Vinyl sulfonyl chemistry-driven unidirectional transport of a macrocycle through a [2]rotaxane

Arthur H. G. David,^a Pablo García-Cerezo,^a Araceli G. Campaña,^a Francisco Santoyo-González^{*a} and Victor Blanco^{*a}

^a Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avda. Fuente Nueva S/N, 18071 Granada, Spain.

*E-mail: victorblancos@ugr.es; fsantoyo@ugr.es

- Electronic Supporting Information -

Table of Contents

1. Experimental Section	S3
1.1. General Methods	
1.2 Synthesis Overview	
1.2.1 Synthesis of stopper 11	
1.2.2 Synthesis of axle $10 \cdot PF_6^-$	
1.2.3 Synthesis of rotaxane $13 \cdot PF_6^-$	
1.2.4 Cleavage of rotaxane $13 \cdot PF_6^-$	
1.2.5 In situ unidirectional transport of macrocycle 12	S10
1.3 Synthetic procedures and characterization details	S11
2. Additional Supporting Figures	S22
2.1. Stack plots and NMR spectra	
2.2. HRMS spectra of the unidirectional transport process	S30
3. NMR spectra of new compounds	S36
4. HRMS spectra of key compounds	
5. References	

1. Experimental Section

1.1. General Methods

Unless otherwise noted, commercially available reagents, solvents and anhydrous solvents were used as purchased without further purification. Freshly distilled THF was distilled over Na/benzophenone. Compounds 4^{S1} , 83^{S1} and 86^{S2} were prepared according to literature procedures.

TLC was performed on Merck Silica gel 60 F_{254} aluminum sheets. The TLC plates were stained with potassium permanganate (1% w/v in water), cerium molybdate stain (Hanessian's stain) or ninhydrin (0.3% w/v in ethanol) or observed under UV light when applicable. Flash column chromatography was performed with Silica Gel 60 (VWR, 40-63 µm). Gel permeation chromatography was performed with Biobeads[®] SX–1 resin beads.

¹H and ¹³C NMR spectra were recorded at room temperature on a Varian Direct Drive (400 MHz or 500 MHz), Bruker Avance III HD NanoBay (400 MHz) or Bruker Avance Neo (400 MHz, 500 MHz or 600 MHz) spectrometers at a constant temperature of 298 K. Chemical shifts are given in ppm and referenced to the signal of the residual protiated solvent (¹H: δ =7.26 for CDCl₃) or the ¹³C signal of the solvents (¹³C: δ =77.16 for CDCl₃) or to the signal of the residual TMS (¹H: δ =0.00). Coupling constant (*J*) values are given in Hz. Abbreviations indicating multiplicity were used as follow: m = multiplet, p = quintet, q = quartet, t = triplet, d = doublet, dd = doublet of doublets, s = singlet, br = broad. Signals were assigned by means of 2D NMR spectroscopy (COSY, HSQC, HMBC).

Electrospray (ESI) HRMS spectra were recorded on a Waters Xevo G2-XS QTOF or on a Bruker Maxis II spectrometer. Melting points were measured with a Stuart[®] melting point apparatus SMP3 and are uncorrected. IR spectra were recorded with a Perkin-Elmer Spectrum Two FTIR ATR spectrometer.

1.2 Synthesis Overview

1.2.1 Synthesis of stopper 11

Scheme S1: Synthesis of stopper 11: Reagents and conditions: a) 1. "BuLi (2.5 M in hexane), THF, -78 °C, 20 min; 2. B(OMe)₃, THF, -78 °C, 20 min, then 0-4 °C, 2 h; 3. H₂O₂ (33% in H₂O), 0-4 °C, 30 min, then r.t., 1 h, 61%. b) K₂CO₃, CH₃CN, 75 °C, 22 h, 66 %. c) CF₃CO₂H, Et₃SiH, CH₂Cl₂, r.t., 4 h, 79%.

Scheme S2: Synthesis of compound 6: Reagents and conditions: a) 3-Bromo-1-propanol, K₂CO₃, CH₃CN, 75 °C, 24 h, 85%. b) 2,2-Dimethyl-1,3-propanediol, DL-10-camphorsulfonic acid, molecular sieves (3Å), toluene, 100 °C, 18 h, 73%. c) 2-Chloroethanesulfonyl chloride, Et₃N, CH₂Cl₂, 0-4 °C, 1 h, 80%. d) Et₃N, PPh₃, CH₂Cl₂/ⁱPrOH (8:1), r.t., 24 h, quant. e) CF₃CO₂H, H₂O, CH₂Cl₂, r.t., 5 h, 95%.

Scheme S3: Synthesis of compound 7: Reagents and conditions: a) Ethyl trifluoroacetate, Et₃N, MeOH, r.t., 2 h, 89%. b) TsCl, Et₃N, DMAP_(cat), CH₂Cl₂, r.t., 18 h, 99%. c) LiBr, acetone, reflux, 18 h, 86%. d) Triphenylmethanethiol, LiHMDS (1 M in THF), THF, 0-4 °C to r.t., 70 min, 85%. e) NaOH, H₂O, MeOH, r.t., 20 h, 76%.

Scheme S4: Synthesis of axle **10**·PF₆⁻: Reagents and conditions: a) 1. MeOH/THF (8:5), r.t., 24 h; 2. NaBH₄, MeOH/THF (8:5), r.t., 24 h; 3. Boc₂O, Et₃N, CH₂Cl₂, r.t., 24 h, 80%. b) 1. CF₃CO₂H, Et₃SiH, CH₂Cl₂, r.t., 6 h; 2. Boc₂O, Et₃N, CH₂Cl₂, r.t., 5 h; 3. Divinyl sulfone, Et₃N, CH₂Cl₂, r.t., 14 h, 52% (over 3 steps). c) 1. CF₃CO₂H, CH₂Cl₂, r.t., 5 h; 2. HCl (2 M in Et₂O), CH₂Cl₂, r.t., 3 h; 3. KPF₆, CH₂Cl₂/acetone/H₂O (4:5:5), r.t., 18 h, 84% (over 3 steps).

1.2.3 Synthesis of rotaxane 13·PF₆⁻

Scheme S5: Synthesis of rotaxane 13 · PF₆⁻: Reagents and conditions: DMAP_(cat), CHCl₃, 0 °C, 72 h, 66%.

Scheme S6: Synthesis of thread **S12**·PF₆⁻: Reagents and conditions: a) Et₃N, CHCl₃, r.t., 18 h, 90%. b) CF₃CO₂H, CH₂Cl₂, r.t., 2 h; 2. HCl (2 M in Et₂O), CH₂Cl₂, r.t., 3 h; 3. KPF₆, CH₂Cl₂/acetone/H₂O (4:5:5), r.t., 18 h, 83%.

1.2.4 Cleavage of rotaxane 13·PF₆⁻

Scheme S7: Cleavage of rotaxane $13 \cdot PF_6^-$: Reagents and conditions: a) 1. MgBr₂, CHCl₃, r.t., 48 h; 2. Et₃N, CDCl₃, r.t., 10 min, 92% (for 12) and 77% (for 14/15 (1:1)).

Scheme S8: Cleavage of thread **S11**: Reagents and conditions: a) $MgBr_2$, CH_2Cl_2 , r.t., 48 h, 96%. b) CF_3CO_2H , CH_2Cl_2 , r.t., 2 h; 2. HCl (2 M in Et₂O), CH_2Cl_2 , r.t., 4 h; 3. KPF₆, CH_2Cl_2 /acetone/H₂O (4:5:5), r.t., 18 h, 95%.

1.2.5 In situ unidirectional transport of macrocycle 12

Scheme S9: In situ unidirectional transport of macrocycle 12: Reagents and conditions: a) DMAP_(cat), CDCl₃, 0 °C, 96 h. b) 1. MgBr₂, CDCl₃, r.t., 48 h; 2. Et₃N, CDCl₃, r.t., 60 min.

1.3 Synthetic procedures and characterization details

Compound S2:

To a degassed solution of 1-bromo-3,5-di-*tert*-butylbenzene (1.29 g, 4.79 mmol) in freshly distilled THF (15 mL) at -78 °C was added ⁿBuLi (2.5 M in hexane, 2.30 mL, 5.75 mmol) dropwise. The solution was stirred for 20 min at -78 °C and trimethyl borate (800 µL, 7.19 mmol) was added. The solution was stirred for 25 min at -78 °C. The mixture was allowed to warm up to 0-4 °C and was further stirred for 2 h at 0-4 °C. Subsequently, H₂O₂ (33% in H₂O, 875 µL, 9.58 mmol) was added and the resulting mixture was stirred for 30 min at 0-4 °C then, 1 h at room temperature. The reaction mixture was cooled in a water-ice bath and was slowly treated with an aqueous solution of Na₂SO₃ (0.63 M, 15 mL). The mixture was then stirred for 15 min at 0-4 °C and 5 min at room temperature. The resulting mixture was extracted with EtOAc (3 × 50 mL) and the combined extracts were washed with H₂O (2 × 100 mL) and brine (2 × 100 mL). The organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The crude material was purified by column chromatography (SiO₂, EtOAc/hexane 10:90) to give **S2** (599 mg, 61%) as a white solid. ¹H NMR (400 MHz, CDCl₃): δ =7.06 (s, 1H), 6.76 (s, 2H), 5.59 (br, 1H), 1.34 (s, 18H). HRMS (ESI⁻): m/z: 205.1593 [M–H]⁻ (calcd for C₁₄H₂₁O: 205.1592). Characterization data are in agreement with those from literature.^{S3}

Compound S4:

To a degassed solution of **S2** (520 mg, 2.52 mmol) in anhydrous CH₃CN (30 mL) were added **S3** (2.00 g, 5.03 mmol) and K₂CO₃ (1.74 g, 12.6 mmol). The suspension was stirred for 22 h at 75 °C. The solvent was evaporated under reduced pressure and the solid was dissolved in CH₂Cl₂/H₂O (1:1, 200 mL). Layers were separated and the aqueous one was extracted with CH₂Cl₂ (50 mL). The combined extracts were dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂/hexane 20:80) to yield **S4** (864 mg, 66%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ = 7.43 (m, 6H), 7.28 – 7.15 (m, 9H), 7.01 (s, 1H), 6.69 (s, 2H), 3.92 (m, 2H), 2.38 (m, 2H), 1.84 (m, 2H), 1.31 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ =158.50, 152.21, 145.05, 129.75, 127.98, 126.71, 115.02, 108.95, 66.77, 66.14, 35.11, 31.62, 28.75. IR (neat): *v*=2958, 2866, 1591, 1443, 1427, 1299, 1053, 744, 699 cm⁻¹. HRMS (ESI⁺): *m/z*: 545.2856 [M+Na]⁺ (calcd for C₃₆H₄₂ONaS: 545.2854).

Compound 11:

Under argon, to a solution of **S4** (800 mg, 1.53 mmol) in dry CH₂Cl₂ (10 mL) were added CF₃CO₂H (2 mL) and Et₃SiH (1 mL). The solution was stirred for 4 h at room temperature and the solvent was removed under reduced pressure. Subsequently, the solid was dissolved in toluene (20 mL) and the solvent was evaporated under vacuum. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂/hexane 20:80) to afford **11** (340 mg, 79%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ =7.07 (t, *J* = 1.7 Hz, 1H), 6.80 (d, *J* = 1.7 Hz, 2H), 4.12 (t, *J* = 5.9 Hz, 2H), 2.79 (q, *J* = 7.1 Hz, 2H), 2.12 (p, *J* = 6.5 Hz, 2H), 1.45 (t, *J* = 8.1 Hz, 1H), 1.35 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ =158.52, 152.35, 115.21, 108.92, 65.51, 35.12, 33.76, 31.59, 21.50. IR (neat): *v*=2956, 2866, 1591, 1427, 1298, 1217, 1203, 1061, 863, 764, 750, 707 cm⁻¹. HRMS (ESI⁺): *m/z*: 303.1754 [M+Na]⁺ (calcd for C₁₇H₂₈ONaS: 303.1753).

Compound S5:

To a degassed solution of 4-hydroxybenzaldehyde (1.00 g, 8.19 mmol) in dry CH₃CN (30 mL) were added K₂CO₃ (5.66 g, 41.0 mmol) and 3-bromo-1-propanol (0.960 mL, 10.7 mmol). The suspension was stirred for 24 h at 75 °C. The mixture was cooled to room temperature, filtered and the solvent was evaporated under reduced pressure. The syrup was dissolved in CH₂Cl₂ (50 mL) and washed with H₂O (50 mL). The aqueous layer was extracted with CH₂Cl₂ (50 mL) and the combined organic phases were dried over anhydrous Na₂SO₄. The solvent was removed under vacuum and the crude material was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc 85:15) to yield **S5** (1.25 g, 85%) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ =9.88 (s, 1H), 7.83 (d, *J* = 8.8 Hz, 2H), 7.01 (d, *J* = 8.8 Hz, 2H), 4.21 (t, *J* = 6.1 Hz, 2H), 3.88 (t, *J* = 5.9 Hz, 2H), 2.08 (p, *J* = 6.0 Hz, 2H). Characterization data are in agreement with those from literature.^{S4}

Compound 2:

To a degassed solution of **S5** (6.45 g, 35.8 mmol) in dry toluene (300 mL) were added 2,2-dimethyl-1,3propanediol (5.59 g, 53.7 mmol), DL-10-camphorsulfonic acid (1.66 g, 7.16 mmol) and molecular sieves (3Å, 10 g). The suspension was stirred for 18 h at 100 °C. The resulting mixture was cooled to room temperature and Et₃N (15 mL) was added. The solution was concentrated to dryness and the crude material was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc 85:15) to afford **2** (6.92 g, 73%) as a white solid. M.p. 55–57 °C. ¹H NMR (500 MHz, CDCl₃): δ =7.42 (d, *J* = 8.7 Hz, 2H), 6.89 (d, *J* = 8.7 Hz, 2H), 5.34 (s, 1H), 4.11 (t, *J* = 6.0 Hz, 2H), 3.83 (t, *J* = 5.9 Hz, 2H), 3.75 (d, *J* = 11.3 Hz, 2H), 3.63 (d, *J* = 10.5 Hz, 2H), 2.02 (p, *J* = 6.0 Hz, 2H), 1.29 (s, 3H), 0.79 (s, 3H). ¹³C NMR (126 MHz, CDCl₃): δ =159.29, 131.40, 127.58, 114.40, 101.76, 77.79, 65.90, 60.55, 32.08, 30.31, 23.18, 22.02. IR (neat): *v*=3400 (br), 2953, 2858, 1614, 1516, 1387, 1245, 1097, 1059, 1036, 1012, 987, 827, 764, 749 cm⁻¹. HRMS (ESI⁺): *m/z*: 289.1415 [M+Na]⁺ (calcd for C₁₅H₂₂O₄Na: 289.1416).

Compound 3:

Under an argon atmosphere, to a solution of 2 (2.29 g, 8.58 mmol) in anhydrous CH₂Cl₂ (250 mL), in a water-ice bath, were added Et₃N (5.96 mL, 42.9 mmol) and a solution of 2-chloroethanesulfonyl chloride (1.35 mL, 12.9

mmol) in anhydrous CH₂Cl₂ (25 mL). The solution was stirred for 1 h at 0-4 °C. Subsequently, the mixture was diluted with CH₂Cl₂ (50 mL) and washed with H₂O (250 mL). The aqueous layer was then extracted with CH₂Cl₂ (250 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude material was purified by column chromatography (SiO₂, EtOAc/hexane 35:65) to yield **3** (2.46 g, 80%) as a white solid. M.p. 57–58 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.43 (d, *J* = 8.7 Hz, 2H), 6.87 (d, *J* = 8.7 Hz, 2H), 6.46 (dd, *J* = 16.6, 9.3 Hz, 1H), 6.38 (d, *J* = 16.7 Hz, 1H), 6.06 (d, *J* = 9.3 Hz, 1H), 5.34 (s, 1H), 4.32 (t, *J* = 6.1 Hz, 2H), 4.06 (t, *J* = 5.9 Hz, 2H), 3.75 (d, *J* = 11.2 Hz, 2H), 3.64 (d, *J* = 10.5 Hz, 2H), 2.19 (p, *J* = 6.0 Hz, 2H), 1.29 (s, 3H), 0.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ =158.96, 132.31, 131.69, 130.46, 127.66, 114.34, 101.67, 77.78, 67.49, 63.28, 30.30, 29.04, 23.17, 22.00. IR (neat): *v*=2954, 2848, 1614, 1516, 1358, 1244, 1169, 1097, 974, 944, 828, 761 cm⁻¹. HRMS (ESI⁺): *m/z*: 379.1188 [M+Na]⁺ (calcd for C₁₇H₂₄O₆SNa: 379.1191).

Compound 5:

To a degassed solution of **3** (1.15 g, 3.23 mmol) in CH₂Cl₂/⁴PrOH (8:1, 90 mL) were added **4** (2.15 g, 5.24 mmol), Et₃N (225 µL, 1.62 mmol) and PPh₃ (169 mg, 0.646 mmol). The solution was stirred for 24 h at room temperature. The solvent was then evaporated under reduced pressure and the crude material was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc 98:2) to give **5** (2.46 g, quant) as a white solid. M.p. 70–73 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.43 (d, *J* = 8.7 Hz, 2H), 7.30 – 7.14 (m, 15H), 7.11 (d, *J* = 8.9 Hz, 2H), 6.88 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 8.9 Hz, 2H), 5.33 (s, 1H), 4.44 (t, *J* = 6.2 Hz, 2H), 4.08 (t, *J* = 5.9 Hz, 2H), 3.99 (t, *J* = 5.9 Hz, 2H), 3.74 (d, *J* = 11.2 Hz, 2H), 3.62 (d, *J* = 10.6 Hz, 2H), 3.34 (m, 2H), 2.92 (m, 2H), 2.69 (t, *J* = 7.2 Hz, 2H), 2.21 (p, *J* = 6.0 Hz, 2H), 2.01 (p, *J* = 6.4 Hz, 2H), 1.28 (s, 3H), 0.79 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ =158.95, 156.79, 147.15, 139.32, 132.36, 131.77, 131.24, 127.70, 127.56, 125.99, 114.38, 113.36, 101.66, 77.78, 67.05, 65.81, 64.45, 63.41, 50.66, 30.31, 29.30, 29.19, 29.01, 25.37, 23.19, 22.03. IR (neat): *v*=3055, 2956, 2849, 1611, 1508, 1244, 1167, 1099, 828, 734, 702 cm⁻¹. HRMS (ESI⁺): *m/z*: 789.2890 [M+Na]⁺ (calcd for C₄₅H₅₀NaO₇S₂: 789.2896).

Compound 6:

Under argon, to a solution of **5** (2.28 g, 2.97 mmol) in CH₂Cl₂ (50 mL) were added CF₃CO₂H (20 mL) and H₂O (2 mL). The solution was stirred for 5 h at room temperature and concentrated to dryness. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc 99:1) to afford **6** (1.93 g, 95%) as a white solid. M.p. 91–93 °C. ¹H NMR (400 MHz, CDCl₃): δ =9.87 (s, 1H), 7.82 (d, *J* = 8.7 Hz, 2H), 7.26 – 7.15 (m, 15H), 7.10 (d, *J* = 8.9 Hz, 2H), 6.99 (d, *J* = 8.7 Hz, 2H), 6.75 (d, *J* = 8.9 Hz, 2H), 4.45 (t, *J* = 6.1 Hz, 2H), 4.16 (t, *J* = 5.9 Hz, 2H), 4.00 (t, *J* = 5.8 Hz, 2H), 3.35 (m, 2H), 2.92 (m, 2H), 2.71 (t, *J* = 7.2 Hz, 2H), 2.25 (p, *J* = 6.0 Hz, 2H), 2.02 (p, *J* = 6.4 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ =190.82, 163.54, 156.73, 147.11, 139.42, 132.38, 132.16, 131.22, 130.43, 127.56, 126.00, 114.87, 113.34, 66.67, 65.78, 64.44, 63.80, 50.76, 29.27, 29.22, 29.07, 25.41. IR (neat): *v*=2929, 1688, 1600, 1508, 1357, 1253, 1162, 1035, 942, 831, 750, 703 cm⁻¹. HRMS (ESI⁺): *m/z*: 703.2158 [M+Na]⁺ (calcd for C₄₀H₄₀NaO₆S₂: 703.2164).

Compound S7:

To a degassed solution of **S6** (2.61 g, 14.4 mmol) in dry MeOH (90 mL) were added Et₃N (2.00 mL, 14.4 mmol) and ethyl trifluoroacetate (2.22 mL, 18.7 mmol). The solution was stirred for 2 h at room temperature. The resulting solution was diluted with H₂O (100 mL) and brine (150 mL) and then extracted with EtOAc (3 × 250 mL). The combined organic layers were dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 96:4) to afford **S7** (3.55 g, 89%) as a white solid. M.p. 81–84 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.20 (d, *J* = 8.6 Hz, 2H), 6.88 (d, *J* = 8.6 Hz, 2H), 6.72 (br, 1H), 4.44 (d, *J* = 5.7 Hz, 2H), 4.10 (t, *J* = 6.0 Hz, 2H), 3.84 (t, *J* = 5.9 Hz, 2H), 2.03 (p, *J* = 6.0 Hz, 2H), 1.85 (br, 1H). ¹³C NMR (101 MHz, CDCl₃): δ =158.93, 157.18 (q, *J* = 37.2 Hz), 129.59, 128.26, 116.01 (q, *J* = 287.8 Hz), 115.08, 65.87, 60.41, 43.56, 32.05. IR (neat): *v*=3300, 2948, 2878, 1697, 1555, 1513, 1188, 1167, 1061 cm⁻¹. HRMS (ESI⁺): *m/z*: 300.0824 [M+Na]⁺ (calcd for C₁₂H₁₄NO₃F₃Na: 300.0823).

Compound S8:

To a degassed solution of **S7** (3.38 g, 12.2 mmol) in anhydrous CH₂Cl₂ (150 mL) were added Et₃N (6.80 mL, 48.8 mmol), TsCl (4.65 g, 24.4 mmol) and a catalytic amount of DMAP. The solution was stirred for 18 h at room temperature and concentrated to dryness. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂, to CH₂Cl₂/MeOH 98:2) to yield **S8** (5.24 g, 99%) as a white solid. M.p. 122–125 °C. ¹H NMR (500 MHz, CDCl₃): δ =7.76 (d, *J* = 8.3 Hz, 2H), 7.27 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 8.7 Hz, 2H), 6.77 (d, *J* = 8.6 Hz, 2H), 6.48 (br, 1H), 4.46 (d, *J* = 5.7 Hz, 2H), 4.24 (t, *J* = 6.0 Hz, 2H), 3.96 (t, *J* = 5.9 Hz, 2H), 2.39 (s, 3H), 2.12 (p, *J* = 6.0 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ = 158.69, 157.13 (q, *J* = 37.3 Hz), 144.95, 133.01, 129.98, 129.55, 128.32, 128.01, 116.01 (q, *J* = 287.9 Hz), 115.07, 67.09, 63.42, 43.59, 29.02, 21.76. IR (neat): *v*=3323, 2934, 1688, 1517, 1358, 1251, 1166, 951, 749 cm⁻¹. HRMS (ESI⁺): *m/z*: 454.0912 [M+Na]⁺ (calcd for C₁₉H₂₀NF₃O₅SNa: 454.0912).

Compound S9:

Under an argon atmosphere, to a solution of **S8** (2.92 g, 6.77 mmol) in dry acetone (180 mL) was added LiBr (5.88 g, 67.7 mmol). The suspension was stirred for 18 h at reflux and concentrated to dryness. The resulting solid was dissolved in CH₂Cl₂/H₂O (1:1, 500 mL). Layers were separated and the aqueous one was extracted with CH₂Cl₂ (2 × 250 mL). The combined organic phases were dried over anhydrous Na₂SO₄ and the solvent was evaporated under vacuum. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂) to give **S9** (1.97 g, 86%) as a white solid. M.p. 106–109 °C. ¹H NMR (400 MHz, CDCl₃): δ =7.22 (d, *J* = 8.6 Hz, 2H), 6.90 (d, *J* = 8.6 Hz, 2H), 6.50 (br, 1H), 4.46 (d, *J* = 5.7 Hz, 2H), 4.11 (t, *J* = 5.8 Hz, 2H), 3.60 (t, *J* = 6.4 Hz, 2H), 2.32 (p, *J* = 6.1 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ =158.89, 157.12 (q, *J* = 36.9 Hz), 129.64, 128.30, 116.00 (q, *J* = 287.9 Hz), 115.17, 65.56, 43.61, 32.40, 30.01. IR (neat): *v*=3288, 1698, 1551, 1515, 1248, 1181, 1159, 823, 754 cm⁻¹. HRMS (ESΓ): *m/z*: 338.0003 [M–H]⁻ (calcd for C₁₂H₁₂NO₂F₃Br: 338.0004).

Compound S10:

To a degassed solution of triphenylmethanethiol (955 mg, 3.46 mmol) in anhydrous THF (9 mL), in a water-ice bath, was added LiHMDS (1 M in THF, 3.50 mL, 3.46 mmol). The mixture was stirred at 0-4 °C until the thiolate precipitates (approximately 10 min). Subsequently, the suspension was allowed to warm up to room temperature and a degassed solution of **S9** (980 mg, 2.88 mmol) in dry THF (4 mL) was added. The mixture was further stirred for 1 h at room temperature and was concentrated to dryness. The resulting syrup was dissolved in CH₂Cl₂ (100 mL) and washed with H₂O (2 × 100 mL). The organic layer was dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude material was purified by column chromatography (SiO₂, Hexane/CH₂Cl₂ 20:80) to give **S10** (1.31 g, 85%) as a white solid. M.p. 111–113 °C. ¹H NMR (500 MHz, CDCl₃): δ =7.44 (m, 6H), 7.34 – 7.19 (m, 11H), 6.84 (d, *J* = 8.6 Hz, 2H), 6.58 (br, 1H), 4.46 (d, *J* = 5.7 Hz, 2H), 3.92 (t, *J* = 6.2 Hz, 2H), 2.39 (t, *J* = 7.1 Hz, 2H), 1.84 (p, *J* = 6.7 Hz, 2H). ¹³C NMR (126 MHz, CDCl₃): δ =158.97, 157.09 (q, *J* = 36.9 Hz), 144.95, 129.70, 129.51, 127.99, 126.75, 115.99 (q, *J* = 287.9 Hz), 115.11, 66.76, 66.44, 43.60, 28.54, 28.38. IR (neat): *v*=3307, 3058, 2932, 1705, 1512, 1443, 1246, 1202, 1172, 1033, 743, 700 cm⁻¹. HRMS (ESI⁺): *m/z*: 558.1691 [M+Na]⁺ (calcd for C₃₁H₂₈NO₂SF₃Na: 558.1691).

Compound 7:

S10 (1.95 g, 3.64 mmol) was dissolved in MeOH (30 mL) upon sonication. Then, a solution of NaOH (728 mg, 18.2 mmol) in H₂O (8 mL) was added. The mixture was stirred for 20 h at room temperature. MeOH was evaporated under reduced pressure and the resulting mixture was diluted with H₂O/CH₂Cl₂ (2:3, 150 mL). Layers were separated and the aqueous one was extracted with CH₂Cl₂ (2 × 100 mL). The combined extracts were dried over anhydrous Na₂SO₄ and the solvent was removed under reduced pressure. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5, to CH₂Cl₂/MeOH/NH₃ (30% in H₂O) 90:10:2) to yield **7** (1.21 g, 76%) as a light-yellow oil. ¹H NMR (400 MHz, CDCl₃): δ =7.44 (m, 6H), 7.31 – 7.19 (m, 11H), 6.80 (d, *J* = 8.6 Hz, 2H), 3.90 (t, *J* = 6.2 Hz, 2H), 3.80 (s, 2H), 2.38 (t, *J* = 7.1 Hz, 2H), 2.29 (br, 2H), 1.82 (p, *J* = 6.8 Hz, 2H). ¹³C NMR (101 MHz, CDCl₃): δ =157.96, 144.96, 129.68, 128.49, 127.95, 126.70, 114.71, 66.70, 66.39, 45.71, 28.58, 28.45. IR (neat): *v*=3056, 2925, 1609, 1510, 1488, 1444, 1243, 1033, 764, 748, 700 cm⁻¹. HRMS (ESI⁺): *m/z*: 462.1869 [M+Na]⁺ (calcd for C₂₉H₂₉NOSNa: 462.1868); 440.2042 [M+H]⁺ (calcd for C₂₉H₃₀NOS: 440.2048)

Compound 8:

6 (1.66 g, 2.44 mmol) and 7 (1.07 g, 2.44 mmol) were dissolved in degassed anhydrous MeOH/THF (8:5, 65 mL) upon sonication. Then, the solution was stirred for 24 h at room temperature. NaBH₄ (369 mg, 9.76 mmol) was added and the solution was further stirred for 24 h at room temperature. H₂O (50 mL) was added, the mixture was stirred for 15 min and diluted with brine (100 mL). The resulting mixture was extracted with CH₂Cl₂ (3×150 mL). The combined extracts were dried over anhydrous Na₂SO₄ and the solvent was removed under vacuum. Subsequently, the solid was dissolved in degassed CH₂Cl₂ (60 mL) and Et₃N (1.00 mL, 7.19 mmol) and a solution of Boc₂O (691 mg, 3.17 mmol) in CH₂Cl₂ (5 mL) were added dropwise. The solution was stirred for 24 h at room temperature and was concentrated to dryness. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂, to CH₂Cl₂/EtOAc 96:4) to yield 8 (2.34 g, 80%) as a light-yellow oil. ¹H NMR $(500 \text{ MHz}, \text{CDCl}_3): \delta = 7.42 \text{ (m, 6H)}, 7.29 - 7.07 \text{ (m, 30H)}, 6.85 \text{ (d, } J = 8.6 \text{ Hz}, 2\text{H}), 6.77 \text{ (m, 4H)}, 4.45 \text{ (t, } J = 6.2 \text{ Hz})$ Hz, 2H), 4.28 (br, 4H), 4.07 (t, J = 5.8 Hz, 2H), 4.01 (t, J = 5.9 Hz, 2H), 3.91 (t, J = 6.1 Hz, 2H), 3.35 (m, 2H), 2.94 (m, 2H), 2.73 (t, J = 7.2 Hz, 2H), 2.37 (t, J = 7.1 Hz, 2H), 2.22 (p, J = 6.0 Hz, 2H), 2.03 (p, J = 6.6 Hz, 2H), 1.82 (p, J = 6.7 Hz, 2H), 1.50 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ =158.19, 157.81, 156.74, 156.06, 147.12, 144.98, 139.36, 132.37, 131.22, 130.77, 130.14, 129.72, 129.56, 128.00, 127.56, 126.74, 125.99, 114.64, 114.60, 113.34, 80.06, 67.13, 66.73, 66.35, 65.76, 64.43, 63.38, 50.67, 48.45, 48.37, 48.16, 48.09, 29.39, 29.20, 29.02, 28.64, 28.47, 25.37. IR (neat): v=2928, 1688, 1610, 1510, 1364, 1244, 1166, 764, 749, 702 cm⁻¹. HRMS (ESI⁺): m/z: 1226.4707 [M+Na]⁺ (calcd for C₇₄H₇₇NO₈S₃Na: 1226.4709).

Compound 9:

Note: Divinyl sulfone is very toxic by inhalation or contact with skin. It should only be handle inside a well-ventilated fumehood while wearing adequate gloves, lab coat and face protection to avoid skin contact.

Under an argon atmosphere, to a solution of **8** (2.16 g, 1.79 mmol) in anhydrous CH₂Cl₂ (80 mL) were added CF₃CO₂H (15 mL) and Et₃SiH (7 mL). The solution was stirred for 6 h at room temperature and was concentrated to dryness. The crude was dissolved in toluene (70 mL) and the solvent was evaporated under reduced pressure. Then, the solid was dissolved in degassed CH₂Cl₂ (80 mL) and Et₃N (8 mL) and Boc₂O (391 mg, 1.79 mmol) were added. The mixture was stirred for 5 h at room temperature. Subsequently, divinyl sulfone (1.40 mL, 14.3 mmol) was added and the solution was stirred for another 14 h at room temperature. The solvent was evaporated under vacuum and the crude material was purified by column chromatography (SiO₂, CH₂Cl₂, to CH₂Cl₂/EtOAc 98:2) to afford **9** (1.01 g, 52%) as a light-yellow oil. ¹H NMR (500 MHz, CDCl₃): δ =7.27 – 7.08 (m, 21H), 6.85 (d, *J* = 8.6 Hz, 4H), 6.76 (d, *J* = 8.9 Hz, 2H), 6.64 (dd, *J* = 16.6, 9.8 Hz, 1H), 6.45 (d, *J* = 16.6 Hz, 1H), 6.17 (d, *J* = 9.8 Hz, 1H), 4.45 (t, *J* = 6.1 Hz, 2H), 4.28 (br, 4H), 4.09 – 3.99 (m, 6H), 3.35 (m, 2H), 3.24 (m, 2H), 2.92 (m, 4H), 2.74 (m, 4H), 2.22 (p, *J* = 5.9 Hz, 2H), 2.05 (m, 4H), 1.50 (s, 9H). ¹³C NMR (126 MHz, CDCl₃): δ =158.06, 157.82, 156.73, 156.03, 147.10, 139.35, 136.13, 132.35, 131.31, 131.20, 130.72, 130.47, 129.51, 128.97, 127.53, 125.97, 114.60, 113.33, 80.08, 67.12, 65.92, 65.77, 64.42, 63.40, 54.54, 50.66, 48.50, 48.19, 29.81, 29.37, 29.19, 29.00, 28.96, 28.62, 25.35, 24.34. IR (neat): *v*=2928, 1685, 1610, 1510, 1318, 1241, 1164, 764, 750, 703 cm⁻¹. HRMS (ESI⁺): *m/z*: 1102.3708 [M+Na]⁺ (calcd for C₅₉H₆₉NO₁₀NaS₄: 1102.3702).

Compound 10·PF₆⁻:

Note: HCl in Et_2O solution is corrosive and toxic by inhalation. It should be handled only inside a well-ventilated fumehood. When evaporating the reaction mixture, the exhaust gases of the vacuum pump must be directed to a fumehood with appropriate tubing.

To a solution of **9** (519 mg, 0.480 mmol) in CH₂Cl₂ (30 mL) was added CF₃CO₂H (6 mL). The solution was stirred for 5 h at room temperature and was concentrated to dryness. The solid was then dissolved in CH₂Cl₂ (20 mL) and HCl (2 M in Et₂O, 3.6 mL, 7.2 mmol) was added. The mixture was stirred for 3 h at room temperature. The solvent was evaporated under reduced pressure. The resulting solid was dissolved in CH₂Cl₂/acetone/H₂O (4:5:5, 70 mL) and an excess of KPF₆ was added. The mixture was stirred for 18 h at room temperature and was diluted with H₂O (35 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 50 mL) and the combined organic phases were dried over anhydrous Na₂SO₄. The solvent was removed under reduced pressure to give **10**·PF₆⁻ (456 mg, 84%) as a white solid. M.p. 154–156 °C (decomp.). ¹H NMR (500 MHz, CDCl₃): δ =8.49 (br, 2H), 7.33 – 7.14 (m, 19H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.2 Hz, 4H), 6.75 (d, *J* = 8.6 Hz, 2H), 6.63 (dd, *J* = 16.6, 9.9 Hz, 1H), 6.42 (d, *J* = 16.6 Hz, 1H), 6.18 (d, *J* = 9.9 Hz, 1H), 4.41 (t, *J* = 6.2 Hz, 2H), 4.05 – 3.87 (m, 10H), 3.34 (m, 2H), 3.18 (m, 2H), 2.92 (m, 2H), 2.83 (m, 2H), 2.72 (m, 4H), 2.28 (m, 2H), 2.02 (m, 4H). ¹³C NMR (126 MHz, CDCl₃): δ =159.82, 159.60, 156.76, 147.14, 139.41, 136.02, 132.39, 131.69, 131.51, 131.24, 127.58, 126.01, 122.35, 122.20, 115.33, 113.37, 66.98, 65.98, 65.98, 65.84, 64.46, 63.52, 54.46, 53.12, 50.74, 49.48, 49.43, 29.33, 29.23, 29.05, 28.80, 25.38, 24.34. IR (neat): *v*=2932, 1655, 1611, 1515, 1250, 829, 749, 702 cm⁻¹. HRMS (ESI⁺): *m/z*: 980.3353 [M–PF₆⁻]⁺ (calcd for C₅₄H₆₂NO₈S₄: 980.3358).

Compound 13·PF₆⁻:

10·PF₆⁻ (22 mg, 20 μmol) and **12** (44 mg, 98 μmol) were dissolved in CHCl₃ (7 mL) upon sonication. The solvent was removed under vacuum and the syrup was dissolved in degassed CHCl₃ (700 μL). The mixture was cooled to 0 °C and stirred for 1 h. To this solution were added a degassed solution of **11** (11 mg, 39 μmol) in CHCl₃ (100 μL) and a catalytic amount of DMAP. The solution was stirred for 72 h at 0 °C. Then, the solvent was evaporated under reduced pressure and the crude material was purified by gel permeation chromatography (Bio-Beads[®] SX–1, CH₂Cl₂) to yield **13**·PF₆⁻ (24 mg, 66%) as a white solid. M.p. 165–168 °C (decomp.). ¹H NMR (500 MHz, CDCl₃): δ = 7.46 (br, 2H, H_a), 7.25 – 7.15 (m, 19H, H_{e+d+r+s+t}), 7.09 (d, *J* = 8.8 Hz, 2H, H_q), 7.02 (t, *J* = 1.6 Hz, 1H, H_{ff}), 6.93 – 6.80 (m, 8H, H₄₊₅), 6.76 (m, 8H, H_{f+g+p+ee}), 4.44 (m, 6H, H_{j+b+c}), 4.17 – 3.99 (m, 16H, H_{3+h+o+u+dd}), 3.75 (m, 8H, H₂), 3.46 – 3.26 (m, 14H, H_{1+k+y+z}), 3.18 – 2.72 (m, 12H, H_{1+m+w+x+aa+bb}), 2.19 (m, 2H, H_i), 2.06 (m, 6H, H_{n+v+cc}), 1.31 (s, 18H, H_{gg}). ¹³C NMR (126 MHz, CDCl₃): δ = 159.52, 159.29, 158.45, 156.78, 152.38, 148.97, 147.67, 147.13, 139.31, 132.35, 131.22, 130.96, 127.56, 125.98, 124.11, 123.87, 121.97, 121.62, 115.25, 114.72, 113.37, 113.05, 108.95, 71.31, 70.84, 70.31, 70.07, 69.43, 68.53, 67.34, 66.19, 65.88, 64.44, 63.57, 53.92, 53.83, 52.13, 50.72, 35.13, 31.60, 29.83, 29.43, 29.27, 29.09, 28.97, 28.80, 25.32, 23.96, 23.85. IR (neat): *v*=2937, 1655, 1590, 1506, 1275, 1256, 1214, 1180, 1121, 1055, 951, 841, 764, 750 cm⁻¹. HRMS (ESI⁺): *m/z*: 1708.7335 [M–PF₆⁻]⁺ (calcd for C₉₅H₁₂₂NO₁₇S₅: 1708.7316).

To a degassed solution **9** (54 mg, 0.049 mmol) and **11** (28 mg, 0.10 mmol) in CHCl₃ (3 mL) were added 2 drops of Et₃N. The solution was stirred for 18 h at room temperature and was concentrated to dryness. The crude material was purified by column chromatography (SiO₂, CH₂Cl₂, to CH₂Cl₂/EtOAc 97:3) to afford **S11** (61 mg, 90%) as a white syrup. ¹H NMR (500 MHz, CDCl₃): δ =7.27 – 7.07 (m, 21H), 7.04 (t, *J* = 1.7 Hz, 1H), 6.85 (d, *J* = 8.6 Hz, 4H), 6.77 (m, 4H), 4.45 (t, *J* = 6.1 Hz, 2H), 4.28 (br, 4H), 4.10 – 3.98 (m, 8H), 3.35 (m, 2H), 3.28 (m, 4H), 2.95 (m, 6H), 2.83 – 2.70 (m, 6H), 2.22 (p, *J* = 6.0 Hz, 2H), 2.05 (m, 6H), 1.50 (s, 9H), 1.32 (s, 18H). ¹³C NMR (126 MHz, CDCl₃): δ =158.39, 158.07, 157.82, 156.74, 156.03, 152.41, 147.11, 139.35, 132.35, 131.21, 130.74, 130.47, 129.52, 128.97, 127.54, 125.98, 115.33, 114.61, 113.34, 108.90, 80.07, 67.12, 65.95, 65.77, 65.72, 64.43, 63.40, 53.83, 53.81, 50.68, 48.49, 48.15, 35.12, 31.58, 29.82, 29.40, 29.23, 29.20, 29.12, 29.01, 28.63, 25.37, 24.12, 24.07. IR (neat): *v*=2948, 1687, 1608, 1591, 1510, 1242, 1164, 1119, 1038, 828, 703 cm⁻¹. HRMS (ESI⁺): *m/z*: 1382.5573 [M+Na]⁺ (calcd for C₇₆H₉₇NO₁₁S₅Na: 1382.5563).

Compound S12·**PF**₆⁻:

To a solution of S11 (7 mg, 5.1 µmol) in CH₂Cl₂ (2 mL) was added CF₃CO₂H (500 µL). The solution was stirred for 2 h at room temperature and was concentrated to dryness. The solid was then dissolved in CH₂Cl₂ (3 mL) and HCl (2 M in Et₂O, 40 µL, 80 µmol) was added. The solution was stirred for 3 h at room temperature. The solvent was removed under reduced pressure. The resulting solid was dissolved in CH₂Cl₂/acetone/H₂O (4:5:5, 14 mL) and an excess of KPF_6 was added. The mixture was stirred for 18 h at room temperature and was diluted with H₂O (10 mL). The resulting mixture was extracted with CH₂Cl₂ (3 \times 10 mL) and the combined organic layers were dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum to give S12·PF₆⁻ (6 mg, 83%) as a white solid. M.p. 151–153 °C (decomp.). ¹H NMR (500 MHz, CDCl₃): δ=8.49 (br, 2H, H_a), 7.35 – 7.14 (m, 19H, $H_{d+e+r+s+t}$, 7.10 (d, J = 8.5 Hz, 2H, H_a), 7.03 (s, 1H, H_{ff}), 6.87 (d, J = 6.7 Hz, 4H, H_{f+g}), 6.75 (m, 4H, H_{p+ee}), 4.39 $(t, J = 6.1 \text{ Hz}, 2H, H_j), 4.10 - 3.83 (m, 12H, H_{b+c+h+o+u+dd}), 3.34 (m, 2H, H_k), 3.28 - 3.19 (m, 4H, H_{v+z}), 3.00 - 2.86 (m, 2H, H_{v+z}), 3.00$ $(m, 6H, H_{1+x+aa}), 2.82 - 2.66 (m, 6H, H_{m+w+bb}), 2.17 (m, 2H, H_i), 2.10 - 1.97 (m, 6H, H_{n+v+cc}), 1.31 (s, 18H, H_{gg}).$ ¹³C NMR (126 MHz, CDCl₃): δ =158.45, 156.78, 152.45, 147.15, 147.10, 139.42, 136.40, 132.45, 132.39, 131.86, 131.81, 131.25, 127.58, 126.02, 115.36, 115.28, 113.40, 108.97, 67.01, 66.02, 65.88, 65.81, 64.48, 63.54, 53.79, 50.79, 49.40, 35.16, 32.08, 31.61, 29.86, 29.51, 29.46, 29.35, 29.26, 29.08, 28.97, 25.38, 24.09, 24.05, 22.84. IR (neat): v=2920, 2850, 1608, 1514, 1275, 1256, 843, 764, 750 cm⁻¹. HRMS (ESI⁺): m/z: 1260.5226 [M-PF₆]⁺ (calcd for C₇₁H₉₀NO₉S₅: 1260.5219).

Compounds 12, 14-H⁺ and 15 from the cleavage of rotaxane 13·PF₆⁻:

Under an Ar atmosphere, to a solution of $13 \cdot PF_6^-$ (18 mg, 9.7 µmol) in non-anhydrous CHCl₃ (2 mL) was added MgBr₂ (18 mg, 97 µmol). The suspension was stirred for 48 h at room temperature. The solvent was removed under vacuum. The resulting solid was dissolved in CDCl₃ (1 mL) and Et₃N (14 µL, 97 µmol) was added. The solvent solution was stirred for 10 min and filtered through a 0.22 µm filter. The solvent was evaporated under reduced pressure and the crude was purified by gel permeation chromatography (Bio-Beads[®] SX–1, CH₂Cl₂) to yield an equimolar fraction of 14-H⁺/15 (10 mg, 70%)* as a white solid and a mixed fraction of 12 with Et₃N. The latter was purified by column chromatography (SiO₂, CH₂Cl₂/MeOH 95:5) to afford 12 (4 mg, 92%) as a white solid.

12: ¹H NMR (500 MHz, CDCl₃): δ =6.89 (s, 8H, H₄₊₅), 4.16 (br, 8H, H₃), 3.91 (t, *J* = 4.3 Hz, 8H, H₂), 3.82 (s, 8H, H₁). HRMS (ESI⁺): *m/z*: 471.1992 [M+Na]⁺ (calcd for C₂₄H₃₂O₈Na: 471.1995). Characterization data match those of the commercially available compound.

14-H⁺/**15** (1:1): ¹H NMR (500 MHz, CDCl₃): δ = 9.19 (br, 2H, H_a), 7.40 (d, *J* = 8.1 Hz, 4H, H_{d+e}), 7.25 – 7.14 (m, 15H, H_{r+s+t}), 7.08 (d, *J* = 8.9 Hz, 2H, H_q), 7.03 (t, *J* = 1.7 Hz, 1H, H_{ff}), 6.88 (m, 4H, H_{f+g}), 6.75 (m, 4H, H_{p+ee}), 4.09 – 3.94 (m, 8H, H_{h+0+u+dd}), 3.85 (br, 4H, H_{b+c}), 3.53 (t, *J* = 6.4 Hz, 2H, H_j), 3.30 – 3.09 (m, 6H, H_{k+y+z}), 3.04 – 2.66 (m, 12H, H_{l+m+w+x+aa+bb}), 2.25 (p, *J* = 6.1 Hz, 2H, H_i), 2.04 (m, 6H, H_{n+v+cc}), 1.31 (s, 18H, H_{gg}). ¹³C NMR (126 MHz, CDCl₃): δ = 159.52, 158.27, 156.77, 152.30, 147.03, 139.08, 132.20, 131.89, 131.87, 131.11, 127.46, 127.43, 125.85, 122.27, 115.21, 115.00, 113.26, 108.78, 66.07, 65.84, 65.62, 65.33, 64.31, 53.70, 53.65, 48.73, 46.13, 32.22, 31.94, 30.95, 29.87, 29.72, 29.38, 28.97, 28.87, 23.87.

14-H⁺: HRMS (ESI⁺): m/z: 822.2892 [M–PF₆⁻]⁺ (calcd for C₄₁H₆₁NBrO₅S₃: 822.2895).

15: HRMS (ESI⁻): *m/z*: 517.1507 [M]⁻ (calcd for C₃₀H₂₉O₄S₂: 517.1507).

* As seen in the ¹H NMR spectrum, the cleaved thread is isolated in its protonated form (14-H⁺) after removal under reduced pressure of the solvents and, therefore, triethylamine and gel permeation chromatography (Figure S5c). This counterintuitive result can be explained by the acid-base equilibrium being displaced towards the protonated dibenzylammonium motif upon removal of the amine base under vacuum.^{S5} In this way, we repeated the cleavage following the same procedure but with an additional treatment of the mixture with an OH⁻ ion exchange resin, resulting in the isolation of a mixture of deprotonated 14 and 15 (Figure S5g).

Compound S13:

Under Ar, to a solution of **S11** (20 mg, 15 μ mol) in dry CH₂Cl₂ (2 mL) was added MgBr₂ (27 mg, 0.15 mmol). The suspension was stirred for 48 h at room temperature. The solvent was evaporated under reduced pressure and the crude material was purified by column chromatography (SiO₂, CH₂Cl₂/EtOAc 96:4) to afford **S13** (13 mg,

96%) as a white syrup. ¹H NMR (500 MHz, CDCl₃): δ =7.13 (br, 4H, H_d,H_e), 7.03 (t, *J* = 1.7 Hz, 1H, H_{ff}), 6.85 (m, 4H, H_f,H_g), 6.75 (d, *J* = 1.7 Hz, 2H, H_{ee}), 4.28 (br, 4H, H_b,H_c), 4.12 – 4.02 (m, 6H, H_h,H_u,H_{dd}), 3.61 (t, *J* = 6.4 Hz, 2H, H_j), 3.27 (m, 4H, H_y,H_z), 2.97 (br, 4H, H_x,H_{aa}), 2.79 (m, 4H, H_w,H_{bb}), 2.32 (p, *J* = 6.1 Hz, 2H, H_i), 2.07 (p, *J* = 6.3 Hz, 4H, H_v,H_{cc}), 1.50 (s, 9H,H_{fBuBoc}), 1.31 (s, 18H,H_{gg}). ¹³C NMR (126 MHz, CDCl₃): δ =158.41, 158.08, 156.08, 152.44, 130.54, 129.54, 128.98, 115.35, 114.68, 114.62, 108.92, 80.09, 65.97, 65.75, 65.50, 53.87, 53.84, 48.49, 48.20, 35.15, 32.54, 31.60, 30.17, 29.43, 29.26, 29.22, 29.15, 28.65, 24.15, 24.11. IR (neat): *v*=2959, 2923, 1688, 1610, 1591, 1511, 1299, 1241, 1164, 1119, 1037 cm⁻¹. HRMS (ESI⁺): *m*/*z*: 944.3236 [M+Na]⁺ (calcd for C₄₆H₆₈NO₇S₃NaBr: 944.3239).

Compound 14- H^+ ·PF₆⁻:

To a solution of **S13** (11 mg, 12 µmol) in CH₂Cl₂ (2 mL) was added CF₃CO₂H (500 µL). The solution was stirred for 2 h at room temperature and was concentrated to dryness. The solid was then dissolved in CH₂Cl₂ (2 mL) and HCl (2 M in Et₂O, 90 µL, 0.18 mmol) was added. The solution was stirred for 4 h at room temperature. The solvent was removed under reduced pressure. The resulting solid was dissolved in CH₂Cl₂/acetone/H₂O (4:5:5, 14 mL) and an excess of KPF₆ was added. The mixture was stirred for 18 h at room temperature and was diluted with H₂O (10 mL). The resulting mixture was extracted with CH₂Cl₂ (3 × 20 mL) and the combined organic extracts were dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum to yield **14**-H⁺·PF₆⁻ (11 mg, 95%) as a white solid. M.p. 173–175 °C (decomp.). ¹H NMR (500 MHz, CDCl₃): δ =8.43 (br, 2H, H_a), 7.33 (m, 4H, H_{d+e}), 7.03 (br, 1H, H_{ff}), 6.88 (d, *J* = 5.8 Hz, 4H, H_{f+g}), 6.75 (s, 2H, H_{ee}), 4.09 – 3.97 (m, 6H, H_{h+u+dd}), 3.91 (m, 4H, H_{b+c}), 3.55 (t, *J* = 6.4 Hz, 2H, H_j), 3.24 (m, 4H, H_{y+2}), 2.99 – 2.68 (m, 8H, H_{w+x+aa+bb}), 2.27 (p, *J* = 6.0 Hz, 2H, H_i), 2.10 – 1.99 (m, 4H, H_{v+ce}), 1.31 (s, 18H, H_{gg}). ¹³C NMR (126 MHz, CDCl₃): δ =159.61, 158.29, 152.30, 147.00, 131.66, 131.10, 127.43, 122.16, 115.22, 115.13, 113.24, 108.81, 65.85, 65.66, 65.39, 53.68, 53.65, 35.00, 32.22, 31.93, 31.46, 29.36, 29.11, 28.94, 28.84, 28.51, 23.95, 23.92, 22.69. IR (neat): *v*=2919, 1611, 1515, 1275, 1260, 1180, 1030, 843, 764, 750 cm⁻¹. HRMS (ESI⁺): *m/z*: 822.2895 [M–PF₆⁻]⁺ (calcd for C₄₁H₆₁NO₅S₃Br: 822.2895).

Compound 14:

To a solution of **S13** (13 mg, 14 µmol) in CH₂Cl₂ (2 mL) was added CF₃CO₂H (500 µL). The solution was stirred for 2 h at room temperature and was concentrated to dryness. The solid was then dissolved in CH₂Cl₂ (20 mL) and washed with NaOH (1 M, 10 mL). The organic phase was dried over anhydrous Na₂SO₄. The solvent was evaporated under vacuum to yield **14** (11 mg, 95%) as a white syrup. ¹H NMR (500 MHz, CDCl₃): δ = 7.25 (d, *J* = 7.9 Hz, 4H, H_{d+e}), 7.03 (t, *J* = 1.7 Hz, 1H, H_{ff}), 6.86 (m, 4H, H_{f+g}), 6.75 (d, *J* = 1.6 Hz, 2H, H_{ee}), 4.10 – 4.03 (m, 6H, H_{h+u+dd}), 3.73 (s, 4H, H_{b+c}), 3.60 (t, *J* = 6.5 Hz, 2H, H_j), 3.26 (m, 4H, H_{y+z}), 2.96 (m, 4H, H_{x+aa}), 2.78 (m, 4H, H_{w+bb}), 2.31 (p, *J* = 6.1 Hz, 2H, H_i), 2.10 – 2.03 (m, 4H, H_{v+cc}), 1.31 (s, 18H, H_{gg}). ¹³C NMR (126 MHz, CDCl₃): δ =158.40, 158.02, 158.01, 152.43, 129.77, 129.74, 115.35, 114.62, 114.57, 108.91, 65.90, 65.73, 65.48, 53.81, 52.24, 35.15, 32.54, 31.60, 30.19, 29.85, 29.41, 29.24, 29.20, 29.12, 24.11. IR (neat): *v*=2924, 1591, 1510, 1428, 1298, 1244, 1116, 1039 824 cm⁻¹. HR-MS (ESI⁺): *m/z*: 822.2908 [M+H]⁺ (calcd for C₄₁H₆₁NO₅S₃Br: 822.2895).

Assembly of pseudorotaxane 12+10·PF₆⁻:

Under Ar, $10 \cdot PF_6^-$ (14.4 mg, 12.8 µmol) and 12 (71 mg, 63.9 µmol) were dissolvend in CDCl₃ (0.6 mL). The resulting suspension was sonicated for 3 min and stirred until a clear solution was formed (typically 48-72 h). The resulting solution was analyzed by ¹H NMR spectroscopy.

In situ unidirectional transport of the macrocycle 12:

Under Ar, a mixture of $10 \cdot PF_6^-$ (36 mg, 32 µmol) and 12 (71 mg, 0.16 mmol) in CDCl₃ (1.5 mL) was sonicated for 3 min and stirred at room temperature until complete dissolution of the reagents and full complexation was observed by ¹H NMR. The resulting solution was cooled to 0 °C and stirred for 1 h. To this solution were added a degassed solution of 11 (18 mg, 64 µmol) in CDCl₃ (100 µL) and a catalytic amount of DMAP. The solution was stirred at 0 °C (typically 72 h) and then at room temperature (usually 24 h) until no signal of the vinyl sulfone moiety was observed by NMR. The resulting solution was allowed to warm up to room temperature and MgBr₂ (59 mg, 0.32 mmol) was added. The suspension was stirred for 48 h at room temperature. An aliquot of 0.6 mL was taken and filtered through a 0.22 µm filter before analysis.

Subsequently, to the remaining suspension (0.9 mL) was added Et₃N (26 μ L, 0.19 mmol) was added and the mixture was stirred for 30 min at room temperature. The addition of Et₃N (26 μ L, 0.19 mmol) was repeated and the mixture stirred additionally for 30 min. The mixture was filtered through a 0.22 μ m filter before analysis.

The unidirectional transport process was monitored and analyzed by ¹H NMR and HRMS throughout the experiment.

2. Additional Supporting Figures

2.1. Additional stack plots and NMR spectra

Figure S1: ¹H NMR (CDCl₃) spectrum of: a) DB24C8 (500 MHz). b) Pseudorotaxane assembled from $10 \cdot PF_6^-$ (*ca.* 20 mM) and 12 (5 equiv) (400 MHz). c) Thread $10 \cdot PF_6^-$ (500 MHz). A comparison between spectra b and c shows that the signals of Hd and He (green signals at 7.3 ppm) in the free thread are no longer present in the pseudorotaxane, supporting full complexation between the dibenzylammonium derivative and DB24C8.

Figure S2: ¹H NMR (400 MHz, CDCl₃) spectrum of a mixture of thread **10**·PF₆⁻ (*ca.* 20 mM) and macrocycle **12** (5 equiv) showing the integration of the diagnostic signals that support the full complexation into the pseudorotaxane.

Figure S3: ¹H NMR (500 MHz, DMSO- d_6) spectra of: a) DB24C8. b) Rotaxane 13·PF₆⁻. c) Thread 10·PF₆⁻.

Figure S4: DOSY NMR (500 MHz, DMSO- d_6) experiment of rotaxane $13 \cdot PF_6^-$.

Figure S5: Cleavage and disassembly of rotaxane 13·PF₆⁻. a-g) ¹H NMR (400 MHz, CDCl₃) spectra of: a)
Rotaxane 13·PF₆⁻. b) Crude mixture of the reaction of rotaxane 13·PF₆⁻ with MgBr₂ after the addition of Et₃N. c)
1:1 mixture of 14-H⁺ and stopper 15 obtained after purification.* d) Compound 14-H⁺·PF₆⁻. e) Macrocycle 12
obtained purification. f) Macrocycle 12. g) Mixture of 14 and stopper 15 obtained after purification and treatment with DOWEX 550A (OH⁻) resin. h) ¹H NMR (500 MHz, CDCl₃) spectra of compound 14.

* As seen in the ¹H NMR spectrum, the cleaved thread is isolated in fact in its protonated form $(14-H^+)$ after removal under reduced pressure of the solvents and, therefore, triethylamine and gel permeation chromatography (Figure S5c). This counterintuitive result can be explained by the acid-base equilibrium being displaced towards the protonated dibenzylammonium motif upon removal of the amine base under vacuum.^{S5} In this way, we repeated the cleavage following the same procedure but with an additional treatment of the mixture with an OH⁻ ion exchange resin, resulting in the isolation of a mixture of deprotonated **14** and **15** (Figure S5g).

Figure S6: In situ unidirectional transport experiment of macrocycle 12. Partial ¹H NMR (CDCl₃) spectra of: a) Macrocycle 12 (500 MHz). b) Thread precursor $10 \cdot PF_6^-$ (500 MHz). c) Mixture of $10 \cdot PF_6^-$ (21 mM) and 12 (5 equiv) (400 MHz). d) Mixture c 96 h after the addition of stopper 11 and DMAP_(cat) (400 MHz). e) Mixture d stirred for 48 h in the presence of MgBr₂ and for additional 60 min after the addition of Et₃N (400 MHz). g) 14 (500 MHz). The signal marked with an asterisk correspond to the excess of DB24C8

Figure S7: *In situ* unidirectional transport experiment of macrocycle **12**. Partial ¹H NMR (CDCl₃) spectra of: a) Macrocycle **12** (500 MHz). b) Thread precursor **10**·PF₆⁻ (500 MHz). c) Mixture of **10**·PF₆⁻ (21 mM) and **12** (5 equiv) (400 MHz). d) Mixture c 96 h after the addition of stopper **11** and DMAP_(cat) (400 MHz). e) Mixture d stirred for 48 h in the presence of MgBr₂ and for additional 60 min after the addition of Et₃N (400 MHz). g) **14** (500 MHz). The signals marked with an asterisk correspond to the excess of DB24C8

Figure S8: ¹H NMR (400 MHz, CDCl₃) spectrum of the *in situ* unidirectional transport experiment after stirring a mixture of $10 \cdot PF_6^-$ (*ca.* 20 mM) and macrocycle 12 (5 equiv) for showing the integration of the diagnostic signals that support the full complexation into the pseudorotaxane.

2.2. HRMS spectra of the unidirectional transport process

Figure S9: HRMS (ESI⁺) spectrum of the *in situ* unidirectional transport experiment of macrocycle **12** after stirring **10**·PF₆⁻ and **12** for 72 h, showing the signal corresponding to macrocycle **12**: m/z: 471.1999 [M+Na]⁺ (calcd for C₂₄H₃₂NaO₈: 471.1995).

Figure S10: HRMS (ESI⁺) spectrum of the *in situ* unidirectional transport experiment of macrocycle **12** after stirring **10**·PF₆⁻ and **12** for 72 h, showing a peak corresponding to thread **10**·PF₆⁻: m/z: 980.3387 [M–PF₆⁻]⁺ (calcd for C₅₄H₆₂NO₈S₄: 980.3358) and pseudorotaxane **10**+**12**·PF₆⁻: m/z: 1428.5527 [M–PF₆⁻]⁺ (calcd for C₇₈H₉₄NO₁₆S₄: 1428.5455).

Figure S11: Experimental (bottom) and theoretical (top) isotopic distribution for the $[M-PF_6^-]^+$ ion of pseudorotaxane $10+12 \cdot PF_6^-$ obtained during the *in situ* unidirectional transport experiment.

Figure S12: HRMS (ESI⁺) spectrum of the *in situ* unidirectional transport experiment of macrocycle **12** 96 h after the addition of stopper **11** and DMAP, showing the peak corresponding to the excess macrocycle **12**: m/z: 471.2005 [M+Na]⁺ (calcd for C₂₄H₃₂NaO₈: 471.1995).

Figure S13: HRMS (ESI⁺) spectrum of the *in situ* unidirectional transport experiment of macrocycle **12** 96 h after the addition of stopper **11** and DMAP, showing the signal corresponding to rotaxane **13**·PF₆⁻: m/z: 1708.7354 [M–PF₆⁻]⁺ (calcd for C₉₅H₁₂₂NO₁₇S₅: 1708.7316).

Figure S14: Experimental (bottom) and theoretical (top) isotopic distribution for the $[M-PF_6^-]^+$ ion of rotaxane $13 \cdot PF_6^-$ obtained during the *in situ* unidirectional transport experiment.

Figure S15: HRMS (ESI⁺) spectrum of the *in situ* unidirectional transport experiment of macrocycle **12** 48 h after the addition of MgBr₂, showing the peak corresponding to the excess of macrocycle **12**: m/z: 471.2010 [M+Na]⁺ (calcd for C₂₄H₃₂NaO₈: 471.1995).

Figure S16: HRMS (ESI⁺) spectrum of the *in situ* unidirectional transport experiment of macrocycle **12** 48 h after the addition of MgBr₂, showing a peak corresponding to pseudorotaxane **12**+**14**-H⁺·PF₆⁻: m/z: 1270.5002 $[M-PF_6^-]^+$ (calcd for C₆₅H₉₃NBrO₁₃S₃: 1270.4992).

Figure S17: Experimental (bottom) and theoretical (top) isotopic distribution for the $[M-PF_6^-]^+$ ion of pseudorotaxane $12+14-H^+ \cdot PF_6^-$ obtained during the *in situ* unidirectional transport experiment.

Figure S18: HRMS (ESI⁻) spectrum of the *in situ* unidirectional transport experiment of macrocycle **12** 48 h after the addition of MgBr₂, showing the signal corresponding to stopper **15**: m/z: 517.1504 [M]⁻ (calcd for $C_{30}H_{29}O_4S_2$: 517.1507).

Figure S19: Experimental (bottom) and theoretical (top) isotopic distribution for the [M]⁻ ion of stopper **15** obtained during the *in situ* unidirectional transport experiment.

3. NMR spectra of new compounds

Compound S4:

Figure S21: ¹³C NMR (101 MHz, CDCl₃) spectrum of S4.

Figure S23: ¹³C NMR (101 MHz, CDCl₃) spectrum of 11.

Figure S25: ¹³C NMR (126 MHz, CDCl₃) spectrum of 2.

Compound 5:

Figure S29: ¹³C NMR (101 MHz, CDCl₃) spectrum of 5.

Compound 6:

Figure S31: ¹³C NMR (101 MHz, CDCl₃) spectrum of 6.

Figure S33: ¹³C NMR (101 MHz, CDCl₃) spectrum of S7.

Figure S35: ¹³C NMR (126 MHz, CDCl₃) spectrum of S8.

Figure S37: ¹³C NMR (126 MHz, CDCl₃) spectrum of S9.

Compound S10:

Figure S39: ¹³C NMR (126 MHz, CDCl₃) spectrum of S10.

Compound 7:

Figure S41: ¹³C NMR (101 MHz, CDCl₃) spectrum of 7.

Compound 8:

Figure S45: ¹³C NMR (126 MHz, CDCl₃) spectrum of 9.

Figure S47: ¹³C NMR (126 MHz, CDCl₃) spectrum of $10 \cdot PF_6^-$.

Figure S49: ¹³C NMR (126 MHz, CDCl₃) spectrum of $13 \cdot PF_6^-$.

Figure S50: COSY NMR (500 MHz, CDCl₃) spectrum of $13 \cdot PF_6^-$.

Figure S51: HSQC NMR (500 MHz and 126 MHz, CDCl₃) spectrum of 13·PF₆.

S52

Compound S11:

Figure S55: ¹³C NMR (126 MHz, CDCl₃) spectrum of S11.

Figure S57: ¹³C NMR (126 MHz, CDCl₃) spectrum of S12·PF₆⁻.

Figure S58: COSY NMR (500 MHz, CDCl₃) spectrum of S12·PF₆⁻.

Figure S59: HSQC NMR (500 and 126 MHz, CDCl₃) spectrum of S12·PF₆⁻.

Figure S60: HMBC NMR (500 and 126 MHz, $CDCl_3$) spectrum of S12·PF₆⁻.

Mixture of compounds 14-H⁺/15 (1:1):

Figure S61: ¹H NMR (500 MHz, CDCl₃) spectrum of a mixture of compounds **14**-H⁺/**15** (1:1) obtained from the cleavage of rotaxane **13**·PF₆⁻.

Figure S62: ¹³C NMR (126 MHz, CDCl₃) spectrum of a mixture of compounds **14**-H⁺/**15** (1:1) obtained from the cleavage of rotaxane **13**·PF₆⁻.

Figure S63: COSY NMR (500 MHz, CDCl₃) spectrum of a mixture of compounds $14-H^+/15$ (1:1) obtained from the cleavage of rotaxane $13 \cdot PF_6^-$.

Figure S64: HSQC NMR (500 and 126 MHz, CDCl₃) spectrum of a mixture of compounds $14-H^+/15$ (1:1) obtained from the cleavage of rotaxane $13\cdot PF_6^-$.

Figure S65: HMBC NMR (500 and 126 MHz, CDCl₃) spectrum of a mixture of compounds $14-H^+/15$ (1:1) obtained from the cleavage of rotaxane $13\cdot PF_6^-$.

Compound S13:

Figure S67: ¹³C NMR (126 MHz, CDCl₃) spectrum of S13.

Figure S69: HSQC NMR (500 MHz and 126 MHz, CDCl₃) spectrum of S13.

Figure S70: HMBC NMR (500 MHz and 126 MHz, CDCl₃) spectrum of S13.

Compound 14-H⁺·PF₆⁻:

Figure S72: ¹³C NMR (126 MHz, CDCl₃) spectrum of 14- $H^+ \cdot PF_6^-$.

Compound 14:

Figure S74: ¹³C NMR (126 MHz, CDCl₃) spectrum of **14**.

Figure S76: HSQC NMR (600 MHz and 151 MHz, CDCl₃) spectrum of 14.

Figure S77: HMBC NMR (600 MHz and 151 MHz, CDCl₃) spectrum of 14.

4. HRMS spectra of key compounds

Figure S78: HRMS (ESI⁺) spectrum of rotaxane $13 \cdot PF_6^-$.

Figure S79: Experimental (bottom) and theoretical (top) isotopic distribution for the $[M-PF_6^-]^+$ ion of rotaxane $13 \cdot PF_6^-$.

Figure S81: Experimental (bottom) and theoretical (top) isotopic distribution for the $[M-PF_6^-]^+$ ion of thread **S12**·PF $_6^-$.

Figure S82: HRMS (ESI⁺) spectrum of 14 obtained from the cleavage of rotaxane $13 \cdot PF_6^-$.

Figure S83: Experimental (bottom) and theoretical (top) isotopic distribution for 14 obtained from the cleavage of rotaxane $13 \cdot PF_6^-$.

Figure S84: HRMS (ESI⁻) spectrum of 15 obtained from the cleavage of rotaxane $13 \cdot PF_6^-$.

Figure S85: Experimental (bottom) and theoretical (top) isotopic distribution for the $[M]^-$ ion of 15 obtained from the cleavage of rotaxane $13 \cdot PF_6^-$.

Figure S86: HRMS (ESI^+) spectrum of compound **S13**.

Figure S87: Experimental (bottom) and theoretical (top) isotopic distribution for the [M+Na]⁺ ion of compound **S13**.

Figure S89: Experimental (bottom) and theoretical (top) isotopic distribution for the $[M-PF_6^-]^+$ ion of 14- $H^+ \cdot PF_6^-$.

Figure S91: Experimental (bottom) and theoretical (top) isotopic distribution for the [M+H]⁺ ion of 14.

5. References

- S1 A. H. G. David, P. García-Cerezo, A. G. Campaña, F. Santoyo-González and V. Blanco, [2]Rotaxane End-Capping Synthesis by Click Michael-Type Addition to the Vinyl Sulfonyl Group, *Chem. Eur. J.*, 2019, 25, 6170–6179.
- S2 H. Zheng, Y. Li, C. Zhou, Y. Li, W. Yang, W. Zhou, Z. Zuo and H. Liu, Synthesis of a [2]Rotaxane Incorporating a "Magic Sulfur Ring" by the Thiol-Ene Click Reaction, *Chem. Eur. J.*, 2011, **17**, 2160–2167.
- S3 O. Kwon, K. V. N. Esguerra, M. Glazerman, L. Petitjean, Y. Xu, X. Ottenwaelder and J.-P. Lumb, Development of 3,5-Di-*tert*-butylphenol as a Model Substrate for Biomimetic Aerobic Copper Catalysis, *Synlett*, 2017, 28, 1548–1553.
- S4 C. Sirichaiwat, C. Intaraudom, S. Kamchonwongpaisan, J. Vanichtanankul, Y. Thebtaranonth and Y. Yuthavong, Target Guided Synthesis of 5-Benzyl-2,4-diamonopyrimidines: Their Antimalarial Activities and Binding Affinities to Wild Type and Mutant Dihydrofolate Reductases from *Plasmodium falciparum*, *J. Med. Chem.*, 2004, **47**, 345–354.
- S5 This effect has been pointed as a plausible explanation for the switching of DB24C8 in a dibenzylamine/ammonium rotaxane. See section 4.2.1 in: F. Coutrot, A Focus on Triazolium as a Multipurpose Molecular Station for pH-Sensitive Interlocked Crown-Ether-Based Molecular Machines, *ChemistryOpen*, 2015, **4**, 556–576.