Optimized structures for product-selectivity-determining transition states 4-TS_{B3} and 9-TS_{B3} along with interatomic distances (angstroms). Frontier molecular orbitals calculated for B_2cat_2 and 4-IM_{B3}. Orbital energies are given in eV.

Geometry	E ₀	Е	H _{323.15}	G _{323.15}	E _(sol,M06)
S1	-767.300942	-767.283142	-767.282119	-767.352085	-767.2568272
<i>i</i> -PrOH	-194.253721	-194.247587	-194.246564	-194.283871	-194.2882389
B ₂ pin ₂	-822.181612	-822.158744	-822.157721	-822.233848	-822.2501967
<i>i</i> -PrOBpin	-604.840886	-604.823884	-604.822861	-604.886146	-604.8718168
H ₂ O	-76.392569	-76.389496	-76.388473	-76.412044	-76.4249529
CO ₂	-188.568634	-188.565367	-188.564344	-188.588155	-188.5602234
LCu-Bpin	-1302.466603	-1302.433548	-1302.432525	-1302.538738	-1303.7657053
1-IM _{B1}	-2069.760543	-2069.708239	-2069.707216	-2069.857750	-2071.0413925
1-TS _{B1}	-2069.754239	-2069.702982	-2069.701959	-2069.848443	-2071.037284
2-IM _{B1}	-2069.837892	-2069.786459	-2069.785436	-2069.932156	-2071.1126026
$2-TS_{B1}$	-2069.813976	-2069.762185	-2069.761162	-2069.909257	-2071.0856894
3-IM _{B1}	-2069.862171	-2069.809358	-2069.808335	-2069.960841	-2071.1214245
3-TS _{B1}	-2069.845156	-2069.793485	-2069.792462	-2069.944627	-2071.1074421
4-IM _{B1}	-1881.270235	-1881.220467	-1881.219444	-1881.363491	-1882.5432862
1a-IM _{B1}	-2069.763036	-2069.710336	-2069.709313	-2069.861723	-2071.0396906
1a-TS _{B1}	-2069.742231	-2069.691360	-2069.690337	-2069.834340	-2071.0274163
2a-IM _{B1}	-2069.830128	-2069.778840	-2069.777817	-2069.924658	-2071.1045037
3a-TS _{B1}	-2892.015601	-2891.938600	-2891.937578	-2892.141232	-2893.3670994
4a-IM _{B1}	-1589.562255	-1589.519536	-1589.518514	-1589.644745	-1589.5936927
$4-TS_{B1}$	-2703.446495	-2703.372950	-2703.371927	-2703.568502	-2704.8067253
5-IM _{B1}	-2703.460925	-2703.386531	-2703.385508	-2703.581883	-2704.8367367
5a-TS _{B1}	-2703.455431	-2703.381872	-2703.380849	-2703.576165	-2704.8323836
6a-IM _{B1}	-2703.517577	-2703.444194	-2703.443171	-2703.637477	-2704.8967468
5b-TS _{B1}	-2703.442934	-2703.369247	-2703.368224	-2703.563373	-2704.8214172
6b-IM _{B1}	-2703.496013	-2703.424111	-2703.423088	-2703.613732	-2704.8753964
5c-TS _{B1}	-2703.445188	-2703.371407	-2703.370384	-2703.566225	-2704.8228389
6c-IM _{B1}	-2703.491811	-2703.419509	-2703.418486	-2703.609079	-2704.8709604
5d-TS _{B1}	-2703.442054	-2703.368999	-2703.367976	-2703.559523	-2704.8211061
6d-IM _{B1}	-2703.513169	-2703.440004	-2703.438981	-2703.631649	-2704.8986373
$6-TS_{B1}$	-2703.504701	-2703.432878	-2703.431855	-2703.620508	-2704.8873953
6a-TS _{B1}	-2703.487915	-2703.415358	-2703.414335	-2703.605584	-2704.8695573
7-IM _{B1}	-2703.510797	-2703.437510	-2703.436487	-2703.629422	-2704.8888626
$7-TS_{B1}$	-2703.495648	-2703.422625	-2703.421602	-2703.614306	-2704.8703516
LCu-OBpin	-1377.790717	-1377.756975	-1377.755952	-1377.861197	-1379.0898920
<i>E</i> -P1	-1325.754391	-1325.716190	-1325.715167	-1325.827995	-1325.8027605
3b-TS _{B1}	-2069.828191	-2069.776592	-2069.775569	-2069.922890	-2071.0947855
4b-IM _{B1}	-2069.830531	-2069.779493	-2069.778470	-2069.922880	-2071.1074240
8-TS _{B1}	-2069.815314	-2069.763683	-2069.762661	-2069.908146	-2071.0898190
8-IM _{B1}	-2069.847621	-2069.794773	-2069.793751	-2069.945871	-2071.1118037
$9-TS_{B1}$	-2075.519814	-2075.462780	-2075.461757	-2075.622745	-2076.8324817

Section 7. Energies (in Hartree) of All TSs and Intermediates.

9-IM _{B1}	-2075.524302	-2075.467327	-2075.466304	-2075.623528	-2076.8628252
10-TS _{B1}	-2075.507225	-2075.451056	-2075.450033	-2075.606109	-2076.8471330
10-IM _{B1}	-1470.727256	-1470.688444	-1470.687421	-1470.809746	-1471.9727981
11-TS _{B1}	-1859.219003	-1859.165286	-1859.164263	-1859.318611	-1860.5561335
LCu-Oi-Pr	-1085.068520	-1085.041214	-1085.040191	-1085.132678	-1086.3569275
P2	-579.925030	-579.908076	-579.907053	-579.974205	-579.9094569
12-TS _{B1}	-1907.246838	-1907.195347	-1907.194324	-1907.338268	-1908.6316958
P3	-990.444135	-990.415458	-990.414435	-990.508029	-990.4603392
13-TS _{B1}	-2292.892312	-2292.829954	-2292.828931	-2292.999478	-2294.2457988
11-IM _{B1}	-2292.953458	-2292.893476	-2292.892453	-2293.053293	-2294.3129281
14-TS _{B1}	-2292.924617	-2292.862869	-2292.861846	-2293.027724	-2294.2734702
LCu-OH	-967.214348	-967.191724	-967.190701	-967.269878	-968.4942868
3c-TS _{B1}	-2264.077025	-2264.017114	-2264.016091	-2264.182487	-2265.3971073
12-IM _{B1}	-2264.116139	-2264.055388	-2264.054365	-2264.226536	-2265.4228527
15-TS _{B1}	-1881.244219	-1881.195310	-1881.194287	-1881.335118	-1882.5197576
13-IM _{B1}	-1881.254318	-1881.205158	-1881.204135	-1881.350009	-1882.5291535
16-TS _{B1}	-1881.248027	-1881.200284	-1881.199261	-1881.336054	-1882.5298632
14-IM _{B1}	-1881.290479	-1881.240894	-1881.239871	-1881.382970	-1882.5658304
17-TS _{B1}	-2264.109846	-2264.049847	-2264.048824	-2264.219271	-2265.4127146
15-IM _{B1}	-2264.096657	-2264.037467	-2264.036444	-2264.200106	-2265.4235899
18-TS _{B1}	-2891.974614	-2891.897630	-2891.896607	-2892.101107	-2893.3321402
16-IM _{B1}	-2892.078156	-2892.002708	-2892.001685	-2892.199555	-2893.4447170
19-TS _{B1}	-2458.322495	-2458.255337	-2458.254314	-2458.439025	-2459.6746087
17-IM _{B1}	-1659.344544	-1659.303363	-1659.302340	-1659.430889	-1660.5671533
20-TS _{B1}	-2269.729884	-2269.665998	-2269.664975	-2269.840736	-2271.0933918
18-IM _{B1}	-1470.749322	-1470.711323	-1470.710300	-1470.829142	-1471.9829007
21-TS _{B1}	-2703.379488	-2703.305797	-2703.304774	-2703.499133	-2704.7477201
19-IM _{B1}	-2703.482764	-2703.410473	-2703.409450	-2703.598152	-2704.8591509
22-TS _{B1}	-1766.282971	-1766.235268	-1766.234245	-1766.372603	-1767.6667750
20-IM _{B1}	-1766.305337	-1766.257037	-1766.256014	-1766.395152	-1767.6984418
23-TS _{B1}	-1161.467254	-1161.437530	-1161.436507	-1161.534096	-1162.7771243
21-IM _{B1}	-1907.257275	-1907.205627	-1907.204604	-1907.348865	-1908.6333018
24-TS _{B1}	-1907.246838	-1907.195347	-1907.194324	-1907.338268	-1908.6316958
22-IM _{B1}	-1907.277374	-1907.224599	-1907.223576	-1907.374842	-1908.6479110
25-TS _{B1}	-1907.246838	-1907.195347	-1907.194324	-1907.338268	-1908.6316958
23-IM _{B1}	-1907.277374	-2212.797345	-1907.224599	-1907.374842	-1908.6479110
4-TS _{B1} -D3	-2703.624308	-2703.552714	-2703.551691	-2703.740997	-2704.8127938
9-TS _{B1} -D3	-2075.653771	-2075.597880	-2075.596857	-2075.751347	-2076.8421352
4-TS _{B1} -BW91	-2703.148801	-2703.073309	-2703.072286	-2703.270154	-2704.7971231
4-TS _{B1} -M06	-2701.750184	-2701.677964	-2701.676941	-2701.864786	-2704.8240284
9-TS _{B1} -BW91	-2075.324750	-2075.266405	-2075.265382	-2075.429706	-2076.8225735
9-TS _{B1} -M06	-2074.205950	-2074.150942	-2074.149919	-2074.297110	-2076.8574140
LCu-Bneop	-1263.165511	-1263.134225	-1263.133202	-1263.234278	-1264.456198

	1				
B ₂ neop ₂	-743.588922	-743.569254	-743.568232	-743.639275	-743.6390471
LCu-OBenop	-1338.492600	-1338.460535	-1338.459513	-1338.562221	-1339.782325
<i>i</i> -PrOBenop	-565.541524	-565.526122	-565.525099	-565.585609	-565.5671958
1-IM _{B2}	-2030.460772	-2030.410993	-2030.409970	-2030.554481	-2031.730735
1-TS _{B2}	-2030.455997	-2030.406427	-2030.405404	-2030.548783	-2031.729686
2-IM _{B2}	-2030.538371	-2030.488726	-2030.487703	-2030.631444	-2031.802617
$2-TS_{B2}$	-2030.517495	-2030.467427	-2030.466404	-2030.610740	-2031.779668
3-IM _{B2}	-2030.568055	-2030.516891	-2030.515868	-2030.666590	-2031.819122
3-TS _{B2}	-2030.549743	-2030.498137	-2030.497115	-2030.646470	-2031.812248
4-IM _{B2}	-1841.974425	-1841.926440	-1841.925417	-1842.066080	-1843.238596
1a-IM _{B2}	-2030.462794	-2030.411874	-2030.410851	-2030.559670	-2031.729263
1a-TS _{B2}	-2030.451165	-2030.401513	-2030.400490	-2030.545192	-2031.724018
2a-IM _{B2}	-2030.532689	-2030.483979	-2030.482956	-2030.623235	-2031.796939
3a-TS _{B2}	-2774.120634	-2774.048595	-2774.047572	-2774.243973	-2775.436579
4a-IM _{B2}	-1510.974765	-1510.935282	-1510.934259	-1511.055204	-1510.988116
4-TS _{B2}	-2585.551307	-2585.482392	-2585.481370	-2585.669782	-2586.879739
5-IM _{B2}	-2585.570971	-2585.501585	-2585.500562	-2585.690319	-2586.914521
5a-TS _{B2}	-2585.562383	-2585.493817	-2585.492794	-2585.680581	-2586.908749
6a-IM _{B2}	-2585.627667	-2585.559349	-2585.558326	-2585.743509	-2586.973122
5b-TS _{B2}	-2585.555189	-2585.486606	-2585.485583	-2585.671794	-2586.902085
6b-IM _{B2}	-2585.619374	-2585.552435	-2585.551412	-2585.732790	-2586.001051
6-TS _{B2}	-2585.616142	-2585.548297	-2585.547274	-2585.731256	-2586.9644345
7-IM _{B2}	-2585.606514	-2585.538402	-2585.537379	-2585.722661	-2586.968481
7-TS _{B2}	-2585.606514	-2585.538402	-2585.537379	-2585.722661	-2586.9466922
3b-TS _{B2}	-2030.533408	-2030.484240	-2030.483217	-2030.627124	-2031.792853
4b-IM _{B2}	-2030.539801	-2030.489730	-2030.488707	-2030.631146	-2031.806378
8-TS _{B2}	-2030.513915	-2030.463695	-2030.462672	-2030.607255	-2031.782578
8-IM _{B2}	-2030.556847	-2030.505816	-2030.504793	-2030.652965	-2031.809961
3c-TS _{B2}	-2224.787051	-2224.728937	-2224.727914	-2224.890682	-2226.096468
12-IM _{B2}	-2224.827963	-2224.768760	-2224.767737	-2224.938181	-2226.11775
9-TS _{B2}	-2036.224599	-2036.169132	-2036.168109	-2036.326854	-2037.529574
9-IM _{B2}	-2036.226665	-2036.172005	-2036.170982	-2036.324062	-2037.552312
10-TS _{B2}	-2036.208653	-2036.153106	-2036.152083	-2036.309604	-2037.53444
10-IM _{B2}	-1470.727256	-1470.688444	-1470.687421	-1470.809746	-1471.972798
10a-TS _{B2}	-2230.433672	-2230.373511	-2230.372488	-2230.541624	-2231.775509
10b-TS _{B2}	-1145.343287	-1145.309313	-1145.308290	-1145.415041	-1145.390814
10c-TS _{B2}	-1339.607074	-1339.566182	-1339.565159	-1339.686054	-1339.712398
11-TS _{B2}	-1859.219003	-1859.165286	-1859.164263	-1859.318611	-1860.556134
12-TS _{B2}	-1828.648872	-1828.600768	-1828.599745	-1828.737780	-1830.009613
13-TS _{B2}	-2214.294673	-2214.235507	-2214.234484	-2214.400940	-2215.626495
11-IM _{B2}	-2214.359521	-2214.300668	-2214.299645	-2214.463153	-2215.692308
14-TS _{B2}	-2214.330913	-2214.272394	-2214.271371	-2214.432197	-2215.657543
15-TS _{B2}	-1841.941923	-1841.894998	-1841.893975	-1842.032185	-1843.207632

13-IM _{B2}	-1841.960213	-1841.913128	-1841.912105	-1842.049837	-1843.2273
16-TS _{B2}	-1841.954260	-1841.907513	-1841.906490	-1842.043582	-1843.227522
14-IM _{B2}	-1841.995739	-1841.947801	-1841.946778	-1842.088028	-1843.258808
17-TS _{B2}	-2224.818831	-2224.762146	-2224.761123	-2224.923978	-2226.104606
15-IM _{B2}	-2224.804148	-2224.746315	-2224.745292	-2224.905070	-2226.123085
18-TS _{B2}	-2774.083913	-2774.012132	-2774.011109	-2774.205382	-2775.407954
16-IM _{B2}	-2774.190999	-2774.120521	-2774.119498	-2774.310261	-2775.523336
19-TS _{B2}	-2419.029147	-2418.963790	-2418.962767	-2419.145084	-2420.37075
17-IM _{B2}	-1659.344544	-1659.303363	-1659.302340	-1659.430889	-1660.567153
20-TS _{B2}	-2230.433461	-2230.371524	-2230.370501	-2230.542623	-2231.791133
18-IM _{B2}	-1470.749322	-1470.711323	-1470.710300	-1470.829142	-1471.982901
21-TS _{B2}	-2585.487731	-2585.419016	-2585.417993	-2585.604570	-2586.824273
19-IM _{B2}	-2585.596720	-2585.528768	-2585.527745	-2585.710227	-2586.946075
22-TS _{B2}	-1726.987763	-1726.941704	-1726.940681	-1727.076386	-1728.36031
20-IM _{B2}	-1727.006882	-1726.960989	-1726.959966	-1727.094476	-1728.388481
23-TS _{B2}	-1161.467254	-1161.437530	-1161.436507	-1161.534096	-1162.777124
21-IM _{B2}	-1828.666426	-1828.617882	-1828.616859	-1828.756948	-1830.021932
24-TS _{B2}	-1828.648872	1828.600768	-1828.599745	-1828.737780	-1830.009613
22-IM _{B2}	-1828.680916	-1828.635206	-1828.634183	-1828.767238	-1830.031037
25-TS _{B2}	-1828.648872	1828.600768	-1828.599745	-1828.737780	-1830.009613
23-IM _{B2}	-1828.680916	-1828.635206	-1828.634183	-1828.767238	-1830.031037
<i>E</i> -P1'	-1247.164387	-1247.129331	-1247.128308	-1247.237013	-1247.193221
P3'	-951.148512	-951.121518	-951.120495	-951.210777	-951.1554424
B ₂ cat ₂	-812.694320	-812.679496	-812.678473	-812.739902	-812.5782136
4-IM _{B3}	-1876.526955	-1876.481024	-1876.480001	-1876.619456	-1877.7101709
4-TS _{B3}	-2689.232003	-2689.169938	-2689.168915	-2689.345884	-2690.3076090
9-TS _{B3}	-2070.776840	-2070.723851	-2070.722828	-2070.877376	-2071.9993373
4-TS _{B2} -D3	-2585.715080	-2585.648634	-2585.647611	-2585.825056	-2586.8876495
9-TS _{B2} -D3	-2036.355070	-2036.300790	-2036.299768	-2036.451216	-2037.5369103
4-TS _{B2} -BW91	-2585.278982	-2585.209314	-2585.208291	-2585.397005	-2586.8703189
4-TS _{B2} -M06	-2583.936368	-2583.869936	-2583.868913	-2584.042998	-2586.8976101
9-TS _{B2} -BW91	-2036.036715	-2035.980099	-2035.979076	-2036.139842	-2037.5189986
9-TS _{B2} -M06	-2034.944645	-2034.890580	-2034.889558	-2035.038029	-2037.5497666

 E_0 = Sum of electronic and zero-point energies calculated by B3LYP in solvent

E = Sum of electronic and thermal energies calculated by B3LYP in solvent

 $H_{323.15}$ = Sum of electronic and thermal enthalpies calculated by B3LYP in solvent

 $G_{323.15}$ = Sum of electronic and thermal free energies calculated by B3LYP in solvent

 $E_{(M06)}$ = Single point energies calculated calculated by M06 in solvent

Section 8. Calculated imaginary frequencies of all transition states species.

Species	Frequency
1-TS _{B1}	-133.21
2-TS _{B1}	-195.51
3-TS _{B1}	-95.15
1a-TS _{B1}	-186.91
3a-TS _{B1}	-104.97
4-TS _{B1}	-57.72
5a-TS _{B1}	-105.20
5b-TS _{B1}	-97.84
5c-TS _{B1}	-138.78
5d-TS _{B1}	-143.78
6-TS _{B1}	-40.56
6a-TS _{B1}	-251.51
7-TS _{B1}	-86.37
3b-TS _{B1}	-118.93
8-TS _{B1}	-227.78
9-TS _{B1}	-442.69
10-TS _{B1}	-211.55
11-TS _{B1}	-1180.18
12-TS _{B1}	-89.66
13-TS _{B1}	-115.71
14-TS _{B1}	-330.96
3c-TS _{B1}	-131.58
15-TS _{B1}	-180.08
16-TS _{B1}	-47.01
17-TS _{B1}	-67.45
18-TS _{B1}	-420.08
19-TS _{B1}	-1107.65
20-TS _{B1}	-1118.25
21-TS _{B1}	-408.79
22-TS _{B1}	-852.26
23-TS _{B1}	-667.20
24-TS _{B1}	-89.66
25-TS _{B1}	-89.66
4-TS _{B1} -D3	-35.36
9-TS _{B1} -D3	-396.79
4-TS _{B1} -BW91	-78.44
9-TS _{B1} -BW91	-251.75
4-TS _{B1} -M06	-16.77

9-TS _{B1} -M06	-131.33
1-TS _{B2}	-125.19
2-TS _{B2}	-206.75
3-TS _{B2}	-97.44
la-TS _{B2}	-135.97
3a-TS _{B2}	-107.74
4-TS _{B2}	-109.92
5a-TS _{B2}	-124.20
5b-TS _{B2}	-106.02
6-TS _{B2}	-26.78
7-TS _{B2}	-76.08
3b-TS _{B2}	-106.41
8-TS _{B2}	-277.63
9-TS _{B2}	-477.36
10-TS _{B2}	-222.52
10a-TS _{B2}	-1282.27
10b-TS _{B2}	-1328.00
10c-TS _{B2}	-1153.11
11-TS _{B2}	-1180.18
12-TS _{B2}	-113.56
13-TS _{B2}	-130.02
14-TS _{B2}	-331.45
15-TS _{B2}	-212.96
16-TS _{B2}	-57.98
17-TS _{B2}	-327.51
18-TS _{B2}	-413.31
19-TS _{B2}	-1055.71
20-TS _{B2}	-1125.16
21-TS _{B2}	-414.76
22-TS _{B2}	-593.39
23-TS _{B2}	-667.20
24-TS _{B2}	-113.56
25-TS _{B2}	-113.56
4-TS _{B3}	-104.48
9-TS _{B3}	-288.00
4-TS _{B2} -D3	-45.62
9-TS _{B2} -D3	-788.40
4-TS _{B2} -BW91	-78.57
9-TS _{B2} -BW91	-309.32
4-TS _{B2} -M06	-90.61
9-TS _{B2} -M06	-606.75